Stochastic Schrödinger equation driven by cylindrical Wiener process and fractional Brownian motion

Wilfried Grecksch and Hannelore Lisei

Abstract. In this paper we study the properties of the solution of a stochastic nonlinear equation of Schrödinger type, which is perturbed by a cylindrical Wiener process and an additive cylindrical fractional Brownian motion with Hurst parameter in the interval $(\frac{1}{2}, 1)$. The existence of the solution and the existence of the Malliavin derivative are proved.

Mathematics Subject Classification (2010): 60H15, 60H07, 35Q41.

Keywords: Nonlinear stochastic Schrödinger equations, cylindrical Wiener process, cylindrical fractional Brownian motion, Malliavin derivative.

1. Introduction

In physics, specifically in quantum mechanics, the Schrödinger equation is an equation that describes how the quantum state of a physical system changes in time.

We describe the Schrödinger equation for a harmonic oscillator subject to a periodic electric field: a particle of mass m, electric charge Q, is displaced along the x-axis $(x \in \mathbb{R})$ and subject to a force $-m\omega_0^2 x$ (for all t > 0) and to an electric field $E \sin(\omega t)$ directed along the x-axis

$$i\hbar\frac{\partial}{\partial t}X(x,t) = \left(-\frac{\hbar^2}{2m}\nabla^2 + \frac{1}{2}m\omega_0^2 x^2 + QEx\sin(\omega t)\right)X(x,t), \quad x \in \mathbb{R}, t > 0,$$

$$X(\cdot,0) = X_0$$

where *i* is the imaginary unit, $-\frac{\hbar^2}{2m}\nabla^2$ is the kinetic energy operator, \hbar is Planck's constant, the complex valued function X is the wave function at position x at time t, X_0 is the initial condition (see [8], p. 639).

Many authors investigated stochastic equations of Schrödinger type: The case of additive noise is considered in [11], [13], while the case of multiplicative noise is discussed in [2], [9], [10], [16]. In these papers the existence of a mild solution is investigated. Different approaches to linear and nonlinear stochastic Schrödinger equations perturbed by cylindrical Brownian motions are given in [14] and [15].

In this paper we study the properties of the solution of a stochastic nonlinear equation of Schrödinger type, which is perturbed by a cylindrical Wiener process and an additive cylindrical fractional Brownian motion. Consequently, this model respects as well fluctations of a Brownian motion as additive disturbances with long range dependence. This paper completes the results about stochastic equations of Schrödinger type given in [5] by considering also a cylindrical fractional Brownian motion with Hurst parameter in the interval $(\frac{1}{2}, 1)$. We use the framework of stochastic evolution equations driven by fractional noise developed by T.E. Duncan, B. Pasik-Duncan, B. Maslowski [12] and M. Röckner and Y. Wang [17]. The existence results are derived by using the properties of Schrödinger type equations developed in [5]. Smoothness properties such as the existence of the Malliavin derivative are also proved. The Malliavin derivatives can be used to calculate conditional expectations or chaos decompositions of stochastic processes (see [3], [7]).

This paper has the following structure: In Section 2 we introduce the list of assumptions and give the definition of the solution. In Section 3 we briefly present the two stochastic integrals that appear in the equation which is investigated. The existence of the solution is derived in Section 4. Section 5 contains results about infinite dimensional Malliavin derivatives and the existence of the Malliavin derivative of the solution is proved.

2. Assumptions and formulation of the problem

We consider $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$ to be a filtered complete probability space. Let $(V, (\cdot, \cdot)_V)$ and $(H, (\cdot, \cdot))$ be separable complex Hilbert spaces, such that (V, H, V^*) forms a triplet of rigged Hilbert spaces. Let K be a separable real Hilbert space. We consider $(W(t))_{t\geq 0}$ to be a K-valued cylindrical Wiener process adapted to the filtration $(\mathcal{F}_t)_{t\geq 0}$ and $(B^h(t))_{t\geq 0}$ to be a K-valued cylindrical Brownian motion with Hurst index $h \in (\frac{1}{2}, 1)$ adapted to the filtration $(\mathcal{F}_t)_{t\geq 0}$.

