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Abstract. The exponential stability of a special class of evolution fam-
ilies is analyzed. Extensions of the well-known theorems due to Datko
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1. Introduction

In 1967 E. A. Barbashin [1, Th. 5.1] obtained a stability result for exponen-
tially bounded evolution families generated by differential systems in Banach
spaces, a result that remains true in the case of evolution families with expo-
nential growth. In 1970 R. Datko [4] proved that the C0-semigroup {Tt}t≥0

is exponentially stable if and only if its trajectories (T (·)x) are in L2 for all
x in X. This result was generalized by A. Pazy [12], who proved that the
exponential stability property is equivalent with T (·)x ∈ Lp , for 1 ≤ p < ∞
and for all x in X, where X is a Banach space.

Later, a well-known Datko result from 1972 [5] states that an exponen-
tially bounded, strongly continuous evolution family U = {U(t, t0)}t≥t0≥0

with exponential growth is exponentially stable if and only if there exist
k, p > 0 such that(∫ ∞

t

||U(τ, t)x||pdτ
) 1

p ≤ k||x||, for all t ≥ 0, and x ∈ X.

This result was extended by J.L. Daleckij and M.G. Krein [3] for evolutionary
processes generated by differential systems in Banach spaces and instead of
R. Datko’s method, it has been used a characterization theorem for the ex-
ponential stability of differential systems [3, Th. 6.1, pg 132]. S. Rolewicz [13]
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noticed that the theorem used by J.L. Daleckij and M.G. Krein in [3] remains
true in the case of evolutionary processes with exponential growth (without
stating the proof, though). This theorem, along with the Baire Cathegory
Principle allowed S. Rolewicz [13] to extend Datko’s result from 1972 to the
fact that {U(t, t0)}t≥t0≥0 is exponentially stable if and only if there exists
N : (0,∞)× (0,∞) → R+ with the property that N(α, u) is continuous and
increasing for all α, and N(α, u) is increasing for all u, N(α, 0) = 0 for all
α > 0, N(α, u) > 0 for all u > 0 and for all x ∈ X there exists α(x) > 0 such
that

sup
t≥0

∫ ∞

t

N(α(x), ||U(τ, t)||)dτ < ∞.

Another extension of the result due to Datko [4] and Pazy [12] was obtained
by W. Littman [7] in 1989. V. Pata [11] came with a new proof and a gen-
eralization of the result due to Datko [5] for the case of strongly continuous
semigroups of bounded linear operators.

The classical ideas of J. L. Massera and J. J. Schäffer ([8],[9]) on expo-
nential stability and other asymptotic properties of the solutions of differen-
tial equations have also been developed in the last years. Other results for the
stability of nonlinear evolution families were obtained by A. Ichikawa [6] and
in 2007, a strong variant of a result due to E. A. Barbashin [1] was obtained
by C. Buşe, M. Megan, M. S. Prajea and P. Preda [2] on the dual space of the
Banach space X. Some Datko [5] type results for the asymptotic behavior of
skew-evolution semiflows in Banach spaces were given by M. Megan and C.
Stoica [10] in 2008.

The purpose of the present paper is to give a characterization for the
exponential stability of a special class of evolution families, called the back-
wards evolution families, and thus to reformulate the result due to E. A.
Barbashin [1].

2. Preliminaries

Let us consider X a Banach space, B(X) the Banach algebra of all linear and
bounded operators acting on X and ∆ = {(t, t0) ∈ R2 : t ≥ t0 ≥ 0}. We
denote the norm of vectors on X and operators on B(X) by || · ||.

Definition 2.1. A family of linear and bounded operators

Φ = {Φ(t, t0)}t≥t0≥0 : ∆ → B(X)

is called a backwards evolutionary process if the following properties hold:

i) Φ(t, t) = I, for all t ≥ 0;
ii) Φ(τ, t0) Φ(t, τ) = Φ(t, t0), for all t ≥ τ ≥ t0 ≥ 0;
iii) Φ(·, t0)x : [t0,∞) → X is continuous for all t0 ≥ 0 and x ∈ X
Φ(t, ·)x : [0, t] → X is continuous for all t ≥ 0 and x ∈ X;
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iv) there exist M ≥ 1 and ω ∈ R such that:

||Φ(t, t0)|| ≤ Meω(t−t0),

for all t ≥ t0 ≥ 0.

