Estimates for general positive linear operators on non-compact interval using weighted moduli of continuity

Radu Păltănea

Abstract

We give estimates with explicit constants of the degree of approximation by general positive linear operators on the interval $[0, \infty)$, using a weighted modulus of continuity. In particular we obtain a quantitative version of a result of Totik concerning Szász-Mirakjan operators.

Mathematics Subject Classification (2010): 41A36.
Keywords: Positive linear operators, weighted modulus of continuity.

1. Introduction

The moduli of continuity or smoothness of different kinds play a crucial role in estimating the degree of approximation by using linear methods. In approximation on non-compact intervals more convenient are the weighted moduli. There are several types of constructions of weighted moduli of first order. A very short list of contributions in this directions are given in References.

In this paper we introduce a class of first order weighted moduli of continuity constructed starting from a family of "admissible" functions and we deduce estimates for general positive operators. These estimates are with explicit constants. Such type of estimates are already obtained for weighted moduli on a compact interval, for the Ditzian-Totik modulus of second order, (see [9], [8], [12]).

Finally we remark that, in the case of a certain admissible function, our modulus is equivalent to the usual modulus applied to a certain modification of the function. This last modulus was used by Totik [14] for Szász-Mirakjan operators.

2. A general estimate with the modulus ω^{φ}

Denote $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For $k \in \mathbb{N}$ denote by Π_{k}, the space of polynomials of degree at most k and for $j \in \mathbb{N}_{0}$ consider the monomial functions $e_{j}(t)=t^{j}$, $t \in[0, \infty)$. Denote by $[a]$, the integer part of a number $a \in \mathbb{R}$. Denote also by $\mathcal{F}(I)$, the space of real functions defined on an interval I.

We adopt the following
Definition 2.1. A function $\varphi \in C([0, \infty))$ is named admissible if it satisfies the following conditions:
i) $\varphi(t)>0$, for $t \in(0, \infty)$;
ii) $\frac{1}{\varphi}$ is convex on interval $(0, \infty)$;
iii) we have

$$
\begin{equation*}
\lim _{a \rightarrow+0} \int_{a}^{x} \frac{\mathrm{~d} t}{\varphi(t)}<\infty \text { for all } x>0 \tag{2.1}
\end{equation*}
$$

iv) we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\mathrm{d} t}{\varphi(t)}=+\infty \tag{2.2}
\end{equation*}
$$

In this definition we use the Riemann improper integral. Using an admissible function φ we introduce the following first order weighted modulus.

Definition 2.2. For $f \in \mathcal{F}([0, \infty))$, and $h>0$ set:

$$
\begin{equation*}
\omega^{\varphi}(f, h)=\sup \left\{|f(v)-f(u)|: u, v \in[0, \infty),|v-u| \leq h \varphi\left(\frac{u+v}{2}\right)\right\} \tag{2.3}
\end{equation*}
$$

We admit in this definition that the supremum could be equal to $+\infty$.
Remark 2.3. Function e_{0} is admissible and for $\varphi=e_{0}$ we obtain $\omega^{\varphi}=\omega$, where ω denotes the usual first order modulus.

Property iii) allows to take φ with condition $\frac{1}{\varphi(x)}=\mathrm{O}\left(x^{\alpha}\right)(x \rightarrow 0)$, with $\alpha>-1$. Very suitable for applications is the case $\varphi(x) \sim \sqrt{x}(x \rightarrow 0)$, when the dependence of modulus $\omega^{\varphi}(f, \cdot)$ on the values taken by a function f in a neighbourhood of the point $x=0$ is similar with the dependence of the first order Ditzian-Totik modulus on the values taken by a function near the end points of the interval $[0,1]$. However if we take $\varphi(x)=\sqrt{x}$, for $x \geq 0$, then $\omega^{\varphi}(f, h)$ is finite for any $h>0$ only if f satisfies the restrictive condition $f(x)=\mathrm{O}(\sqrt{x})(x \rightarrow \infty)$. This fact can be deduced, for instance, from Remark 2.6 in Section 2.

In order to enlarge the class of functions for which $\omega^{\varphi}(f, h)<\infty$, for any $h>0$, by condition iv), we have the possibility to take φ rapidly decreasing to 0 when $x \rightarrow \infty$. For instance an admissible function is $\varphi(x)=\frac{\sqrt{x}}{1+x^{m}}$, $x \geq 0$, for $m \in \mathbb{N}, m \geq 2$. Then we have $\omega^{\varphi}(f, h)<\infty$, for any differentiable function f such that $\left|f^{\prime}(x)\right| \leq M x^{m-\frac{1}{2}}$.

