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Multifractional Brownian motion in vehicle
crash tests

Diana Keller

Abstract. Different crash tests are carried out in the car industry to
measure the acceleration dependent on time. With the aim of improv-
ing the airbag-system a discussion of crash processes was raised. Experi-
mental studies approve the modelling of the crash tests as a multifrac-
tional Brownian motion which will be introduced as a generalisation of
the fractional case (including the Wiener process). Based on the ideas
of Coeurjolly [1] an estimation of the significant time-dependent Hurst
parameter H(t) will be developed. Its interpretation as a measure of
deformation of the crash car leads to interesting results. So the Hurst
index’ value is important for supporting the fire-decision [4].
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1. Motivation of the model

The car industry has performed extensive crash tests for sensitizing and im-
proving the airbag-system. They have measured the acceleration dependent
on time with different sensors installed on characteristic positions in the ve-
hicle, especially in the front part of the cars. The activation of the restraint-
system is implemented in the airbag-control-unit which is mounted on the
middle tunnel. On the basis of mechanical models in a crash situation the
airbag-algorithms will be specifically adapted and optimized for each new
car. To further improve the accident detection a more general mathematical
discussion of the crash process should be conducted.

Currently the crucial criterion for activating the airbags is the velocity
calculated by the integral over the acceleration. But these results are not
sufficient for a distinction between different crash cases and situations. The
aim is to identify the type of crash so that selected airbags will fire only if
they are necessary.
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The researches are premised on data like in Figure 1 whose character
changes in time. Here a head-on collision with 56 km/h against a solid wall
is presented. There arises the question whether crash test situations suffice a
stochastic process. This assumption can be affirmed because the progress of
acceleration is significant: wild fluctuations at the beginning which rapidly
decrease after 50 ms. These fluctuations can be described by the fractional
Brownian motion with a Hurst index H greater than 0 but less than 1/2. If H
converges to 1 the fractional Brownian motion will tend to a random variable.
This supports the interpretation of the crash process as a multifractional
Brownian motion with a time-dependent Hurst parameter H(t).
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Figure 1. Head-on collision with 56 km/h against a solid wall

2. The multifractional Brownian motion

2.1. Definition and representation

First the fractional Brownian motion will be defined as a Brownian motion
with a constant parameter H:

Definition 2.1. A real-valued random process (BH(t), t ≥ 0) is called fractional
Brownian motion with Hurst parameter H ∈ (0, 1) provided that

(i) BH(t) is a Gaussian process;
(ii) BH(0) = 0 a.s.;
(iii) IE (BH(t)) = 0, ∀ t ≥ 0, that means the process is centered;
(iv) IE (BH(t)BH(s)) = 1

2 Var (BH(1))
[
|t|2H + |s|2H − |t− s|2H

]
.

Especially the case H = 0.5 leads to the Brownian motion also known
as Wiener process [4]. A generalisation of the fractional Brownian motion is
the multifractional Brownian motion where the constant Hurst index H will
be substituted by a time-dependent Hurst exponent H(t):
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Definition 2.2. A real-valued random process (BHt
(t), t ≥ 0) is said to be a

multifractional Brownian motion if the following conditions are fulfilled

(i) BHt(t) is a Gaussian process;
(ii) BH0(0) = 0 a.s.;
(iii) IE (BHt

(t)) = 0, ∀ t ≥ 0, that means the process is centered;
(iv) IE (BHt

(t)BHs
(s)) = 1

2 C(Ht,Hs)
[
|t|Ht+Hs + |s|Ht+Hs − |t− s|Ht+Hs

]
,

with C(Ht,Hs) = const. dependent on Ht and Hs;
(v) H : [0,∞) 7→ (0, 1) is Hölder continuous with exponent β > 0.

This definition of the multifractional case is equivalent to a representa-
tion as an Itô integral [5]

BHt (t) =
1

Γ
(
Ht + 1

2

)


0∫
−∞

[
(t− s)Ht− 1

2 − (−s)Ht− 1
2

]
dB(s) +

t∫
0

(t− s)Ht− 1
2 dB(s)


for all t ≥ 0 where H : [0,∞) 7→ (0, 1) is a Hölder continuous function with
exponent β > 0 and B marks the ordinary two-sided Brownian motion.