Example 2.2. Take X = R and the equation:

(A) ẋ(t) = A(t)x(t), t ≥ 0.

We consider the Cauchy problem associated:

(B)
{

U̇(t) = A(t)U(t)
U(0) = I.

where A ∈ M(2, R) and M(2, R) denotes the set of all 2-by-2 real matrices
and t ≥ 0.

The unique solution of the Cauchy problem (B) will be denoted by U(t)
and Φ(t, t0) = U∗−1(t0)U∗(t) represents the backwards evolutionary process
generated by the equation (A).

Example 2.3. Let X = R. Then

Φ(t, t0) =
sin t + 1
sin t0 + 1

defines a backwards evolutionary process.

Example 2.4. Let X = R. Then

Φ(t, t0) =
t2 + 1
t20 + 1

defines a backwards evolutionary process.

Definition 2.5. Let Φ = {Φ(t, t0)}t≥t0≥0 be a backwards evolutionary process.
Φ is called uniformly exponentially stable if there exist N, ν > 0 such that:

||Φ(t, t0)|| ≤ Ne−ν(t−t0), for all t ≥ t0 ≥ 0.

3. The main result

In order to establish sufficient conditions for the uniform exponential stabil-
ity of the backwards evolutionary process, we will use a result due to J. L.
Massera and J. J. Schäffer [8]:

Lemma 3.1. Take f, g : R+ → R+, g continuous, such that
i) f(t) ≤ g(t− t0)f(t0), for all t ≥ t0 ≥ 0;
ii) inft≥0 g(t) < 1.

Then there exist N, ν > 0 such that

f(t) ≤ Ne−ν(t−t0)f(t0), for all t ≥ t0 ≥ 0.

The following theorem is a strong variant of a result due to E. A. Bar-
bashin [1], for the case of backwards evolutionary processes:
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Theorem 3.2. Let Φ be a backwards evolutionary process. Φ is uniformly
exponentially stable if and only if there exist p, k > 0 such that:(∫ t

t0

||Φ(t, τ)x||pdτ
) 1

p ≤ k||x||,

for all x ∈ X and t ≥ t0.

Proof. The necessity is immediate, and for the sufficiency let t ≥ t0 + 1 and
r(t) = Meωt, where

||Φ(t, t0)x|| ≤ Meω(t−t0)||x||, for all t ≥ t0.

Then

||Φ(t, t0)x||p
∫ t

t0

r−p(τ − t0)dτ ≤
∫ t

t0

||Φ(τ, t0)||p ||Φ(t, τ)x||p r−p(τ − t0)dτ

≤
∫ t

t0

||Φ(t, τ)x||pdτ ≤ kp||x||p.

But ∫ t

t0

r−p(τ − t0)dτ =
∫ t−t0

0

r−p(s)ds ≥
∫ 1

0

r−p(s)ds.

We denote by ∫ 1

0

r−p(s)ds = α > 0.

For sup||x||=1 it implies that

||Φ(t, t0)|| ≤
k

α
1
p

, for all t ≥ t0 + 1.

If t ∈ [t0, t0 + 1] then
||Φ(t, t0)|| ≤ Meω

and therefore

||Φ(t, t0)|| ≤ max{Meω,
k

α
1
p

} = L, for all t ≥ t0 (3.1)

Take now t ≥ t0 ≥ 0 and τ ∈ [t0, t]. It follows that

||Φ(t, t0)x|| = ||Φ(τ, t0) Φ(t, τ)x|| ≤ L||Φ(t, τ)x||.
Thus,

(t− t0)||Φ(t, t0)x||p ≤ Lp

∫ t

t0

||Φ(t, τ)x||pdτ ≤ Lpkp||x||p.

For sup||x||=1 in the above inequality we obtain that

(t− t0)
1
p ||Φ(t, t0)|| ≤ Lk. (3.2)

Adding the inequalities (3.1) and (3.2) it results that

||Φ(t, t0)|| ≤
(1 + k)L

1 + (t− t0)
1
p

, for all t ≥ t0.
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Therefore, we have obtained that

||Φ(t, t0)|| ≤ ||Φ(τ, t0)|| ||Φ(t, τ)|| ≤ (1 + k)L

1 + (t− τ)
1
p

||Φ(τ, t0)||.

By denoting

f(t) = ||Φ(t, t0)|| and g(t− τ) =
(1 + k)L

1 + (t− τ)
1
p

,

from Lemma 3.1 it follows that there exist N, ν > 0 such that

||Φ(t, t0)|| ≤ Ne−ν(t−τ)||Φ(τ, t0)||.