Given an admissible function φ, we consider the following corresponding function

$$
\begin{equation*}
\Phi(x)=\int_{0}^{x} \frac{\mathrm{~d} t}{\varphi(t)}, x \in(0, \infty) \tag{2.4}
\end{equation*}
$$

Lemma 2.4. Let $f \in \mathcal{F}([0, \infty)), h>0$ and $0 \leq a<b$, such that $\Phi(b)-\Phi(a)=$ h. Then for all points c, d such that $a \leq c \leq d \leq b$, we have

$$
\begin{equation*}
|f(d)-f(c)| \leq \omega^{\varphi}(f, h) \tag{2.5}
\end{equation*}
$$

Proof. We have to show that $d-c \leq h \varphi\left(\frac{c+d}{2}\right)$.
From condition iii) of Definition 2.1 we deduce, using Jensen inequality:

$$
\frac{d-c}{\varphi\left(\frac{c+d}{2}\right)} \leq \int_{c}^{d} \frac{\mathrm{~d} t}{\varphi(t)}
$$

But

$$
\int_{c}^{d} \frac{\mathrm{~d} t}{\varphi(t)} \leq \int_{a}^{b} \frac{\mathrm{~d} t}{\varphi(t)}=\Phi(b)-\Phi(a)=h
$$

Lemma 2.5. Let $f \in \mathcal{F}([0, \infty)), x>0$ and $h>0$. We have

$$
\begin{equation*}
|f(t)-f(x)| \leq\left(1+\frac{1}{h^{2}}(\Phi(t)-\Phi(x))^{2}\right) \omega^{\varphi}(f, h) \tag{2.6}
\end{equation*}
$$

Proof. We may consider only the case $\omega^{\varphi}(f, h)<\infty$. Note that function $\Phi:(0, \infty) \rightarrow(0, \infty)$ is a strictly increasing bijection. Therefore it admits an inverse $\Phi^{-1}:(0, \infty) \rightarrow(0, \infty)$.

Put $p=\left[\frac{\Phi(x)}{h}\right]$. Define the sequence $\left(u_{j}\right)_{j \geq-p}$ by

$$
u_{j}=\Phi^{-1}(j h+\Phi(x)), j \geq-p
$$

From this it immediately follows that

$$
\Phi\left(u_{j+1}\right)-\Phi\left(u_{j}\right)=h, j \geq-p
$$

Consider the decomposition

$$
[0, \infty)=\left[0, u_{-p}\right) \cup \bigcup_{j=-p}^{\infty}\left[u_{j}, u_{j+1}\right)
$$

where $\left[0, u_{-p}\right)=\emptyset$, if $u_{-p}=0$. Let $t \in[0, \infty)$. We have to consider several cases.

Case 1: $t \in[x, \infty)$. Then there is an index $n \in \mathbb{N}_{0}$, such that $t \in$ $\left[u_{n}, \overline{\left.u_{n+1}\right) . \text { We have }}\right.$

$$
|f(t)-f(x)| \leq\left|f(t)-f\left(u_{n}\right)\right|+\sum_{j=0}^{n-1}\left|f\left(u_{j+1}\right)-f\left(u_{j}\right)\right|
$$

where the last sum is 0 if $n=0$. Using Lemma 2.4 we have $\left|f(t)-f\left(u_{n}\right)\right| \leq$ $\omega^{\varphi}(f, h)$ and $\left|f\left(u_{j+1}\right)-f\left(u_{j}\right)\right| \leq \omega^{\varphi}(f, h)$, for $0 \leq j \leq n-1$. Hence

$$
|f(t)-f(x)| \leq(n+1) \omega^{\varphi}(f, h)
$$

If $n=0$, from this we obtain directly relation (2.6). If $n \geq 1$ we have successively:

$$
\begin{aligned}
1+n & =1+\frac{1}{h} \sum_{j=0}^{n-1}\left(\Phi\left(u_{j+1}\right)-\Phi\left(u_{j}\right)=1+\frac{1}{h}\left(\Phi\left(u_{n}\right)-\Phi(x)\right)\right. \\
& \leq 1+\frac{1}{h}|\Phi(t)-\Phi(x)| \leq 1+\frac{1}{h^{2}} \cdot(\Phi(t)-\Phi(x))^{2}
\end{aligned}
$$

