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Estimates for general positive linear
operators on non-compact interval
using weighted moduli of continuity

Radu Păltănea

Abstract. We give estimates with explicit constants of the degree of ap-
proximation by general positive linear operators on the interval [0,∞),
using a weighted modulus of continuity. In particular we obtain a quan-
titative version of a result of Totik concerning Szász-Mirakjan operators.
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1. Introduction

The moduli of continuity or smoothness of different kinds play a crucial role in
estimating the degree of approximation by using linear methods. In approx-
imation on non-compact intervals more convenient are the weighted moduli.
There are several types of constructions of weighted moduli of first order.
A very short list of contributions in this directions are given in References.

In this paper we introduce a class of first order weighted moduli of
continuity constructed starting from a family of ”admissible” functions and
we deduce estimates for general positive operators. These estimates are with
explicit constants. Such type of estimates are already obtained for weighted
moduli on a compact interval, for the Ditzian-Totik modulus of second order,
(see [9], [8], [12]).

Finally we remark that, in the case of a certain admissible function, our
modulus is equivalent to the usual modulus applied to a certain modification
of the function. This last modulus was used by Totik [14] for Szász-Mirakjan
operators.
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2. A general estimate with the modulus ωϕ

Denote N0 = N ∪ {0}. For k ∈ N denote by Πk, the space of polynomials of
degree at most k and for j ∈ N0 consider the monomial functions ej(t) = tj ,
t ∈ [0,∞). Denote by [a], the integer part of a number a ∈ R. Denote also by
F(I), the space of real functions defined on an interval I.

We adopt the following

Definition 2.1. A function ϕ ∈ C([0,∞)) is named admissible if it satisfies
the following conditions:

i) ϕ(t) > 0, for t ∈ (0,∞);
ii) 1

ϕ is convex on interval (0,∞);
iii) we have

lim
a→+0

∫ x

a

dt

ϕ(t)
< ∞ for all x > 0; (2.1)

iv) we have ∫ ∞

0

dt

ϕ(t)
= +∞. (2.2)

In this definition we use the Riemann improper integral. Using an ad-
missible function ϕ we introduce the following first order weighted modulus.

Definition 2.2. For f ∈ F([0,∞)), and h > 0 set:

ωϕ(f, h) = sup
{
|f(v)− f(u)| : u, v ∈ [0,∞), |v − u| ≤ hϕ

(
u + v

2

)}
.

(2.3)

We admit in this definition that the supremum could be equal to +∞.

Remark 2.3. Function e0 is admissible and for ϕ = e0 we obtain ωϕ = ω,
where ω denotes the usual first order modulus.

Property iii) allows to take ϕ with condition 1
ϕ(x) = O(xα) (x → 0),

with α > −1. Very suitable for applications is the case ϕ(x) ∼
√

x (x → 0),
when the dependence of modulus ωϕ(f, ·) on the values taken by a function
f in a neighbourhood of the point x = 0 is similar with the dependence
of the first order Ditzian-Totik modulus on the values taken by a function
near the end points of the interval [0, 1]. However if we take ϕ(x) =

√
x, for

x ≥ 0, then ωϕ(f, h) is finite for any h > 0 only if f satisfies the restrictive
condition f(x) = O(

√
x) (x → ∞). This fact can be deduced, for instance,

from Remark 2.6 in Section 2.
In order to enlarge the class of functions for which ωϕ(f, h) < ∞, for any

h > 0, by condition iv), we have the possibility to take ϕ rapidly decreasing
to 0 when x → ∞. For instance an admissible function is ϕ(x) =

√
x

1+xm ,
x ≥ 0, for m ∈ N, m ≥ 2. Then we have ωϕ(f, h) < ∞, for any differentiable
function f such that |f ′(x)| ≤ Mxm− 1

2 .
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Given an admissible function ϕ, we consider the following corresponding
function

Φ(x) =
∫ x

0

dt

ϕ(t)
, x ∈ (0,∞). (2.4)

Lemma 2.4. Let f ∈ F([0,∞)), h > 0 and 0 ≤ a < b, such that Φ(b)−Φ(a) =
h. Then for all points c, d such that a ≤ c ≤ d ≤ b, we have

|f(d)− f(c)| ≤ ωϕ(f, h). (2.5)

Proof. We have to show that d− c ≤ hϕ
(

c+d
2

)
.