A process
(
B(t), t ∈ R1

)
denotes a two-sided Brownian motion if

B(t) =

{
B1(t) : for t ≥ 0,

B2(−t) : for t < 0,

where B1(t) and B2(t) are two independent Brownian motions for t ≥ 0.

2.2. Typical properties

Because of zero mean and the Itô isometry [3] of the stochastic integral all the
properties listed in Definition 2.2 can be proved from the equivalent integral
representation, explicitly shown in [4]. Furthermore two important theorems
will be presented but not proved, only the main idea will be mentioned.

Theorem 2.3. The multifractional Brownian motion BHt(t) is a continuous
process for all t ∈ [0,∞) with probability 1.

It is possible to show this with the help of skilful splittings of the Itô
integral representation, some fundamental inequalities and the Kolmogorov
criterion [5], detailed in [4].

Theorem 2.4. It exists a positive continuous function t 7→ σt so that for all
t ≥ 0 the following asymptotic distribution holds

BHt+h
(t + h)−BHt

(t)
hHt

L−−−→
h→0

N(0, σ2
t ).

Evidently the mean is 0 but the variance is harder to predict. Again
skilful splittings and useful inequalities yield the result [5], explicitly in [4].
Hence a standard multifractional Brownian motion can be introduced.
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2.3. Hurst index’ estimation

An estimation of the significant time-dependent Hurst parameter H(t) is
based on the ideas of Coeurjolly [1], [2]. It is a kind of parameter estimator
harking back to the asymptotic behaviour of the k-th absolute moment. Here
k ≤ 2 is considered. A particularity is that only one realisation is necessary for
the estimation which actually is a well-known method for the fractional case
with constant H. First the raw data have to be filtered, here with the so called
Daubechies-filter. Then the procedure will be extended from the fractional
Brownian motion to the multifractional one. That means the estimation does
not happen over the entire time range, but rather over a defined time period
so that a time-dependent H(t) will be obtained (see also in the next chapter).

With the help of the trajectory filtered by the Daubechies-filter a of
length l + 1 (in detail [1], [2])

V a

(
i

n

)
=

l∑
q=0

aqBH

(
i− q

n

)
, for i = l, . . . , n− 1,

the covariance function πa
H of this series will be calculated by

πa
H(j) = IE

(
V a

(
i

n

)
V a

(
i + j

n

))
= −1

2

l∑
q,r=0

aqar |q − r + j|2H
.

The k-th empirical absolute moment of the discrete variations of the fractional
Brownian motion has the following representation

Sn(k, a) =
1

n− l

n−1∑
i=l

∣∣∣∣V a

(
i

n

)∣∣∣∣k .

Finally Coeurjolly estimates the Hurst parameter H by

Ĥn(k, a) = g−1
k,a,n (Sn(k, a)) ,

where the function g−1
k,a,n(t) is defined as the inverse of

gk,a,n(t) =
1

nkt
{πa

t (0)} k
2 Ek

and the indices k, a and n denote the order of the moment, the filter and the
number of partition points. The factor Ek depends on the used order k of the
moment and is explained by

Ek = 2
k
2 Γ

(
k +

1
2

)
Γ

(
1
2

)
.
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3. Crash test analysis

3.1. Application of the estimation

Experimental studies have shown that the Hurst index depends on time.
Figure 1 represents the acceleration measured over 500 ms in 10.000 data
points. That means for 1 ms 20 data points are available. But if the airbags
are necessary to protect the inmates they have to fire empirically by no later
than 25 ms. So it suffices to consider only the first 500 measured points.

Now the described method to estimate the Hurst index H(t) can be
applied using the Daubechies-filter of order 6 and a time period of 10 ms con-
taining 200 data points. Practically the first approximation of H results from
considering the interval (1, 200). Then all intervals from (2, 201) to (301, 500)
will be examined. Because the fire-decision is usually made after 25 ms there
are 15 ms available for interpretation.