It follows relation (2.6).
Case 2: $t \in\left[u_{-p}, x\right)$. This implies that $p \geq 1$. Then there is $n \in \mathbb{N}$, such that $\overline{t \in\left[u_{-n-1}, u_{-n}\right) . \text { We have }}$

$$
|f(t)-f(x)| \leq\left|f(t)-f\left(u_{-n}\right)\right|+\sum_{j=0}^{n-1}\left|f\left(u_{-j}\right)-f\left(u_{-j-1}\right)\right|
$$

where the last sum is 0 if $n=0$. Using Lemma 2.4 we have $\left|f(t)-f\left(u_{-n}\right)\right| \leq$ $\omega^{\varphi}(f, h)$ and $\left|f\left(u_{-j}\right)-f\left(u_{-j-1}\right)\right| \leq \omega^{\varphi}(f, h)$, for $0 \leq j \leq n-1$. Hence

$$
|f(t)-f(x)| \leq(n+1) \omega^{\varphi}(f, h)
$$

If $n=0$, from this we obtain directly relation (2.6). If $n \geq 1$ we have successively, similarly as in Case 1:

$$
\begin{aligned}
1+n & =1+\frac{1}{h} \sum_{j=0}^{n-1}\left(\Phi\left(u_{-j}\right)-\Phi\left(u_{-j-1}\right)\right)=1+\frac{1}{h}\left(\Phi(x)-\Phi\left(u_{-n}\right)\right) \\
& \leq 1+\frac{1}{h}|\Phi(x)-\Phi(t)| \leq 1+\frac{1}{h^{2}} \cdot(\Phi(t)-\Phi(x))^{2}
\end{aligned}
$$

$\underline{\text { Case 3: } t \in\left[0, u_{-p}\right) . \text { We have }}$

$$
|f(t)-f(x)| \leq\left|f(t)-f\left(u_{-p}\right)\right|+\sum_{j=0}^{p-1}\left|f\left(u_{-j}\right)-f\left(u_{-j-1}\right)\right|,
$$

where the last sum is 0 if $p=0$. Let show that $\left|f(t)-f\left(u_{-p}\right)\right| \leq \omega^{\varphi}(f, h)$. We must to prove $u_{-p}-t \leq h \varphi\left(\frac{u_{-p}+t}{2}\right)$. But from the convexity of function $\frac{1}{\varphi}$ we obtain

$$
\frac{u_{-p}-t}{\varphi\left(\frac{u_{-p}+t}{2}\right)} \leq \int_{t}^{u_{-p}} \frac{\mathrm{~d} s}{\varphi(s)}=\Phi\left(u_{-p}\right)-\Phi(t) \leq \Phi\left(u_{-p}\right)
$$

Since function Φ^{-1} is strictly increasing and $\Phi(x)-p h<h$ it follows that $u_{-p} \leq \Phi^{-1}(h)$. Hence $\Phi\left(u_{-p}\right) \leq h$. Then we continue like in Case 2, for $n=p$.

Remark 2.6. From the proof of Lemma 2.5 it follows that for $f \in \mathcal{F}([0, \infty))$, $x>0$ and $h>0$, we have also

$$
\begin{equation*}
|f(t)-f(x)| \leq\left(1+\frac{1}{h}|\Phi(t)-\Phi(x)|\right) \omega^{\varphi}(f, h) \tag{2.7}
\end{equation*}
$$

The main result of this section is the following
Theorem 2.7. Let W be a linear subspace of $\mathcal{F}([0, \infty))$ and let $F: W \rightarrow \mathbb{R}$ be a positive linear functional. Let $x \in[0, \infty)$ and let φ be an admissible function. Suppose that $\left(\Phi-\Phi(x) e_{0}\right)^{2} \in W$ and $e_{0} \in W$. Then, for all $f \in W$ and all $h>0$ we have

$$
\begin{align*}
|F(f)-f(x)| \leq & |f(x)| \cdot\left|F\left(e_{0}\right)-1\right| \\
& +\left(F\left(e_{0}\right)+h^{-2} F\left(\left(\Phi-\Phi(x) e_{0}\right)^{2}\right)\right) \omega^{\varphi}(f, h) \tag{2.8}
\end{align*}
$$

