Pappus's harmonic theorem in the Einstein relativistic velocity model of hyperbolic geometry

Laurian-Ioan Pişcoran and Cătălin Barbu

Abstract

In this note, we present a proof of Pappus's harmonic theorem in the Einstein relativistic velocity model of hyperbolic geometry.

Mathematics Subject Classification (2010): 51K05, 51M10, 30F45, 20N99, 51B10.
Keywords: Hyperbolic geometry, hyperbolic triangle, Pappus's harmonic theorem, gyrovector, Einstein relativistic velocity model.

1. Introduction

Hyperbolic geometry appeared in the first half of the $19^{\text {th }}$ century as an attempt to understand Euclid's axiomatic basis for geometry. It is also known as a type of non-Euclidean geometry, being in many respects similar to Euclidean geometry. Hyperbolic geometry includes such concepts as: distance, angle and both of them have many theorems in common. There are known many main models for hyperbolic geometry, such as: Poincaré disc model, Poincaré half-plane, Klein model, Einstein relativistic velocity model, etc. The hyperbolic geometry is a non-Euclidian geometry. Here, in this study, we present a proof of Pappus's harmonic theorem in the Einstein relativistic velocity model of hyperbolic geometry. Pappus's harmonic theorem states that if $A^{\prime} B^{\prime} C^{\prime}$ is the cevian triangle of point M with respect to the triangle $A B C$ such that the lines $B^{\prime} C^{\prime}$ and $B C$ meet at $A^{\prime \prime}$, then $\frac{A^{\prime \prime} B}{A^{\prime \prime} C}=\frac{A^{\prime} B}{A^{\prime} C}$ [4].

Let D denote the complex unit disc in complex z-plane, i.e.

$$
D=\{z \in \mathbb{C}:|z|<1\} .
$$

The most general Möbius transformation of D is

$$
z \rightarrow e^{i \theta} \frac{z_{0}+z}{1+\overline{z_{0}} z}=e^{i \theta}\left(z_{0} \oplus z\right)
$$

which induces the Möbius addition \oplus in D, allowing the Möbius transformation of the disc to be viewed as a Möbius left gyrotranslation

$$
z \rightarrow z_{0} \oplus z=\frac{z_{0}+z}{1+\overline{z_{0}} z}
$$

followed by a rotation. Here $\theta \in \mathbb{R}$ is a real number, $z, z_{0} \in D$, and $\overline{z_{0}}$ is the complex conjugate of z_{0}. Let $\operatorname{Aut}(D, \oplus)$ be the automorphism group of the grupoid (D, \oplus). If we define

$$
g y r: D \times D \rightarrow A u t(D, \oplus), g y r[a, b]=\frac{a \oplus b}{b \oplus a}=\frac{1+a \bar{b}}{1+\bar{a} b},
$$

then is true gyrocommutative law

$$
a \oplus b=\operatorname{gyr}[a, b](b \oplus a) .
$$

A gyrovector space (G, \oplus, \otimes) is a gyrocommutative gyrogroup (G, \oplus) that obeys the following axioms:
(1) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a} \cdot \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{b}=\mathbf{a} \cdot \mathbf{b}$ for all points $\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v} \in G$.
(2) G admits a scalar multiplication, \otimes, possessing the following properties. For all real numbers $r, r_{1}, r_{2} \in \mathbb{R}$ and all points $\mathbf{a} \in G$:
(G1) $1 \otimes \mathbf{a}=\mathbf{a}$
(G2) $\left(r_{1}+r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes \mathbf{a} \oplus r_{2} \otimes \mathbf{a}$
(G3) $\left(r_{1} r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes\left(r_{2} \otimes \mathbf{a}\right)$
(G4) $\frac{|r| \otimes \mathbf{a}}{\|r \otimes \mathbf{a}\|}=\frac{\mathbf{a}}{\|\mathbf{a}\|}$
(G5) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}](r \otimes \mathbf{a})=r \otimes \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a}$
(G6) $g y r\left[r_{1} \otimes \mathbf{v}, r_{1} \otimes \mathbf{v}\right]=1$
(3) Real vector space structure $(\|G\|, \oplus, \otimes)$ for the set $\|G\|$ of onedimensional "vectors"

$$
\|G\|=\{ \pm\|\mathbf{a}\|: \mathbf{a} \in G\} \subset \mathbb{R}
$$

with vector addition \oplus and scalar multiplication \otimes, such that for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in G$,

$$
\begin{aligned}
& \text { (G7) }\|r \otimes \mathbf{a}\|=|r| \otimes\|\mathbf{a}\| \\
& \text { (G8) }\|\mathbf{a} \oplus \mathbf{b}\| \leq\|\mathbf{a}\| \oplus\|\mathbf{b}\|
\end{aligned}
$$