The Hurst parameter is a measure of deformation of the crash car with
a small H corresponding to a big deformation and a big one to a small
deformation. Please note 0 < H < 1. If the passenger cabin is affected by
deformation there will be a high risk of injury for the occupants. That is why
the activation of the airbags is essential.
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Figure 2. Corresponding Hurst parameter to head-on collision

The corresponding Hurst index to the head-on collision in Figure 1
is illustrated in Figure 2, the first estimation after 10 ms and the last one
after 25 ms. With small values of H(t) the airbags have to activate because
a big deformation is associated and the inmates are in jeopardy.

3.2. Introduction and evaluation of the test cases

Four different crash cases depicted in Figure 3 were investigated. The first
one is the head-on collision against a solid wall with velocities between 16
and 56 km/h. This crash situation will be abbreviated with frontal. In the
picture at the top on the right a car is overlapping a barrier by only 40 %.
The barrier is a deformable obstacle (that is where the name deform comes
from) and the car collides with the obstacle with 40 to 64 km/h. The third
one is called angle10 and illustrates the crash with only 15 km/h against a
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solid wall at an angle of 10 degrees and a 40 % overlap. Finally at the bottom
on the right there is a collision against a solid wall at an angle of 30 degrees
with velocities of 32 or 40 km/h which will be abbreviated with angle30.

solid wall (frontal) deformable obstacle (deform)

solid wall at an angle of 

10° (angle10)

solid wall at an angle of 

30° (angle30)

40%

40%

10°

30°

Figure 3. Distinction between crash cases

As a measure of deformation of the crash car the Hurst index will be con-
sidered for each situation and velocity. This leads to very interesting results.
Figure 4 shows the Hurst parameters for some selected cases estimated with
the method above using the Daubechies-filter of order 6 and a time period of
10 ms realised in 200 data points.
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Figure 4. Hurst parameters for selected cases
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The red line at the top represents a collision at an angle of 10 degrees and
15 km/h against a solid wall (overlapping 40 %). With a big monotonically
decreasing Hurst index between 1 and 0.5 the deformation of the car body
is very small. There is only an almost unnoticeable danger for the inmates
and therefore the airbags are unnecessary. It is the biggest Hurst index of the
four observed cases in Figure 4, thus the lowest damage. In consideration
of a velocity of only 15 km/h this result is easily comprehensible.

Beneath, the crash case with the deformable obstacle proceeds nearly
constantly at 0.5 and the velocity of 64 km/h suggests the use of the airbags.
It is the biggest test velocity and a huge deformation is accompanied by a high
risk of injury for the vehicle occupants. To grant the best possible protection
the airbags have to fire.

The orange Hurst index belongs to a car which collides with a solid wall
at an angle of 30 degrees and a velocity of 40 km/h. The car slides along the
wall because of the angle of contingence. With values of about 0.4 the Hurst
parameter is smaller than in the previous cases. That means the deformation
is greater due to the rough impact. So the airbags are essential because of
the imminent danger.

Last but not least the blue line characterises a head-on collision against
a solid wall with 56 km/h. Monotonically decreasing values between 0.35
and 0.1 illustrate the crash situation with the smallest Hurst index. Hence
the biggest deformation of the vehicle takes place and the occupants could
be seriously injured. Such a head-on collision can entail severe consequences
and therefore require the airbags to be deployed.

In Figure 4 two of the curves are monotonically decreasing while the
other two are nearly constant. Perhaps more information to support the fire-
decision are conceivable by use of the monotonicity of the trajectories. More-
over the estimation of the Hurst index in the case angle10 is much greater
than in all the other cases. The airbags do not have to fire because there is
only a small deformation contrary to the three other cases. That is why the
airbags are necessary to guarantee the safety of the passengers.