Proof. The theorem follows from Lemma 2.5 and the inequality:

$$
|F(f)-f(x)| \leq|f(x)| \cdot\left|F\left(e_{0}\right)-1\right|+F\left(\left|f-f(x) e_{0}\right|\right)
$$

Corollary 2.8. Let W be a linear subspace of $\mathcal{F}([0, \infty))$ and let $L: W \rightarrow$ $\mathcal{F}([0, \infty))$ be a positive linear operator. Let φ an admissible function. Suppose that $\left(\Phi-\Phi(x) e_{0}\right)^{2} \in W$ for each $x \in[0, \infty)$ and also $e_{0} \in W$. Then for all $f \in W$, all $x \in[0, \infty)$ and $h>0$ we have

$$
\begin{align*}
& |L(f, x)-f(x)| \leq|f(x)| \cdot\left|L\left(e_{0}, x\right)-1\right| \\
& +\left(L\left(e_{0}, x\right)+h^{-2} L\left(\left(\Phi-\Phi(x) e_{0}\right)^{2}, x\right)\right) \omega^{\varphi}(f, h) \tag{2.9}
\end{align*}
$$

Remark 2.9. In the case $\varphi=e_{0}$, we have $\Phi=e_{1}$ and relation (2.9) becomes the well-known estimate of Mond [11].

3. Estimates for the weight $\varphi(x)=\sqrt{x}$

Theorem 3.1. Let $W \subset \mathcal{F}([0, \infty))$ be a linear subspace, such that $\Pi_{2} \in W$. If $L: W \rightarrow \mathcal{F}((0, \infty))$ is a positive linear operator, then for any $f \in W$, any $x \in(0, \infty)$ and any $h>0$ we have

$$
\begin{align*}
|L(f, x)-f(x)| & \leq|f(x)| \cdot\left|L\left(e_{0}, x\right)-1\right| \\
& +\left(L\left(e_{0}, x\right)+\frac{4}{h^{2} x} L\left(\left(e_{1}-x e_{0}\right)^{2}, x\right)\right) \omega^{\varphi}(f, h) \tag{3.1}
\end{align*}
$$

In the particular case $L\left(e_{0}\right)=e_{0}$ and $h=\sqrt{\frac{L\left(\left(e_{1}-x e_{0}\right)^{2}, x\right)}{x}}$ we have

$$
\begin{equation*}
|L(f, x)-f(x)| \leq 5 \cdot \omega^{\varphi}\left(f, \sqrt{\frac{L\left(\left(e_{1}-x e_{0}\right)^{2}, x\right)}{x}}\right) \tag{3.2}
\end{equation*}
$$

Proof. We apply Corollary 2.8 by taking into account the estimate:

$$
\left(\int_{x}^{t} \frac{\mathrm{~d} u}{\sqrt{u}}\right)^{2}=(2(\sqrt{t}-\sqrt{x}))^{2}=4 \cdot\left(\frac{t-x}{\sqrt{x}+\sqrt{t}}\right)^{2} \leq \frac{4(t-x)^{2}}{x}
$$

In the following theorem we give the connections between the modulus $\omega^{\varphi}(f, \bullet)$, for $\varphi(x)=\sqrt{x}$ and the usual modulus of function $f\left(x^{2}\right)$.

Theorem 3.2. For any $f \in \mathcal{F}([0, \infty))$ and $h>0$ we have

$$
\begin{equation*}
\omega^{\varphi}(f, \sqrt{2} h) \leq \omega\left(f \circ e_{2}, h\right) \leq \omega^{\varphi}(f, 2 h) \tag{3.3}
\end{equation*}
$$

Proof. Let $x, y \in[0, \infty)$, such that $\left|x^{2}-y^{2}\right| \leq \sqrt{2} h \sqrt{\frac{x^{2}+y^{2}}{2}}$, which is equivalent to the inequality $|x-y| \leq \frac{h \sqrt{x^{2}+y^{2}}}{x+y}$. But $\sqrt{x^{2}+y^{2}} \leq x+y$. Hence $|x-y| \leq h$. It follows $\left|f\left(x^{2}\right)-f\left(y^{2}\right)\right| \leq \omega\left(f \circ e_{2}, h\right)$. Therefore

$$
\sup _{x, y,\left|x^{2}-y^{2}\right| \leq \sqrt{2} h \sqrt{\frac{x^{2}+y^{2}}{2}}}\left|f\left(x^{2}\right)-f\left(y^{2}\right)\right| \leq \omega\left(f \circ e_{2}, h\right) .
$$