We study the properties of the *variational solution* X of the following stochastic nonlinear evolution equation of Schrödinger type

$$(X(t), v) = (X_0, v) - i \int_0^t \langle AX(s), v \rangle ds + i \int_0^t (f(s, X(s)), v) ds \qquad (2.1)$$
$$+ i (\int_0^t g(s, X(s)) dW(s), v) + i (\int_0^t b(s) dB^h(s), v)$$

for a.e. $\omega \in \Omega$ and all $t \in [0, T], v \in V$.

We assume that:

[I] X_0 is \mathcal{F}_0 -measurable, $X_0 \in L^2(\Omega; V)$;

[A] $A: V \to V^*$ has the following properties:

- A is linear and continuous $||Au||_{V^*} \le c_A ||u||_V$ for all $u \in V$;
- $\langle Au, v \rangle = \overline{\langle Av, u \rangle}$ for all $u, v \in V$;
- there exists constants $\alpha_1 \in \mathbb{R}$ and $\alpha_2 > 0$, such that for all $v \in V$ it holds

$$\langle A(v), v \rangle \ge \alpha_1 \|v\|^2 + \alpha_2 \|v\|_V^2$$

• Let $(h_n)_n \subset H$ be the eigenvectors of the operator A, for which we assume that $Ah_n \in H$ for all $n \in \mathbb{N}$ and $(h_n)_n$ is a complete orthonormal system in H.

[f] $f: \Omega \times [0,T] \times H \to H$ is a measurable function, which is \mathcal{F}_t -adapted for each $t \in [0,T]$:

(1) there exists a constant $c_f > 0$ such that for a.e. $\omega \in \Omega$ it holds

$$||f(t,u) - f(t,v)||^2 \le c_f ||u - v||^2$$
 for all $t \in [0,T], u, v \in H;$

(2) for a.e. $\omega \in \Omega$ and all $t \in [0,T], u \in V$ we have $f(t,u) \in V$ and there exists $k_f > 0$ such that

$$||f(t,u)||_V^2 \le k_f (1+||u||_V^2);$$

[g] $g : \Omega \times [0,T] \times H \to L_2(K,H)$ is a measurable function, which is \mathcal{F}_t -adapted for each $t \in [0,T]$:

(1) there exists a constant $c_g > 0$ such that for a.e. $\omega \in \Omega$ it holds

$$||g(t,u) - g(t,v)||^2_{L_2(K,H)} \le c_g ||u-v||^2$$
 for all $t \in [0,T], u, v \in H$;

(2) for a.e. $\omega \in \Omega$ and all $t \in [0,T]$, $u \in V$ we have $g(t,u) \in L_2(K,V)$ and there exists $k_g > 0$ such that

$$||g(t,u)||^2_{L_2(K,V)} \le k_g(1+||u||^2_V);$$

[b] $b: [0,T] \to L_2(K,V)$ and for each $u \in K$ we have $b(\cdot)u \in L^p([0,T];V)$ for some $p > \frac{1}{h}$ and it holds

$$\int_{0}^{T} \int_{0}^{T} \|b(r)\|_{L_{2}(K,V)} \|b(s)\|_{L_{2}(K,V)} |r-s|^{2h-2} dr ds < \infty$$

3. The stochastic integrals

In this section we briefly present the definitions of the stochastic integrals we considered in (2.1). Let $(e_n)_n$ be an orthonormal basis in K.