Theorem 1.1. (The Hyperbolic Theorem of Ceva in Einstein Gyrovector Space). Let $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} be three non-gyrocollinear points in an Einstein gyrovector space $\left(V_{s}, \oplus, \otimes\right)$. Furthermore, let \mathbf{a}_{123} be a point in their gyroplane, which is off the gyrolines $\mathbf{a}_{1} \mathbf{a}_{2}, \mathbf{a}_{2} \mathbf{a}_{3}$, and $\mathbf{a}_{3} \mathbf{a}_{1}$. If $\mathbf{a}_{1} \mathbf{a}_{123}$ meets $\mathbf{a}_{2} \mathbf{a}_{3}$ at \mathbf{a}_{23}, etc., then
$\frac{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}\right\|}{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}\right\|} \frac{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}\right\|}{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}\right\|} \frac{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}\right\|}{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}\right\|}=1$,
(here $\gamma_{\mathbf{v}}=\frac{1}{\sqrt{1-\frac{\|\mathbf{v}\|^{2}}{s^{2}}}}$ is the gamma factor).
(see [6, p. 461])
Theorem 1.2. (The Hyperbolic Theorem of Menelaus in Einstein Gyrovector Space). Let $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} be three non-gyrocollinear points in an Einstein gyrovector space $\left(V_{s}, \oplus, \otimes\right)$. If a gyroline meets the sides of gyrotriangle $\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}$ at points $\mathbf{a}_{12}, \mathbf{a}_{13}, \mathbf{a}_{23}$, then

$$
\begin{aligned}
& \frac{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}\right\|}{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}\right\|} \frac{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}\right\|}{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}\right\|} \frac{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}\right\|}{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}\right\|}=1 . \\
& \quad \text { (see [6, p. 463]) }
\end{aligned}
$$

Theorem 1.3. (The Gyrotriangle Bisector Theorem). Let $A B C$ be a gyrotriangle in an Einstein gyrovector space $\left(V_{s}, \oplus, \otimes\right)$, and let P be a point lying on side $B C$ of the gyrotriangle such that $A P$ is a bisector of gyroangle $\measuredangle B A C$. Then,

$$
\frac{\gamma_{|B P|}|B P|}{\gamma_{|P C|}|P C|}=\frac{\gamma_{|A B|}|A B|}{\gamma_{|A C|}|A C|}
$$

(see [7, p. 150])
For further details we refer to the recent book of A.Ungar [6].
Definition 1.4. The symmetric of the median with respect to the internal bisector issued from the same vertex is called symmedian.

Theorem 1.5. If the gyroline $A P$ is a symmedian of a gyrotriangle $A B C$, and the point P is on the gyroside $B C$, then

$$
\frac{\gamma_{|C P|}|C P|}{\gamma_{|B P|}|B P|}=\left(\frac{\gamma_{|C A|}|C A|}{\gamma_{|B A|}|B A|}\right)^{2}
$$

(See [3])
Definition 1.6. We call antibisector of a triangle, the izotomic of a internal bisector of a triangle interior angle.

2. Main results

In this section, we present a proof of Pappus's harmonic theorem in the Einstein relativistic velocity model of hyperbolic geometry.

Theorem 2.1. (Pappus's harmonic theorem for hyperbolic gyrotriangle). If $A^{\prime} B^{\prime} C^{\prime}$ is the cevian gyrotriangle of gyropoint M with respect to the gyrotriangle $A B C$ such that the gyrolines $B^{\prime} C^{\prime}$ and $B C$ meet at $A^{\prime \prime}$, then

$$
\frac{\gamma_{\left|A^{\prime} B\right|}\left|A^{\prime} B\right|}{\gamma_{\left|A^{\prime} C\right|}\left|A^{\prime} C\right|}=\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|} .
$$

Proof. If we use Theorem 1.1 in the gyrotriangle $A B C$ (see Figure 1), we have

Figure 1

$$
\begin{equation*}
\frac{\gamma_{\left|A^{\prime} B\right|}\left|A^{\prime} B\right|}{\gamma_{\left|A^{\prime} C\right|}\left|A^{\prime} C\right|} \cdot \frac{\gamma_{\left|B^{\prime} C\right|}\left|B^{\prime} C\right|}{\gamma_{\left|B^{\prime} A\right|}\left|B^{\prime} A\right|} \cdot \frac{\gamma_{\left|C^{\prime} A\right|}\left|C^{\prime} A\right|}{\gamma_{\left|C^{\prime} B\right|}\left|C^{\prime} B\right|}=1 . \tag{2.1}
\end{equation*}
$$

If we use Theorem 1.2 in the gyrotriangle $A B C$, cut by the gyroline $A^{\prime} A^{\prime \prime}$, we get

$$
\begin{equation*}
\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|} \cdot \frac{\gamma_{\left|B^{\prime} C\right|}\left|B^{\prime} C\right|}{\gamma_{\left|B^{\prime} A\right|}\left|B^{\prime} A\right|} \cdot \frac{\gamma_{\left|C^{\prime} A\right|}\left|C^{\prime} A\right|}{\gamma_{\left|C^{\prime} B\right|}\left|C^{\prime} B\right|}=1 . \tag{2.2}
\end{equation*}
$$