But

$$
\begin{aligned}
& \sup _{x, y, \mid x^{2}-y^{2}} \left\lvert\, \leq \sqrt{2} h \sqrt{\frac{x^{2}+y^{2}}{2}}\right. \\
&\left|f\left(x^{2}\right)-f\left(y^{2}\right)\right|=\sup _{u, v,|u-v| \leq \sqrt{2} h \sqrt{\frac{u+v}{2}}}|f(u)-f(v)| \\
&=\omega^{\varphi}(f, \sqrt{2} h) .
\end{aligned}
$$

Therefore

$$
\omega^{\varphi}(f, \sqrt{2} h) \leq \omega\left(f \circ e_{2}, h\right) .
$$

Conversely, let $x, y \in[0, \infty)$, such that $|\sqrt{x}-\sqrt{y}| \leq h$, which is equivalent to $|x-y| \leq h(\sqrt{x}+\sqrt{y})$. But $\sqrt{x}+\sqrt{y} \leq 2 \sqrt{\frac{x+y}{2}}$. Hence $|x-y| \leq 2 \sqrt{\frac{x+y}{2}}$ and consequently $|f(y)-f(x)| \leq \omega^{\varphi}(f, 2 h)$. Since x, y are arbitrarily chosen, we have

$$
\sup _{x, y,|\sqrt{x}-\sqrt{y}| \leq h}|f(y)-f(x)| \leq \omega^{\varphi}(f, 2 h) .
$$

But

$$
\begin{aligned}
& \sup _{x, y,|\sqrt{x}-\sqrt{y}| \leq h}|f(y)-f(x)|=\sup _{u, v,|u-v| \leq h}\left|f\left(u^{2}\right)-f\left(v^{2}\right)\right| \\
& =\omega\left(f \circ e_{2}, h\right) .
\end{aligned}
$$

Therefore

$$
\omega\left(f \circ e_{2}, h\right) \leq \omega^{\varphi}(f, 2 h) .
$$

Corollary 3.3. For $\varphi(x)=\sqrt{x}, x \in[0, \infty)$ and a function $f \in \mathcal{F}([0, \infty))$, the following are equivalent:
i) $\lim _{h \rightarrow 0} \omega^{\varphi}(f, h)=0$,
ii) the function $f\left(x^{2}\right), x \in[0, \infty)$ is uniformly continuous.

We exemplify for the Szász-Mirakjan operators

$$
\begin{equation*}
S_{n}(f, x)=\sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) e^{-n x} \frac{(n x)^{k}}{k!} \tag{3.4}
\end{equation*}
$$

$x \in[0, \infty), n \in \mathbb{N}$ and $f \in W$, where $W \subset \mathcal{F}([0, \infty))$ is the linear subspace of the functions f for which the series above is convergent.

We have $S_{n}\left(e_{0}, x\right)=1, S_{n}\left(\left(e_{1}-x e_{0}\right)^{2}, x\right)=\frac{x}{n}$. Also we have $S_{n}(f, 0)=$ $f(0)$ for any $f \in W$. Hence we obtain:

Theorem 3.4. Let $\varphi(x)=\sqrt{x}$. Let $f \in W, x \in[0, \infty), n \in \mathbb{N}$. Then

$$
\begin{equation*}
\left|S_{n}(f, x)-f(x)\right| \leq 5 \cdot \omega^{\varphi}\left(f, \frac{1}{\sqrt{n}}\right) \tag{3.5}
\end{equation*}
$$

Remark 3.5. In view of Corollary 3.3, relation (3.5) gives a quantitative version of a result of Totik [14] which states that, if $f\left(x^{2}\right)$ is a uniformly continuous function, $x \in[0, \infty)$, then the sequence of functions $\left(S_{n} f\right)_{n}$ is uniformly convergent on $[0, \infty)$ to function f.