For the K-valued cylindrical Wiener process $(W(t))_{t\geq 0}$ and for g: $\Omega \times [0,T] \times H \rightarrow L_2(K,H)$ satisfying [g]-(1) the stochastic integral $\int g(s,v)dW(s)$ ($v \in H$ fixed) is defined as a zero mean H-valued Gauss-

ian random variable given by

$$\int_{0}^{T} g(s,v)dW(s) := \sum_{n=1}^{\infty} \int_{0}^{T} g(s,v)e_n dw_n(s),$$

where the series above converges in $L^2(\Omega; H)$ and $((w_n(t))_{t>0})_n$ is a sequence of mutually independent real-valued Brownian motions. One can prove that

$$E \left\| \int_{0}^{T} g(s, v) dW(s) \right\|^{2} = \sum_{n=1}^{\infty} E \left\| \int_{0}^{T} g(s, v) e_{n} dw_{n}(s) \right\|^{2}$$
$$= \sum_{n=1}^{\infty} E \int_{0}^{T} \|g(s, v) e_{n}\|^{2} ds = E \int_{0}^{T} \|g(s, v)\|^{2}_{L_{2}(K, H)} ds < \infty$$

For 0 < r < 1/(2-2h) the function $\phi : [0,T] \to \mathbb{R}$ defined by $\phi(u) =$ $h(2h-1)|u|^{2h-2}$ belongs to the space $L^r([0,T];\mathbb{R})$.

If p > 1/h, then by Theorem 3.9.4 in [4], there exists $C_T > 0$ such that for any function $\eta, \varphi \in L^p([0,T];\mathbb{R})$ it holds

$$\int_{0}^{T} \int_{0}^{T} |\eta(u)\varphi(v)\phi(u-v)| du dv \le C_{T} \|\varphi\|_{L^{p}([0,T];\mathbb{R})} \|\eta\|_{L^{p}([0,T];\mathbb{R})}$$

If $(\beta^h(t))_{t\geq 0}$ is a real-valued fractional Brownian motion with Hurst index $h \in (\frac{1}{2}, 1)$, and $\varphi \in L^p([0, T]; \mathbb{R})$, then the stochastic integral $\int_{\Omega} \varphi(s) d\beta^{h}(s) \in L^{2}(\Omega; \mathbb{R}) \text{ is defined as a zero mean real-valued Gaussian}$

random variable, such that

has

$$E\left(\int_{0}^{T}\varphi(s)d\beta^{h}(s)\int_{0}^{T}\varphi(s)d\beta^{h}(s)\right) = E\int_{0}^{T}\int_{0}^{T}\varphi(u)\varphi(v)\phi(u-v)dudv.$$

If $\varphi \in L^{p}([0,T];\mathbb{R})$ with $p > \frac{1}{h}$, then the process $\left(\int_{0}^{t}\varphi(s)d\beta^{h}(s)\right)_{t \ge 0}$
P-a.s. continuous sample paths (see [18] Lemma 2.0.17).

Let $(k_n)_n$ be an orthonormal basis in K.

For the K-valued cylindrical fractional Brownian motion $(B^h(t))_{t>0}$ and for $b: [0,T] \to L_2(K,V)$ satisfying assumption [b] the stochastic integral $\int b(s)dB^{h}(s)$ is defined as a zero mean V-valued Gaussian random variable given by

$$\int_{0}^{T} b(s) dB^{h}(s) := \sum_{n=1}^{\infty} \int_{0}^{T} b(s) k_n d\beta_n^{h}(s),$$

where the series above converges in $L^2(\Omega; V)$ and $\left((\beta_n^h(t))_{t\geq 0}\right)_n$ is a sequence of mutually independent real-valued fractional Brownian motions each with Hurst parameter h. One can prove that

$$E \left\| \int_{0}^{T} b(s) dB^{h}(s) \right\|_{V}^{2} = \sum_{n=1}^{\infty} E \left\| \int_{0}^{T} b(s) k_{n} d\beta_{n}^{h}(s) \right\|_{V}^{2}$$
$$= \sum_{n=1}^{\infty} \int_{0}^{T} \int_{0}^{T} (b(r) k_{n}, b(s) k_{n})_{V} \phi(r, s) dr ds$$
$$\leq \int_{0}^{T} \int_{0}^{T} \|b(r)\|_{L_{2}(K,V)} \|b(s)\|_{L_{2}(K,V)} \phi(r, s) dr ds < \infty.$$

For more details see for example [12], [18].