Taking τ = t0 we obtain that

||Φ(t, t0)|| ≤ Ne−ν(t−t0) for all t ≥ t0. �

Remark 3.3. We give now another proof for the sufficiency of Theorem 3.2,
with a direct method:

Let t ≥ t0 + 1 and τ ∈ [t0, t0 + 1]. Then

||Φ(t, t0)x|| ≤ ||Φ(τ, t0)|| ||Φ(t, τ)x|| ≤ Meω||Φ(t, τ)x||.

For sup||x||=1 we obtain that

||Φ(t, t0)|| ≤ Meω||Φ(t, τ)||.

Thus,

||Φ(t, t0)|| ≤ Meω
(∫ t0+1

t0
||Φ(t, τ)||pdτ

) 1
p

≤ Meω
(∫ t

t0
||Φ(t, τ)||pdτ

) 1
p

≤ Meωk.

It follows that

||Φ(t, t0)|| ≤ Meω max{1, k}, for all t ≥ t0 ≥ 0.

Denoting L′ = Meω max{1, k} we obtain the condition (3.1) from the Theo-
rem 3.2.

The next steps in the proof of the sufficiency are as in Theorem 3.2.

The discrete correspondent of Theorem 3.2 is given:

Theorem 3.4. Let Φ be a backwards evolutionary process. Φ is uniformly
exponentially stable if and only if there exist p, l > 0 such that:( n∑

k=n0

||Φ(n, k)x||p
) 1

p ≤ l||x||, for all n ≥ n0, and x ∈ X.

Proof. The necessity is immediate.
Sufficiency. From the hypothesis we have that

||Φ(n, n0)x|| ≤ l||x||, for all n ≥ n0, and x ∈ X.
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For k ∈ {n0, n0 + 1, · · · , n} it follows that∑n
k=n0

||Φ(n, n0)x||p ≤
∑n

k=n0
||Φ(k, n0)||p ||Φ(n, k)x||p

≤ lp
∑n

k=n0
||Φ(n, k)x||p

≤ l2p||x||,
for all n ≥ n0 and x ∈ X. Thus,

(n− n0 + 1)||Φ(n, n0)x||p ≤ l2p||x||.
For sup||x||=1 we have that

(n− n0 + 1)||Φ(n, n0)||p ≤ l2p,

which implies that

||Φ(n, n0)|| ≤
l2

(n− n0 + 1)
1
p

.

Therefore, it follows that there exists m0 ∈ N∗ such that

||Φ(n0 + m0, n0)|| ≤
1
2
, for all n0 ∈ N.

For n ≥ n0 it results that there exist q ∈ N and r ∈ {0, 1, · · · ,m0 − 1} such
that:

||Φ(n, n0)|| = ||Φ(n0 + qm0 + r, n0)||
≤ ||Φ(n0 + qm0, n0)|| ||Φ(n0 + qm0 + r, n0 + qm0)||
≤ L

(
1
2

)q

= L(e−νm0)q

= Le−ν(m0q+r)eνr

= Leνre−ν(n−n0)

≤ Leνm0e−ν(n−n0)

= 2Le−ν(n−n0)

Denoting ν = 1
m0

ln 2 and N = 2L, it follows that:

||Φ(n, n0)|| ≤ Ne−ν(n−n0), for all n ≥ n0.

Let now t ≥ t0 + 1, n = [t], n0 = [t0]. Thus n ≥ n0 + 1 and we obtain that:

||Φ(t, t0)|| = ||Φ(n0 + 1, t0) Φ(n, n0 + 1) Φ(t, n)||
≤ M2e2ω||Φ(n, n0 + 1)||
≤ M2e2ωNe−ν(n−n0−1)

= M2e2ωNe−ν(t−t0)eν(t−t0−n+n0+1)

≤ M2e2ωNe2νe−ν(t−t0)

= M2Ne2ω+2νe−ν(t−t0),

for all t ≥ t0 + 1.
For t0 ≤ t < t0 + 1 it results that

||Φ(t, t0)|| ≤ Meωeνe−ν(t−t0).

Denoting N = max{Meω+νN, 1} we obtain that:

||Φ(t, t0)|| ≤ Ne−ν(t−t0), for all t ≥ t0 ≥ 0. �
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