From condition iii) of Definition 2.1 we deduce, using Jensen inequality:

d− c

ϕ
(

c+d
2

) ≤ ∫ d

c

dt

ϕ(t)
.

But ∫ d

c

dt

ϕ(t)
≤
∫ b

a

dt

ϕ(t)
= Φ(b)− Φ(a) = h.

�

Lemma 2.5. Let f ∈ F([0,∞)), x > 0 and h > 0. We have

|f(t)− f(x)| ≤
(

1 +
1
h2

(Φ(t)− Φ(x))2
)

ωϕ(f, h). (2.6)

Proof. We may consider only the case ωϕ(f, h) < ∞. Note that function
Φ : (0,∞) → (0,∞) is a strictly increasing bijection. Therefore it admits an
inverse Φ−1 : (0,∞) → (0,∞).

Put p =
[

Φ(x)
h

]
. Define the sequence (uj)j≥−p by

uj = Φ−1(jh + Φ(x)), j ≥ −p.

From this it immediately follows that

Φ(uj+1)− Φ(uj) = h, j ≥ −p.

Consider the decomposition

[0,∞) = [0, u−p) ∪
∞⋃

j=−p

[uj , uj+1),

where [0, u−p) = ∅, if u−p = 0. Let t ∈ [0,∞). We have to consider several
cases.

Case 1: t ∈ [x,∞). Then there is an index n ∈ N0, such that t ∈
[un, un+1). We have

|f(t)− f(x)| ≤ |f(t)− f(un)|+
n−1∑
j=0

|f(uj+1)− f(uj)|,

where the last sum is 0 if n = 0. Using Lemma 2.4 we have |f(t)− f(un)| ≤
ωϕ(f, h) and |f(uj+1)− f(uj)| ≤ ωϕ(f, h), for 0 ≤ j ≤ n− 1. Hence

|f(t)− f(x)| ≤ (n + 1)ωϕ(f, h).
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If n = 0, from this we obtain directly relation (2.6). If n ≥ 1 we have succes-
sively:

1 + n = 1 +
1
h

n−1∑
j=0

(Φ(uj+1)− Φ(uj) = 1 +
1
h

(Φ(un)− Φ(x))

≤ 1 +
1
h
|Φ(t)− Φ(x)| ≤ 1 +

1
h2

· (Φ(t)− Φ(x))2

It follows relation (2.6).
Case 2: t ∈ [u−p, x). This implies that p ≥ 1. Then there is n ∈ N, such

that t ∈ [u−n−1, u−n). We have

|f(t)− f(x)| ≤ |f(t)− f(u−n)|+
n−1∑
j=0

|f(u−j)− f(u−j−1)|,

where the last sum is 0 if n = 0. Using Lemma 2.4 we have |f(t)− f(u−n)| ≤
ωϕ(f, h) and |f(u−j)− f(u−j−1)| ≤ ωϕ(f, h), for 0 ≤ j ≤ n− 1. Hence

|f(t)− f(x)| ≤ (n + 1)ωϕ(f, h).

If n = 0, from this we obtain directly relation (2.6). If n ≥ 1 we have succes-
sively, similarly as in Case 1:

1 + n = 1 +
1
h

n−1∑
j=0

(Φ(u−j)− Φ(u−j−1)) = 1 +
1
h

(Φ(x)− Φ(u−n))

≤ 1 +
1
h
|Φ(x)− Φ(t)| ≤ 1 +

1
h2

· (Φ(t)− Φ(x))2

Case 3: t ∈ [0, u−p). We have

|f(t)− f(x)| ≤ |f(t)− f(u−p)|+
p−1∑
j=0

|f(u−j)− f(u−j−1)|,

where the last sum is 0 if p = 0. Let show that |f(t) − f(u−p)| ≤ ωϕ(f, h).

We must to prove u−p− t ≤ hϕ
(

u−p+t
2

)
. But from the convexity of function

1
ϕ we obtain

u−p − t

ϕ
(

u−p+t
2

) ≤ ∫ u−p

t

ds

ϕ(s)
= Φ(u−p)− Φ(t) ≤ Φ(u−p).