For a.e. $\omega \in \Omega$ and for each $t \in [0, T]$ we denote by

$$Z(t) := \int_0^t b(s) dB^h(s),$$

which is obviously a V-valued process adapted to $(\mathcal{F}_t)_{t\geq 0}$.

Proposition 3.1. [18, Corollary 2.0.16, Lemma 2.0.17] The process $(Z(t))_{t \in [0,T]}$ has a continuous version in V and in H and

$$E\int_0^T \|Z(s)\|_V^2 ds < \infty.$$

Remark 3.2. The stochastic integral Z(t) can also be represented by a stochastic integral with respect to the cylindrical Wiener process W (see [3], [6]). For $f : \mathbb{R} \to \mathbb{C}$ and $\frac{1}{2} < h < 1$ we introduce the operator

$$(M^h f)(x) = c_h \int_{\mathbb{R}} \frac{f(t)}{|t - x|^{3/2 - h}} dt,$$

where $c_h = [2\Gamma(h-1/2)\cos(1/2\pi(h-1/2))]^{-1}(\Gamma(2h+1)\sin(\pi h))^{1/2}$ and f is chosen in such a manner that $(M^h f) \in L^2(\mathbb{R})$. If f is concentrated on [0,T], then we consider [0,T] instead of \mathbb{R} . If

$$\sum_{n=1}^{\infty}\sum_{j=1}^{\infty}\int_{0}^{T}\left(\left(M^{h}\left(b(\cdot)k_{n},h_{j}\right)\right)(s)\right)^{2}ds<\infty,$$

then

$$\int_0^t b(s)dB^h(s) = \sum_{j=1}^\infty \sum_{n=1}^\infty \int_0^t \left(M^h\left(b(\cdot)k_n, h_j\right) \right)(s)dw_n(s)h_j.$$

4. Existence of the solution

Theorem 4.1. Assume that [I], [A], [f], [g], [b] are satisfied. Equation (2.1) admits a unique solution $X \in L^2(\Omega \times [0,T]; V) \cap L^2(\Omega; C([0,T]; H)).$

In order to prove the existence of the solution of (2.1), we first transform it equivalently into an equation of Schrödinger type studied in [5]. For a.e. $\omega \in \Omega$ and for each $t \in [0, T], v \in H$ we denote by

- U(t) := X(t) iZ(t).
- $F(\omega, t, v) := f(\omega, t, v + iZ(\omega, t)),$
- $G(\omega, t, v) := g(\omega, t, v + iZ(\omega, t)).$

Observe that for a.e. $\omega \in \Omega$ and all $t \in [0, T], u, v \in H$ it holds

$$||F(t,u) - F(t,v)||^2 \le c_f ||u - v||^2$$

|G(t,u) - G(t,v)||²_{L2(K,H)} \le c_g ||u - v||²

and for all $u \in V$

$$||F(t,u)||_{V}^{2} \leq 2k_{f}(1+||u||_{V}^{2}+||Z(t)||_{V}^{2});$$

$$|G(t,u)||_{L_{2}(K,V)}^{2} \leq 2k_{g}(1+||u||_{V}^{2}+||Z(t)||_{V}^{2}).$$

We rewrite (2.1) equivalently as

$$(U(t),v) = (X_0,v) - i \int_0^t \langle AU(s),v \rangle ds + i \int_0^t (F(s,U(s)),v) ds \qquad (4.1)$$
$$+i(\int_0^t G(s,U(s))dW(s),v) + i \int_0^t \langle AZ(s),v \rangle ds \text{ for all } v \in V.$$

(2.1) admits a unique solution $X \in L^2(\Omega \times [0,T]; V) \cap L^2(\Omega; C([0,T]; H))$ if and only if (4.1) admits a unique solution $U \in L^2(\Omega \times [0,T]; V) \cap L^2(\Omega; C([0,T]; H)).$

