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of certain general integral operators
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Abstract. In this paper, we generalize certain integral operators given
by Pescar [8] and determine conditions for univalence of these general
integral operators.
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akzk,

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}

and satisfy the following usual normalization condition

f(0) = f ′(0)− 1 = 0.

We denote by S the subclass of A consisting of functions which are also
univalent in U.

In [6] and [7], Pescar gave the following univalence conditions for the
functions f ∈ A.

Theorem 1.1. [6] Let α be a complex number, < (α) > 0, and c be a complex
number, |c| ≤ 1, c 6= −1 and f(z) = z + · · · a regular function in U. If∣∣∣∣c |z|2α +

(
1− |z|2α

) zf ′′(z)
αf ′(z)

∣∣∣∣ ≤ 1,
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for all z ∈ U, then the function

Fα(z) =
(

α

∫ z

0

tα−1f ′(t)dt

) 1
α

= z + · · ·

is regular and univalent in U.

Theorem 1.2. [7] Let α be a complex number, < (α) > 0, and c be a complex
number, |c| ≤ 1, c 6= −1 and f ∈ A. If

1− |z|2<(α)

< (α)

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1− |c| ,

for all z ∈ U, then for any complex number β, < (β) ≥ < (α), the function

Fβ(z) =
(

β

∫ z

0

tβ−1f ′(t)dt

) 1
β

is in the class S.

On the other hand, for the functions f ∈ A, Ozaki and Nunokawa [5]
proved another univalence condition asserted by Theorem 1.3.

Theorem 1.3. [5] Let f ∈ A satisfy the condition∣∣∣∣∣z2f ′(z)
(f(z))2

− 1

∣∣∣∣∣ ≤ 1 (z ∈ U). (1.1)

Then f is univalent in U.

Furthermore in [8], Pescar determined necessary conditions for univa-
lence of some integral operators.

Theorem 1.4. [8] Let the function g ∈ A satisfy (1.1), M be a positive real
number fixed and c be a complex number. If

α ∈
[
2M + 1
2M + 2

,
2M + 1

2M

]
,

|c| ≤ 1−
∣∣∣∣α− 1

α

∣∣∣∣ (2M + 1) , c 6= −1

and

|g(z)| ≤ M

for all z ∈ U, then the function

Gα(z) =
(

α

∫ z

0

(g(t))α−1
dt

) 1
α

(1.2)

is in the class S.
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Theorem 1.5. [8] Let g ∈ A, α be a real number, α ≥ 1, and c be a complex
number, |c| ≤ 1

α , c 6= −1. If∣∣∣∣g′′(z)
g′(z)

∣∣∣∣ ≤ 1 (z ∈ U),

then the function

Hα(z) =
(

α

∫ z

0

(tg′(t))α−1
dt

) 1
α

(1.3)

is in the class S.

Theorem 1.6. [8] Let g ∈ A satisfies (1.1), α be a complex number, M > 1
fixed, < (α) > 0 and c be a complex number, |c| < 1. If

|g(z)| ≤ M

for all z ∈ U, then for any complex number β

< (β) ≥ < (α) ≥ 2M + 1
|α| (1− |c|)

,

the function

Hβ(z) =

(
β

∫ z

0

tβ−1

(
g(t)
t

) 1
α

dt

) 1
β

(1.4)

is in the class S.

Finally, Breaz and Breaz [1] considered the following family of integral
operators and proved that the function Gn,α defined by

Gn,α(z) =

[n(α− 1) + 1]
∫ z

0

n∏
j=1

(gj(t))
α−1

dt

 1
n(α−1)+1

(g1, . . . , gn ∈ A)

(1.5)
is univalent in U. For some recent investigations of the integral operator Gn,α,
see the works by Breaz et al. [2] and [3].

Now we introduce two new general integral operators as follows:

Hn,α(z) :=

[n(α− 1) + 1]
∫ z

0

n∏
j=1

(
tg′j(t)

)α−1
dt

 1
n(α−1)+1

(g1, . . . , gn ∈ A) ,

(1.6)

Hn,β(z) :=

[n(β−1)+1]
∫ z

0

tn(β−1)
n∏

j=1

(
gj(t)

t

) 1
α

dt

 1
n(β−1)+1

(g1, . . . , gn∈A).

(1.7)

Remark 1.7. For n = 1, the integral operators in (1.5), (1.6) and (1.7) would
reduce to the integral operators in (1.2), (1.3) and (1.4), respectively.
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In this paper, we investigate univalence conditions involving the general
family of integral operators defined by (1.5), (1.6) and (1.7). For this purpose,
we need the following result.
General Schwarz Lemma. [4] Let the function f be regular in the disk
UR = {z ∈ C : |z| < R}, with |f(z)| < M for fixed M . If f has one zero
with multiplicity order bigger than m for z = 0, then

|f(z)| ≤ M

Rm
|z|m (z ∈ UR).

The equality can hold only if

f(z) = eiθ M

Rm
zm,

where θ is constant.

2. Main Results

Theorem 2.1. Let M > 0 and the functions gj ∈ A (j ∈ {1, . . . , n}) satisfies
the inequality (1.1). Also let

α ∈ R
(

α ∈
[

(2M + 1) n

(2M + 1)n + 1
,

(2M + 1)n

(2M + 1)n− 1

])
and c ∈ C.

If

|c| ≤ 1−
∣∣∣∣ α− 1
n(α− 1) + 1

∣∣∣∣ (2M + 1) n, c 6= −1 (2.1)

and

|gj(z)| ≤ M (z ∈ U; j ∈ {1, . . . , n}) ,

then the function Gn,α defined by (1.5) is in the class S.

