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Abstract. The exponential stability of a special class of evolution fam-
ilies is analyzed. Extensions of the well-known theorems due to Datko
and Barbashin are obtained, in both continuous and discrete-time.
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1. Introduction

In 1967 E. A. Barbashin [1, Th. 5.1] obtained a stability result for exponen-
tially bounded evolution families generated by differential systems in Banach
spaces, a result that remains true in the case of evolution families with expo-
nential growth. In 1970 R. Datko [4] proved that the Cy-semigroup {7}}¢>0
is exponentially stable if and only if its trajectories (T'(-)x) are in L? for all
x in X. This result was generalized by A. Pazy [12], who proved that the
exponential stability property is equivalent with T'(-)z € LP , for 1 < p < o0
and for all  in X, where X is a Banach space.

Later, a well-known Datko result from 1972 [5] states that an exponen-
tially bounded, strongly continuous evolution family U = {U(t,to) }+>t0>0
with exponential growth is exponentially stable if and only if there exist
k,p > 0 such that

00 1
(/ \|U(T7t)x||pdr)p < kl||x||, for all t > 0, and z € X.
¢

This result was extended by J.L. Daleckij and M.G. Krein [3] for evolutionary
processes generated by differential systems in Banach spaces and instead of
R. Datko’s method, it has been used a characterization theorem for the ex-
ponential stability of differential systems [3, Th. 6.1, pg 132]. S. Rolewicz [13]
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noticed that the theorem used by J.L. Daleckij and M.G. Krein in [3] remains
true in the case of evolutionary processes with exponential growth (without
stating the proof, though). This theorem, along with the Baire Cathegory
Principle allowed S. Rolewicz [13] to extend Datko’s result from 1972 to the
fact that {U(t,t0)}+>¢,>0 is exponentially stable if and only if there exists
N : (0,00) x (0,00) — R with the property that N(a,u) is continuous and
increasing for all «, and N(«,u) is increasing for all u, N(«,0) = 0 for all
a >0, N(a,u) >0 for all w > 0 and for all z € X there exists a(z) > 0 such
that

sup [ Nlafa), U (r.0))dr < .
t>0 Jt

Another extension of the result due to Datko [4] and Pazy [12] was obtained
by W. Littman [7] in 1989. V. Pata [11] came with a new proof and a gen-
eralization of the result due to Datko [5] for the case of strongly continuous
semigroups of bounded linear operators.

The classical ideas of J. L. Massera and J. J. Schaffer ([8],[9]) on expo-
nential stability and other asymptotic properties of the solutions of differen-
tial equations have also been developed in the last years. Other results for the
stability of nonlinear evolution families were obtained by A. Ichikawa [6] and
in 2007, a strong variant of a result due to E. A. Barbashin [1] was obtained
by C. Buse, M. Megan, M. S. Prajea and P. Preda [2] on the dual space of the
Banach space X. Some Datko [5] type results for the asymptotic behavior of
skew-evolution semiflows in Banach spaces were given by M. Megan and C.
Stoica [10] in 2008.

The purpose of the present paper is to give a characterization for the
exponential stability of a special class of evolution families, called the back-
wards evolution families, and thus to reformulate the result due to E. A.
Barbashin [1].

2. Preliminaries

Let us consider X a Banach space, B(X) the Banach algebra of all linear and
bounded operators acting on X and A = {(t,tp) € R? : t > t5 > 0}. We
denote the norm of vectors on X and operators on B(X) by || - ||.

Definition 2.1. A family of linear and bounded operators
® = {D(t,to) }i>to>0 : A — B(X)

18 called a backwards evolutionary process if the following properties hold:

i) ®(t,t) =1, for allt > 0;

i) ®(1,tg) ®(t,7) = (L, to), for allt > 7 >ty > 0;

i) ®(-,to)x : [to, 00) — X is continuous for all to >0 and x € X
O(t, )z : [0,t] = X is continuous for allt > 0 and x € X;
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iv) there exist M > 1 and w € R such that:
D (¢, to)|| < Mewl=ro),
forallt >ty > 0.

Example 2.2. Take X = R and the equation:

(4) z(t) = A(t)x(t), t > 0.
We consider the Cauchy problem associated:
U(t) = A(t)U(t)
(B) { U(0) = 1.

where A € M(2,R) and M(2,R) denotes the set of all 2-by-2 real matrices
and t > 0.

The unique solution of the Cauchy problem (B) will be denoted by U(t)
and ®(t,tg) = U*L(to)U*(t) represents the backwards evolutionary process
generated by the equation (A).

Example 2.3. Let X = R. Then
sint + 1
sintg + 1

defines a backwards evolutionary process.

Example 2.4. Let X = R. Then

(I)(t’ tO) =

O(t,t0) =

defines a backwards evolutionary process.

Definition 2.5. Let ® = {®(¢,t0)}i>t,>0 be a backwards evolutionary process.
® is called uniformly exponentially stable if there exist N,v > 0 such that:

|| ®(t, t0)|| < Ne7VE=t0)  for all t >ty > 0.

3. The main result

In order to establish sufficient conditions for the uniform exponential stabil-
ity of the backwards evolutionary process, we will use a result due to J. L.
Massera and J. J. Schiffer [8]:

Lemma 3.1. Take f,g: Ry — R, g continuous, such that

i) f(t) < g(t—to)f(to), for allt >ty > 0;
it) infy>0 g(t) < 1.
Then there exist N,v > 0 such that

f(t) < Ne7Vtt0) f£(10), for all t > tg > 0.