The proof of the existence of a unique solution U for (4.1) is similar to the proof of Theorem 1 in [5]. For this reason one introduces Galerkin approximations: For each $n \in \mathbb{N}$ we consider the finite dimensional spaces $H_n := \operatorname{sp}\{h_1, h_2, \ldots, h_n\}$ (equipped with the norm induced from H) and $K_n := \operatorname{sp}\{e_1, e_2, \ldots, e_n\}$ (equipped with the norm induced from K). We define $\pi_n : H \to H_n$ the orthogonal projection of H on H_n by $\pi_n h :=$ $\sum_{j=1}^n (h, h_j)h_j$. Let $A_n : H_n \to H_n, F_n : \Omega \times [0, T] \times H_n \to H_n, G_n : \Omega \times [0, T] \times$ $H_n \to L(K_n, H_n)$ be defined respectively by

$$A_n u = \sum_{j=1}^n \langle Au, h_j \rangle h_j, \quad F_n(t, u) = \sum_{j=1}^n (F(t, u), h_j) h_j$$
$$G_n(t, u) v = \sum_{j=1}^n (G(t, u)v, h_j) h_i \text{ for } v \in K_n$$
$$Z_n(t) = \sum_{j=1}^n (Z(t), h_j) h_j$$

,

and we denote $X_{0n} = \pi_n X_0$ and $W_n(t) = \sum_{j=1}^n e_j w_j(t) \in K_n$. For a.e. $\omega \in \Omega$ and all $t \in [0, T]$ and all $j = \overline{1, n}$ we consider the finite dimensional equations corresponding to (4.1)

$$(U_{n}(t), h_{j}) = (X_{0n}, h_{j}) - i \int_{0}^{t} (A_{n}U_{n}(s), h_{j}) ds \qquad (4.2)$$

+ $i \int_{0}^{t} (F_{n}(s, U_{n}(s)), h_{j}) ds + i (\int_{0}^{t} G_{n}(s, U_{n}(s)) dW_{n}(s), h_{j})$
+ $i \int_{0}^{t} (A_{n}(s)Z_{n}(s), h_{j}) ds.$

One can show similar as in the proof of Theorem 1 in [5] (see also Remark 3 in [5]) that for all $t \in [0, T]$ it holds

$$\lim_{n \to \infty} E \|U_n(t) - U(t)\|^2 = 0$$

and

$$\lim_{n \to \infty} E \int_0^t \|U_n(s) - U(s)\|^2 ds = 0.$$

5. The existence of Malliavin derivative of the solution

We briefly present some results about infinite dimensional Malliavin derivatives: We consider the random variable Y with values in a complex Hilbert space H. Y with $E||Y||^2 < \infty$ is called a smooth random variable and we denote $Y \in S$, if

$$Y = \sum_{j=1}^{n} f_j \left(\int_0^T (\gamma_{1,j}(s), dW(s))_K, \dots, \int_0^T (\gamma_{n_j,j}(s), dW(s))_K \right) h_j,$$

where $\gamma_{1,j}, \ldots, \gamma_{n_j,j} \in L^2([0,T];K)$ for $j = 1, \ldots, n, h_j \in H, f_j \in C^{\infty}(\mathbb{R}^{n_j})$ and f_j and all its derivatives have polynomial growth for $j = 1, \ldots, n$.

The Malliavin derivative $D_t Y$, $(t \in [0, T])$ of $Y \in S$ is a random variable with values in $L_2(K, H)$ defined by

$$D_t Y = \sum_{j=1}^n \sum_{k=1}^{n_j} \frac{\partial f_j}{\partial x_k} \left(\int_0^T \left(\gamma_{1,j}(s), dW(s) \right)_K, \dots, \int_0^T \left(\gamma_{n_j,j}(s), dW(s) \right)_K \right) \cdot h_j \otimes \gamma_{k,j}(t).$$

The Malliavin derivative D_t as defined for *H*-valued smooth random variables is closable on $L^2(\Omega; L_2(K, H))$ (see Proposition 5.1 in [7]).