Looking at the mentioned figure a boundary at about 0.5 seperating
the case with airbags from these without can be supposed. This boundary
is well-motivated since H = 0.5 forms the characteristic change between
wild fluctuations of the acceleration and the levelling values which tend to a
random variable. The special case H = 0.5 realises the Brownian motion.

3.3. Further results in detail

Considering the four presented crash situations and averaging over the Hurst
parameters of these crashes with the same case and the same velocity there
are the following outcomes.
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Figure 5. Hurst parameter for the case frontal

In Figure 5 the estimation on top (head-on collision with a velocity of
16 km/h) differs with values greater than 0.5 from all the other velocities. A
big Hurst index is interpreted as a small deformation of the car body and a
small risk for the occupants. That is why the airbags are unnecessary. This
result is very catchy because a velocity of 16 km/h is so slow that big damages
are unbelievable. But the tests with all the other velocities show with values
less than 0.5 that the deformation is getting greater and so the risk of injury
is growing. The airbags have to activate to protect the inmates optimally.
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Figure 6. Hurst parameter for the case deform

The estimations of the case deform are close together and their progress
is nearly identically. But it is conspicuous that the Hurst parameter is decreas-
ing with growing velocities. That means the deformation keeps on entering
into the passenger cabin and the occupants are increasingly threatened. To
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give maximum shelter to the inmates the use of the airbags is essential at all
presented velocities.

Nevertheless Figure 6 requires to raise the boundary between the cases
with and without airbags from 0.5 to 0.6 because the collision with 40 and 60
km/h against a deformable obstacle - where the activation of the airbags can
not be abandoned - have Hurst parameters just under 0.6. Such an enlarge-
ment does not contradict all the previous figures since in all crashes with a
lower Hurst index the airbags have to fire and in all crashes with a greater
Hurst parameter the airbags are not necessary.
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Figure 7. Hurst parameter for the case angle10

The trajectory of the estimated Hurst index of the case angle10 with 15
km/h in Figure 7 is the same as in Figure 4 because there were no other
velocities to analyse.
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Figure 8. Hurst parameter for the case angle30
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Finally the case angle30 is mapped in Figure 8 whose curves are simi-
lar to the estimations of the case frontal. If the case is unknown one can
interchange them. But considering the known velocities the distinction is
easier since the estimations of the case frontal start with greater values at
about 0.5 and finish with lower values at about 0.2 after 25 ms, the moment
the fire-decision has to be made.

There exists a characteristic estimation for the Hurst index in each crash
situation so that on the one hand different crash cases and situations can be
distinguished due to progress and dimension of H(t) and on the other hand
there are some similarities. Referring to the averages of crash cases with
the same situation and the same velocity a strict boundary at about 0.6 is
recognisable - a boundary between cases where the airbags have to fire and
those where they are unnecessary. All these results are heuristically and have
to be tested with more data to cover a bigger spectrum of crash cases and
velocities.

One difficulty in all well-known methods of the past was to differentiate
the case deform from the case angle10. Now a distinction between these two
cases is obvious. It is harder to differ between the cases frontal and angle30.
Perhaps a symbiosis of old and new methods is promising.

4. Conclusion

In sum, the Hurst index’ value is important for supporting the fire-decision.
It exists a characteristic estimation of the Hurst parameter in progression
and dimension for each crash situation so that a strict distinction is possible.
In certain circumstances only special airbags have to fire. With huge values
of H(t) the collision at an angle of 10 degrees - requiring no activation of the
airbags - contrasts with all the other cases with Hurst parameters less than
0.6. The airbags are essential for the security of the inmates. All in all there
is a distinct boundary at about 0.6 between non-activating and activating
the airbags. But this is only an assumption, perhaps this boundary has to
be corrected by investigating more statistical series, other crash cases and
velocities.

A boundary of 0.5 would be motivated very well because H = 0.5 is
the characteristic change between wild fluctuations and the levelling values
of the acceleration which tend to a random variable. It is the special case of
the well-known Brownian motion.

An interesting question arises: Is it possible to make the fire-decision
based only on the knowledge of the estimated Hurst index? This would be a
very great result but requires any more researches.
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