The following theorem is a strong variant of a result due to E. A. Bar-
bashin [1], for the case of backwards evolutionary processes:
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Theorem 3.2. Let ® be a backwards evolutionary process. ® is uniformly
exponentially stable if and only if there exist p,k > 0 such that:
t 1

([ e )alar)” < Klal,

to
forallz € X andt > ty.

Proof. The necessity is immediate, and for the sufficiency let ¢t >ty 4+ 1 and
r(t) = Me*t, where

|®B(t, to)z|| < Me*=10)||z||, for all t > to.

Then
t t
1B, to)z] / P (r — to)dr < / 19 (r, to) |7 | B(t, )zl [P (7 — to)dr
to tO
t
< / 1B (t, 7)e|[Pdr < kP[]
to
But

/t (7 — to)dr = /HO r(s)ds > /1 rP(s)ds.

to 0 0
We denote by

1
/ r P(s)ds =a > 0.
0

For sup|,=; it implies that

k
[|@(¢,t0)|| < —, for all t > to + 1.

P
Ifte [to,to + 1] then
1D(t, t0)|| < Me®

and therefore

k
|| ®(t,t0)|| < max{Me“, —} =L, forallt >t (3.1)

ar
Take now ¢ >t > 0 and 7 € [to, ]. It follows that

1D(¢, to)z|| = [|®(7, o) D(t, 7)a|| < L||D(¢, 7)x]].
Thus,

t
(t —to)[|D(t, to)x[|” < Lp/ 1D (¢, 7)a|[Pdr < LPEP||2|]".
to
For sup)|, =1 in the above inequality we obtain that
(t —t0)? [ ®(t, to)]] < L. (32)
Adding the inequalities (3.1) and (3.2) it results that

(1+k)L

|2, t0)]| <
14 (t—to)>

, for all t > tg.
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Therefore, we have obtained that
(1+ k)L

192, )| < [18( to)]| || 8(t,7)]] < (o)l
1+ (t—1)r
By denoting
F(t) = [[8(t )| and g(t — 1) = —LERL
1+({t—1)r

from Lemma 3.1 it follows that there exist N, v > 0 such that
19(t, to)|| < Ne™* =)@ (7, 10)] -
Taking 7 = tg we obtain that
||B(t, to)]| < Ne (%) for all t > t,. O

Remark 3.3. We give now another proof for the sufficiency of Theorem 3.2,
with a direct method:
Lett > to+1 and 7 € [to,to + 1]. Then

@(t, to)x|| < (| (7, to)[| [[@(F, 7)2|| < Me®[|@(E, T)x]].
For sup)|,|=1 we obtain that

1@(t, to)|| < Me®[|@(t, 7).

Thus,
ot to)ll < Me=(fr(|agt,7)Pdr)
< (ft [|®(t, T \pd7'>
< Mek.

It follows that
[|@(t,to)]| < Me“ max{1,k}, for allt >ty >0.

Denoting L' = Me* max{1,k} we obtain the condition (3.1) from the Theo-
rem 3.2.
The next steps in the proof of the sufficiency are as in Theorem 3.2.

The discrete correspondent of Theorem 3.2 is given:

Theorem 3.4. Let ® be a backwards evolutionary process. ® is uniformly
exponentially stable if and only if there exist p,l > 0 such that:

(Z ||<I>(n,k:)x\|p); <I||z||, for alln > ngy, and x € X.

k='fL0

Proof. The necessity is immediate.
Sufficiency. From the hypothesis we have that

[|®(n,no)z|| <I||z||, for all n > ng, and x € X.
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For k € {ng,np +1,--- ,n} it follows that

Yk 1B(,n0)2[” < g, 10 (K, no)l” [|@(n, K)a]|?
1P e [|@ (1K) | [P
12|z,

INIA

for all n > ng and = € X. Thus,

(n —no + 1)[[®@(n, no)x||” < 127 x]].
For sup)|, =1 we have that

(n —no + 1)||@(n, no)||P < 1?7,
which implies that
l2

(n—ng + 1)% -
Therefore, it follows that there exists my € N* such that

[|@(n, no)|| <

1
[|®(no + mo,no)|| < 3 for all ng € N.

For n > nq it results that there exist ¢ € N and r € {0,1,--- ,mo — 1} such
that:

[[®(n,n0)|| no + gmo +7,m0)||

||2(

[1®(no + gmo, no)l| [|®(n0 + gmo + 1, no + gmo)|
L($)?
L(e*Vmo)q
Lefu(m0q+r) evr
LeVTe—V(Tl—TLQ)
Leymoe—u(n—no)

2 Le—v(n—no)

A IA

IAl

Denoting v = m%) In2 and N = 2L, it follows that:
||®(n,n0)|| < Ne7?("=m0) | for all n > ny.

Let now t > to + 1,n = [t],ng = [to]. Thus n > ng + 1 and we obtain that:

1 D(t, 20| || (no + 1,t0) ®(n,no +1) O(t, n)|
M?2e%%||®(n,ng + 1)||
MZeQwNe—u(n—no—l)
M262wNe—u(t—to)eu(t—tg—n+no+1)
M2€2wN621/e—l/(t—t0)
M2N62w+211671/(t7t0)7

IA 1IN A

forall t >ty + 1.
For tg <t <tg+ 1 it results that

|| ®(t,to)|| < Me¥e’e v (10),
Denoting N = max{Me“*” N, 1} we obtain that:
|®B(t, t0)]] < Nev(%) for all t > to > 0. 0
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