Consequently, if Y is the $L^2(\Omega; H)$ limit of a sequence $(Y_n)_n \subset S$ so that the sequence $(D_tY_n)_n$ convergences in $L^2(\Omega; L_2(K, H))$, we can define D_tY as

$$D_t Y = \lim_{n \to \infty} D_t Y_n.$$

We use the notation H(K) for the subspace of $L^2(\Omega; H)$, where the derivative D_t can be defined. This subspace is a separable Hilbert space equipped with the graph norm

$$||Y||_{H(K)}^2 = E||Y||^2 + E||D_tY||_{L_2(K,H)}^2$$

The following result is known (see Lemma 5.2 in [7]):

Lemma 5.1. Let $Y_n \to Y$ in $L^2(\Omega; H)$ and suppose that there is a constant C > 0 such that for all n we have

$$E \|D_t Y\|_{L_2(K,H)}^2 < C.$$

Then, the random variable Y is in the domain H(K) of the Malliavin derivative D_t .

By using Proposition 5.2 in [7] the following chain rule holds:

Proposition 5.2. Let M be a further separable Hilbert space. Given a random variable $Y \in H(K)$ and a Fréchet differentiable function $\eta : H \to M$. Then,

$$D_t \eta(Y) = \nabla \eta D_t Y.$$

We will use the following well-known properties of D_t (see, for example [7], [3]):

Proposition 5.3. (1) If Y is \mathcal{F}_s -measurable and $Y \in H(K)$, then $D_t Y = 0$ a.e. $\omega \in \Omega$ and for all t > s.

(2) Let $a(s), s \in [0,T]$ an \mathcal{F}_s -adapted $L_2(K,H)$ -valued process which fulfills the assumptions of the Skorochod integral definition in [7]. Then, for all r > t it holds

$$D_t \int_0^r a(s) dW(s) = a(t) + \int_t^r D_t a(s) dW(s).$$

Further in this section we assume:

- 1. The assumption in Remark 3.2 is valid for the process b.
- 2. The functions f and g are deterministic.
- 3. The functions f and g are Fréchet differentiable with respect to $x \in H$ for all $t \in [0, T]$ and the Fréchet derivatives $\nabla_x f(t, x)$ and $\nabla_x g(t, x)$ are bounded in the following sense: There exists a positive constant c such that

$$\|\nabla_x f(t,x)\|_{L(H,H)}, \|\nabla_x g(t,x)\|_{L(H,L_2(K,H))} \le c$$

for all $t \in [0, T], x \in H$.

4. The initial condition X_0 is deterministic.

Theorem 5.4. There exists $D_rU(t)$ as an $L_2(K, H)$ -valued random variable for all $r, t \in [0, T]$.

Proof. We process the proof in two steps:

Step 1: It follows from the above assumption 3 that the functions f and g are globally Lipschitz continuous. Consequently, we can consider directly

the Galerkin equations (4.2). Similar to Remark 3 in [5] we have for the variational solution U

$$\lim_{n \to \infty} E \|U_n(t) - U(t)\|^2 = 0 \text{ and } \lim_{n \to \infty} E \int_0^t \|U_n(s) - U(s)\|^2 ds = 0 \quad (5.1)$$

for all $t \in [0,T]$. Equation (4.2) is an Itô equation in V_n and H_n and its solution can be approximated by the method of successive approximations

$$U_{n}^{m+1}(t) = X_{0n} - i \int_{0}^{t} A_{n} U_{n}^{m}(s) ds \qquad (5.2)$$

+ $i \int_{0}^{t} F_{n}(s, U_{n}^{m}(s)) ds + i \int_{0}^{t} G_{n}(s, U_{n}^{m}(s)) dW_{n}(s)$
+ $i \int_{0}^{t} A_{n}(s) Z_{n}(s) ds.$

for m = 0, 1, ... with $U^0(s) \equiv X_{0n}$.