Since function Φ−1 is strictly increasing and Φ(x) − ph < h it follows that
u−p ≤ Φ−1(h). Hence Φ(u−p) ≤ h. Then we continue like in Case 2, for
n = p. �

Remark 2.6. From the proof of Lemma 2.5 it follows that for f ∈ F([0,∞)),
x > 0 and h > 0, we have also

|f(t)− f(x)| ≤
(

1 +
1
h
|Φ(t)− Φ(x)|

)
ωϕ(f, h). (2.7)
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The main result of this section is the following

Theorem 2.7. Let W be a linear subspace of F([0,∞)) and let F : W → R
be a positive linear functional. Let x ∈ [0,∞) and let ϕ be an admissible
function. Suppose that (Φ−Φ(x)e0)2 ∈ W and e0 ∈ W . Then, for all f ∈ W
and all h > 0 we have

|F (f)− f(x)| ≤ |f(x)| · |F (e0)− 1|

+
(
F (e0) + h−2F ((Φ− Φ(x)e0)2)

)
ωϕ(f, h). (2.8)

Proof. The theorem follows from Lemma 2.5 and the inequality:

|F (f)− f(x)| ≤ |f(x)| · |F (e0)− 1|+ F (|f − f(x)e0|).
�

Corollary 2.8. Let W be a linear subspace of F([0,∞)) and let L : W →
F([0,∞)) be a positive linear operator. Let ϕ an admissible function. Suppose
that (Φ − Φ(x)e0)2 ∈ W for each x ∈ [0,∞) and also e0 ∈ W . Then for all
f ∈ W , all x ∈ [0,∞) and h > 0 we have

|L(f, x)− f(x)| ≤ |f(x)| · |L(e0, x)− 1|

+
(
L(e0, x) + h−2L((Φ− Φ(x)e0)2, x)

)
ωϕ(f, h). (2.9)

Remark 2.9. In the case ϕ = e0, we have Φ = e1 and relation (2.9) becomes
the well-known estimate of Mond [11].

3. Estimates for the weight ϕ(x) =
√

x

Theorem 3.1. Let W ⊂ F([0,∞)) be a linear subspace, such that Π2 ∈ W . If
L : W → F((0,∞)) is a positive linear operator, then for any f ∈ W , any
x ∈ (0,∞) and any h > 0 we have

|L(f, x)− f(x)| ≤ |f(x)| · |L(e0, x)− 1|

+
(

L(e0, x) +
4

h2x
L((e1 − xe0)2, x)

)
ωϕ(f, h). (3.1)

In the particular case L(e0) = e0 and h =
√

L((e1−xe0)2,x)
x we have

|L(f, x)− f(x)| ≤ 5 · ωϕ

(
f,

√
L((e1 − xe0)2, x)

x

)
. (3.2)

Proof. We apply Corollary 2.8 by taking into account the estimate:(∫ t

x

du√
u

)2

= (2(
√

t−
√

x))2 = 4 ·
(

t− x
√

x +
√

t

)2

≤ 4(t− x)2

x
.

�

In the following theorem we give the connections between the modulus
ωϕ(f, •), for ϕ(x) =

√
x and the usual modulus of function f(x2).
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Theorem 3.2. For any f ∈ F([0,∞)) and h > 0 we have

ωϕ(f,
√

2h) ≤ ω(f ◦ e2, h) ≤ ωϕ(f, 2h). (3.3)

Proof. Let x, y ∈ [0,∞), such that |x2 − y2| ≤
√

2h
√

x2+y2

2 , which is equiv-

alent to the inequality |x − y| ≤ h
√

x2+y2

x+y . But
√

x2 + y2 ≤ x + y. Hence
|x− y| ≤ h. It follows |f(x2)− f(y2)| ≤ ω(f ◦ e2, h). Therefore

sup
x,y, |x2−y2|≤

√
2h

√
x2+y2

2

|f(x2)− f(y2)| ≤ ω(f ◦ e2, h).

But

sup
x,y, |x2−y2|≤

√
2h

√
x2+y2

2

|f(x2)− f(y2)| = sup
u,v, |u−v|≤

√
2h
√

u+v
2

|f(u)− f(v)|

= ωϕ(f,
√

2h).