Proof. Define a function

h(z) =
∫ z

0

n∏
j=1

(
gj(t)

t

)α−1

dt.

Then we obtain

h′(z) =
n∏

j=1

(
gj(z)

z

)α−1

.

Also, a simple computation yields

zh′′(z)
h′(z)

= (α− 1)
n∑

j=1

(
zg′j(z)
gj(z)

− 1
)

,
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which readily shows that∣∣∣∣c |z|2[n(α−1)+1] +
(
1− |z|2[n(α−1)+1]

) zh′′(z)
[n(α− 1) + 1]h′(z)

∣∣∣∣
≤ |c|+ 1

|n(α− 1) + 1|

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣
≤ |c|+

∣∣∣∣ α− 1
n(α− 1) + 1

∣∣∣∣ n∑
j=1

(∣∣∣∣∣ z2g′j(z)

(gj(z))2

∣∣∣∣∣
∣∣∣∣gj(z)

z

∣∣∣∣+ 1

)
.

Since
|gj(z)| ≤ M (z ∈ U; j ∈ {1, . . . , n}) ,

by using the inequality (1.1) and the general Schwarz lemma, we obtain∣∣∣∣c |z|2[n(α−1)+1] +
(
1− |z|2[n(α−1)+1]

) zh′′(z)
[n(α− 1) + 1]h′(z)

∣∣∣∣
≤ |c|+

∣∣∣∣ α− 1
n(α− 1) + 1

∣∣∣∣ (2M + 1)n,

which, by (2.1), yields∣∣∣∣c |z|2[n(α−1)+1] +
(
1− |z|2[n(α−1)+1]

) zh′′(z)
[n(α− 1) + 1]h′(z)

∣∣∣∣ ≤ 1 (z ∈ U).

Applying Theorem 1.1, we conclude that the function Gn,α defined by (1.5)
is in the class S. �

Remark 2.2. Setting n = 1 in Theorem 2.1, we have Theorem 1.4.

Theorem 2.3. Let gj ∈ A (j ∈ {1, . . . , n}), α be a real number, α ≥ 1, and c
be a complex number with

|c| ≤ 1
n(α− 1) + 1

, c 6= −1. (2.2)

If ∣∣∣∣∣g′′j (z)
g′j(z)

∣∣∣∣∣ ≤ 1 (z ∈ U; j ∈ {1, . . . , n}) , (2.3)

then the function Hn,α defined by (1.6) is in the class S.

Proof. Define a function

h(z) =
∫ z

0

n∏
j=1

(
g′j(t)

)α−1
dt.

Then we obtain

h′(z) =
n∏

j=1

(
g′j(z)

)α−1 .

Also, a simple computation yields

zh′′(z)
h′(z)

= (α− 1)
n∑

j=1

zg′′j (z)
g′j(z)

,
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which readily shows that∣∣∣∣c |z|2[n(α−1)+1] +
(
1− |z|2[n(α−1)+1]

) zh′′(z)
[n(α− 1) + 1]h′(z)

∣∣∣∣
≤ |c|+ 1

n(α− 1) + 1

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣
≤ |c|+

(
α− 1

n(α− 1) + 1

) n∑
j=1

∣∣∣∣∣zg′′j (z)
g′j(z)

∣∣∣∣∣ .
By (2.2) and (2.3), we obtain∣∣∣∣c |z|2[n(α−1)+1] +

(
1− |z|2[n(α−1)+1]

) zh′′(z)
[n(α− 1) + 1]h′(z)

∣∣∣∣ ≤ 1 (z ∈ U).

Applying Theorem 1.1, we conclude that the function Hn,α defined by (1.6)
is in the class S. �

Remark 2.4. Setting n = 1 in Theorem 2.3, we have Theorem 1.5.

Theorem 2.5. Let M > 0 and the functions gj ∈ A (j ∈ {1, . . . , n}) satisfies
the inequality (1.1). Also let α be a complex number, < (α) > 0, and c be a
complex number, |c| < 1. If

|gj(z)| ≤ M (z ∈ U; j ∈ {1, . . . , n}) ,

then for any complex number β with

< (n(β − 1) + 1) ≥ < (α) ≥ (2M + 1) n

|α| (1− |c|)
, (2.4)

the function Hn,β defined by (1.7) is in the class S.

Proof. Define a function

h(z) =
∫ z

0

n∏
j=1

(
gj(t)

t

) 1
α

dt.

Then we obtain

h′(z) =
n∏

j=1

(
gj(z)

z

) 1
α

.

Also, a simple computation yields

zh′′(z)
h′(z)

=
1
α

n∑
j=1

(
zg′j(z)
gj(z)

− 1
)

,

which readily shows that

1− |z|2<(α)

< (α)

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ 1
|α| < (α)

n∑
j=1

(∣∣∣∣∣ z2g′j(z)

(gj(z))2

∣∣∣∣∣
∣∣∣∣gj(z)

z

∣∣∣∣+ 1

)
.

Since
|gj(z)| ≤ M (z ∈ U; j ∈ {1, . . . , n}) ,
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by using the inequality (1.1) and the general Schwarz lemma, we obtain

1− |z|2<(α)

< (α)

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ 1
|α| < (α)

(2M + 1) n,

which, by (2.4), yields

1− |z|2<(α)

< (α)

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ 1− |c| (z ∈ U).

Applying Theorem 1.2, we conclude that the function Hn,β defined by (1.7)
is in the class S. �

Remark 2.6. Setting n = 1 in Theorem 2.5, we have Theorem 1.6.
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