The finite dimensional theory shows

$$\lim_{n \to \infty} E \|U_n^m(t) - U_n(t)\|^2 = 0.$$
(5.3)

Now we calculate $D_r U_n^{m+1}(t)$. Since U_n^{m+1} is \mathcal{F}_t -measurable we get also the \mathcal{F}_r -measurability for $r \geq t$. In this case it follows from Proposition 5.3 $D_r U_n^{m+1}(t) = 0$. We now consider r < t. Then, by Proposition 5.2, Proposition 5.3 and Remark 3.2 we get

$$D_{r}U_{n}^{m+1}(t) = -i\int_{r}^{t}A_{n}D_{r}U_{n}^{m}(s)ds \qquad (5.4)$$

$$+i\int_{r}^{t}\nabla_{x}F_{n}(s,U_{n}^{m}(s))D_{r}U_{n}^{m}(s)ds$$

$$+i\int_{r}^{t}\nabla_{x}F_{n}(s,U_{n}^{m}(s))D_{r}Z_{n}(s)ds$$

$$+i\int_{r}^{t}\nabla_{x}G_{n}(s,U_{n}^{m}(s))D_{r}U_{n}^{m}(s)dW_{n}(s)$$

$$+i\int_{r}^{t}\nabla_{x}G_{n}(s,U_{n}^{m}(s))D_{r}Z_{n}(s)dW_{n}(s)$$

$$+iG_{n}(r,U_{n}^{m}(r))+i\int_{r}^{t}A_{n}(s)D_{r}Z_{n}(s)ds$$

where $D_r Z_n(t) : K_n \to H_n$ is the linear operator defined by

$$(D_r Z_n(t)x, y) = \left(M^h\left(b_n(\cdot)x, y\right)\right)(s).$$

 $D_r Z_n(t)$ has values in $L(K_n, V_n)$ and $L(K_n, H_n)$. Since the spaces are finite dimensional, the operators are also Hilbert-Schmidt operators. If we use the energy equality in the space $L_2(K_n, H_n)$, then we get by the assumptions of this section and by Gronwall's lemma that there is a positive constant C with

$$E \| D_r U_n^m(t) \|_{L_2(K,H)}^2 \le C$$

for all m, r, t and fixed n, since from equation (5.3) the boundedness of $E||U_n^m(t)||^2$ follows for all m, r, t and fixed n. The constant C does not depend on n. Then we get by Lemma 5.1, from the last inequality and from equation (5.3) that $D_r U_n(t)$ exists and

$$E\|D_r U_n(t)\|_{L_2(K,H)}^2 \le C.$$
(5.5)

Step 2: Since the relations (5.5) and (5.1) hold, we can use again Lemma 5.1 and get

$$E \|D_r U(t)\|_{L_2(K,H)}^2 \le C.$$

Theorem 5.5. Consider that the assumptions of this section hold. Then, for t > r we have

 $D_r X(t) = D_r U(t) + i(M^h b(\cdot))(r),$ where $(M^h b(\cdot))(r) \in L_2(K, H)$ is defined by the bilinearform $(M^h (b(\cdot)x, y))(r)$ for all $x \in K, x \in H.$

Proof. Theorem 5.4 shows the existence of $D_r U(t)$ and it holds $D_r X(t) = D_r U(t) + i D_r Z(t)$. Since b is deterministic, we get by Proposition 5.3 and Remark 3.2 for t > r

$$D_r Z(t) = (M^h b(\cdot))(r).$$

Remark 5.6. The Malliavin derivative is used for example to define Skorochod integrals [12] and in the optimal control theory [1]. Optimal control problems for stochastic Schrödinger equations are under preparation.

Acknowledgement. This work was supported by CNCSIS - UEFISCSU (Romania) project number PN II IDEI ID 2162/nr. 501/2008 "Nonsmooth phenomena in nonlinear elliptic problems" and by Deutsche Forschungsgemeinschaft (Germany) project GR 1525/10-1.