Therefore
ωϕ(f,

√
2h) ≤ ω(f ◦ e2, h).

Conversely, let x, y ∈ [0,∞), such that |
√

x−√y| ≤ h, which is equiva-

lent to |x−y| ≤ h(
√

x+
√

y). But
√

x+
√

y ≤ 2
√

x+y
2 . Hence |x−y| ≤ 2

√
x+y

2

and consequently |f(y)− f(x)| ≤ ωϕ(f, 2h). Since x, y are arbitrarily chosen,
we have

sup
x,y, |

√
x−√y|≤h

|f(y)− f(x)| ≤ ωϕ(f, 2h).

But

sup
x,y, |

√
x−√y|≤h

|f(y)− f(x)| = sup
u,v, |u−v|≤h

|f(u2)− f(v2)|

= ω(f ◦ e2, h).

Therefore
ω(f ◦ e2, h) ≤ ωϕ(f, 2h).

Corollary 3.3. For ϕ(x) =
√

x, x ∈ [0,∞) and a function f ∈ F([0,∞)), the
following are equivalent:

i) lim
h→0

ωϕ(f, h) = 0,

ii) the function f(x2), x ∈ [0,∞) is uniformly continuous.

We exemplify for the Szász-Mirakjan operators

Sn(f, x) =
∞∑

k=0

f

(
k

n

)
e−nx (nx)k

k!
, (3.4)

x ∈ [0,∞), n ∈ N and f ∈ W , where W ⊂ F([0,∞)) is the linear subspace
of the functions f for which the series above is convergent.

We have Sn(e0, x) = 1, Sn((e1−xe0)2, x) = x
n . Also we have Sn(f, 0) =

f(0) for any f ∈ W . Hence we obtain:
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Theorem 3.4. Let ϕ(x) =
√

x. Let f ∈ W , x ∈ [0,∞), n ∈ N. Then

|Sn(f, x)− f(x)| ≤ 5 · ωϕ

(
f,

1√
n

)
. (3.5)

�

Remark 3.5. In view of Corollary 3.3, relation (3.5) gives a quantitative ver-
sion of a result of Totik [14] which states that, if f(x2) is a uniformly contin-
uous function, x ∈ [0,∞), then the sequence of functions (Snf)n is uniformly
convergent on [0,∞) to function f .

4. Estimates for the weight ϕ(x) =
√

x
1+xm , m ∈ N, m ≥ 2

Theorem 4.1. Let W ⊂ F([0,∞)) be a linear subspace, such that Π2m ∈ W .
If L : W → F([0,∞)) is a positive linear operator, then for any f ∈ W , any
x ∈ (0,∞) and any h > 0 we have

|L(f, x)− f(x)| ≤ |f(x)| · |L(e0, x)− 1|

+
(
L(e0, x) +

4
h2x

L((e1 − xe0)2(2e0 + x2me0 + e2m), x)
)
ωϕ(f, h).

Proof. We apply Corollary 2.8 and use the estimate:(∫ t

x

(1 + um)du√
u

)2

= 4
(√

t−
√

x +
(
√

t)2m+1 − (
√

x)2m+1

2m + 1

)2

≤ 8(
√

t−
√

x)2

1 +

(∑2m
k=0(

√
t)k(

√
x)2m−k

2m + 1

)2


≤ 8
(t− x)2

x

[
1 +

(
tm + xm

2

)2
]

≤ 4
(t− x)2

x
(2 + t2m + x2m).

�
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[4] Bustamente, J., Morales de la Cruz, L., Positive linear operators and continu-
ous functions on unbounded interval, Jaen J. Approx., 1(2009), no. 2, 145–173.

[5] Bustamente, J., Quesada, J. M., Morales de la Cruz, L., Direct estimate for
positive linear operators in polynomial weighted spaces, J. Approx. Theory,
160(2010), 1495–1508.

[6] Felten, M., Direct and inverse estimates for Bernstein polynomials, Constr.
Approx., 14(1998), 459468.

[7] Gadjiev, A. D., Aral, A., The estimates of approximation by using new type of
weighted modulus of continuity, Comput. Math. Appl., 54(2007), 127–135.
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