4. Estimates for the weight $\varphi(x)=\frac{\sqrt{x}}{1+x^{m}}, m \in \mathbb{N}, m \geq 2$

Theorem 4.1. Let $W \subset \mathcal{F}\left([0, \infty)\right.$) be a linear subspace, such that $\Pi_{2 m} \in W$. If $L: W \rightarrow \mathcal{F}([0, \infty))$ is a positive linear operator, then for any $f \in W$, any $x \in(0, \infty)$ and any $h>0$ we have

$$
\begin{aligned}
& |L(f, x)-f(x)| \leq|f(x)| \cdot\left|L\left(e_{0}, x\right)-1\right| \\
& +\left(L\left(e_{0}, x\right)+\frac{4}{h^{2} x} L\left(\left(e_{1}-x e_{0}\right)^{2}\left(2 e_{0}+x^{2 m} e_{0}+e_{2 m}\right), x\right)\right) \omega^{\varphi}(f, h)
\end{aligned}
$$

Proof. We apply Corollary 2.8 and use the estimate:

$$
\begin{aligned}
\left(\int_{x}^{t} \frac{\left(1+u^{m}\right) \mathrm{d} u}{\sqrt{u}}\right)^{2} & =4\left(\sqrt{t}-\sqrt{x}+\frac{(\sqrt{t})^{2 m+1}-(\sqrt{x})^{2 m+1}}{2 m+1}\right)^{2} \\
& \leq 8(\sqrt{t}-\sqrt{x})^{2}\left[1+\left(\frac{\sum_{k=0}^{2 m}(\sqrt{t})^{k}(\sqrt{x})^{2 m-k}}{2 m+1}\right)^{2}\right] \\
& \leq 8 \frac{(t-x)^{2}}{x}\left[1+\left(\frac{t^{m}+x^{m}}{2}\right)^{2}\right] \\
& \leq 4 \frac{(t-x)^{2}}{x}\left(2+t^{2 m}+x^{2 m}\right)
\end{aligned}
$$

Acknowledgments. We are grateful to the anonymous referee for suggestions made for a better presentation of the paper.

References

[1] Amanov, N.T., On the weighted approximation by Szasz-Mirakjan operators, Anal. Math., 18(1992), no. 3, 167-184.
[2] Becker, M., Global approximation theorems for Szász-Mirakjan and Baskakov type operators, Indiana Univ. Math. J., 27(1978), 127-138.
[3] Bustamente, J., Estimates of positive linear operators in terms of second-order moduli, J. Math. Anal. Appl., 345(2008), 203-212.
[4] Bustamente, J., Morales de la Cruz, L., Positive linear operators and continuous functions on unbounded interval, Jaen J. Approx., 1(2009), no. 2, 145-173.
[5] Bustamente, J., Quesada, J. M., Morales de la Cruz, L., Direct estimate for positive linear operators in polynomial weighted spaces, J. Approx. Theory, 160(2010), 1495-1508.
[6] Felten, M., Direct and inverse estimates for Bernstein polynomials, Constr. Approx., 14(1998), 459468.
[7] Gadjiev, A. D., Aral, A., The estimates of approximation by using new type of weighted modulus of continuity, Comput. Math. Appl., 54(2007), 127-135.
[8] Gavrea, I., Gonska, H., Păltănea, R., Tachev, G., General Estimates for the Ditzian-Totik Modulus, East Journal of Approx., 9(2003), no. 2, 175-194.
[9] Gonska, H., Tachev, G., On the constants in ω_{2}^{φ} - inequalities, Rendiconti Circ. Mat. Palermo Suppl., 68(2002), 467-477.
[10] Lopez-Moreno, A.J., Weighted simultaneous approximation with Baskakov type operators, Acta. Math. Hungar., 104(2004), no. 1-2, 143-151.
[11] Mond, B., Note: On the degree of approximation by linear positive operators, J. Approx. Theory, 18, (1976), 304-306.
[12] Păltănea, R., Approximation Theory Using Positive Linear Operators, Birkhäuser, Boston, 2004.
[13] Păltănea, R., Weighted second order moduli on a simplex, Results in Mathematics, 53(2009), no. 3-4, 361-369.
[14] Totik, V., Uniform approximation by Szász-Mirakjan type operators, Acta Math. Hungar., 41(1983), no. 3-4, 291-307.
[15] Walczak, Z., On certain linear positive operators in polynomial weighted spaces, Acta Math. Hungar., 101(2003), no. 3, 179-191.

Radu Păltănea
Transilvania University of Braşov,
Faculty of Mathematics and Computer Sciences
50, Iuliu Maniu Street,
5000091 Braşov,
Romania
e-mail: radupaltanea@yahoo.com