References

- Anh, V.V., Grecksch, W., Yong, J., Regularity of Backward Stochastic Volterra Integral Equations, Stochastic Analysis and Applications, 29(2011), no. 1, 146– 168.
- [2] Bang, O., Christiansen, P.L., If, F., Rasmussen, K.O., Gaididei, Y.B., Temperature Effects in a Nonlinear Model of Monolayer Scheibe Aggregates, Phys. Rev. E, 49(1994), 4627-4636.
- [3] Biagini, F., Oksendal, B., Sulem, A., Wallner, N., An Introduction to White Noise Theory and Malliavin Calculus for Fractional Brownian Motion, Proc. Royal Soc. London, A, 460(2004), 347-372.
- [4] Bogachev, V.I., Measure Theory, Vol. I, Springer-Verlag, New-York, 2007.
- [5] Grecksch, W., Lisei, H., Stochastic Nonlinear Equations of Schrödinger Type, to appear in Stochastic Analysis and Applications.

- [6] Grecksch, W., Roth, C., Anh, V.V., Q-Fractional Brownian Motion in Infinite Dimensions with Applications to Fractional Black-Scholes Market, Stochastic Analysis and Applications, 27(2009), no. 1, 149-175.
- [7] Carmona, R., Tehrani, M., Interest Rate Models: an Infininite Dimensional Stochastic Analysis Perspective, Springer Verlag, Berlin - Heidelberg, 2006.
- [8] Dautray, R., Lions, J.L., Mathematical Analysis And Numerical Methods For Science And Technology, Volume 5, Evolution Problems I. Springer-Verlag, Berlin, 1992.
- [9] De Bouard, A., Debussche, A., A Stochastic Nonlinear Schrödinger Equation with Multiplicative Noise, Commun. Math. Phys., 205(1999), 161–181.
- [10] De Bouard, A., Debussche, A., A Semi-discrete Scheme for the Stochastic Nonlinear Schrödinger Equation, Numer. Math., 96(2004), 733–770.
- [11] Debussche, A., Odasso, C., Ergodicity for a Weakly Damped Stochastic Nonlinear Schrödinger Equation, J. Evol. Eq., 5(2005), 317-356.
- [12] Duncan, T.E., Maslowski, B., Pasic-Duncan, B., Fractional Brownian Motion and Stochastic Equations in Hilbert Space, Stochast. Dyn., 2(2002), 225–250.
- [13] Falkovich, G.E., Kolokolov, I., Lebedev, V., Turitsyn, S.K., Statistics of Soliton-Bearing Systems with Additive Noise, Phys. Rev. E, 63(2001).
- [14] Mora, C.M., Rebolledo, R., Regularity of Solutions to Linear Stochastic Schrödinger Equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10(2007), 237-259.
- [15] Mora, C.M., Rebolledo, R., Basic Properties of Nonlinear Stochastic Schrödinger Equations Driven by Brownian Motions, Ann. Appl. Probab., 18(2008), no. 2, 591-619.
- [16] Rasmussen, K.O., Gaididei, Y.B., Bang, O., Christiansen, P.L., The Influence of Noise on Critical Collapse in the Nonlinear Schrödinger Equation, Physics Letters A, 204(1995), 121–127.
- [17] Röckner, M., Wang, Y., A Note on Variational Solutions to SPDE Perturbed by Gaussian Noise in a General Class, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12(2009), no. 2, 353–358.
- [18] Wang, Y., Variational Solutions to SPDE Perturbed by a General Gaussian Noise, PhD thesis, Purdue University, 2009.

Wilfried Grecksch Martin-Luther University Halle-Wittenberg Faculty of Sciences III, Institute of Mathematics D - 06099 Halle Germany e-mail: wilfried.grecksch@mathematik.uni-halle.de Hannelore Lisei

"Babeş-Bolyai" University Faculty of Mathematics and Computer Science 1, Kogălniceanu Street 400084 Cluj-Napoca Romania e-mail: hanne@math.ubbcluj.ro