From the relations (2.1) and (2.2) we have $\frac{\gamma_{\mid A^{\prime} B B}\left|A^{\prime} B\right|}{\gamma_{\left|A^{\prime} C\right|}\left|A^{\prime} C\right|}=\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B_{B}\right|}{\left.\gamma_{\left|A^{\prime \prime} C\right|}\right|^{\left|A^{\prime \prime} C\right|}}$.
Corollary 2.2. If $A^{\prime} B^{\prime} C^{\prime}$ is the cevian gyrotriangle of gyropoint M with respect to the gyrotriangle $A B C$ such that the gyrolines $B^{\prime} C^{\prime}$ and $B C$ meet at $A^{\prime \prime}$, and $A A^{\prime}$ is a bisector of gyroangle $\measuredangle B A C$, then

$$
\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|}=\frac{\gamma_{|A B|}|A B|}{\gamma_{|A C|}|A C|} .
$$

Proof. If we use Theorem 1.3 in the triangle $A B C$, we get

$$
\begin{equation*}
\frac{\gamma_{\left|A^{\prime} B\right|}\left|A^{\prime} B\right|}{\gamma_{\left|A^{\prime} C\right|}\left|A^{\prime} C\right|}=\frac{\gamma_{|A B||A B|}}{\gamma_{|A C|}|A C|} . \tag{2.3}
\end{equation*}
$$

If we use Theorem 2.1 in the triangle $A B C$, we get

$$
\begin{equation*}
\frac{\gamma_{\left|A^{\prime} B\right|}\left|A^{\prime} B\right|}{\gamma_{\left|A^{\prime} C\right|}\left|A^{\prime} C\right|}=\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|} . \tag{2.4}
\end{equation*}
$$

From the relations (2.3) and (2.4) we have $\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|}=\frac{\gamma_{|A B|}|A B|}{\gamma_{|A C|}|A C|}$.
Corollary 2.3. If $A^{\prime} B^{\prime} C^{\prime}$ is the cevian gyrotriangle of gyropoint M with respect to the gyrotriangle $A B C$ such that the gyrolines $B^{\prime} C^{\prime}$ and $B C$ meet at $A^{\prime \prime}$, and
$A A^{\prime}$ is a bisector of gyroangle $\measuredangle B A C$, and $A A_{1}$ is a antibisector of gyroangle $\measuredangle B A C$, then

$$
\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|}=\left(\frac{\gamma_{\left|A_{1} B\right|}\left|A_{1} B\right|}{\gamma_{\left|A_{1} C\right|}\left|A_{1} C\right|}\right)^{-1} .
$$

Proof. Because the gyroline $A A_{1}$ is a isotomic line of the bisector $A A^{\prime}$, then

$$
\begin{equation*}
\frac{\gamma_{\left|A_{1} B\right|}\left|A_{1} B\right|}{\gamma_{\left|A_{1} C\right|}\left|A_{1} C\right|}=\frac{\gamma_{\left|A^{\prime} C\right|}\left|A^{\prime} C\right|}{\gamma_{\left|A^{\prime} B\right|}\left|A^{\prime} B\right|}=\frac{\gamma_{|A C|}|A C|}{} . \tag{2.5}
\end{equation*}
$$

If we use Corollary 2.2, we have

$$
\begin{equation*}
\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|}=\frac{\gamma_{|A B|}|A B|}{\gamma_{|A C|}|A C|} . \tag{2.6}
\end{equation*}
$$

From the relations (2.5) and (2.6), we have

$$
\begin{equation*}
\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|}=\left(\frac{\gamma_{\left|A_{1} B\right|}\left|A_{1} B\right|}{\gamma_{\left|A_{1} C\right|}\left|A_{1} C\right|}\right)^{-1} . \tag{2.7}
\end{equation*}
$$

Corollary 2.4. If $A^{\prime} B^{\prime} C^{\prime}$ is the cevian gyrotriangle of gyropoint M with respect to the gyrotriangle $A B C$ such that the gyrolines $B^{\prime} C^{\prime}$ and $B C$ meet at $A^{\prime \prime}$, and $A A^{\prime}$ is a symmedian of gyroangle $\measuredangle B A C$, and the point A^{\prime} is on the gyroside $B C$, then

$$
\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|}=\left(\frac{\gamma_{|A B|}|A B|}{\gamma_{|A C|}|A C|}\right)^{2} .
$$

Proof. If we use Theorem 1.5, we have

$$
\begin{equation*}
\frac{\gamma_{\left|A^{\prime} B\right|}\left|A^{\prime} B\right|}{\gamma_{\left|A^{\prime} C\right|}\left|A^{\prime} C\right|}=\left(\frac{\gamma_{|A B|}|A B|}{\gamma_{|A C|}|A C|}\right)^{2} . \tag{2.8}
\end{equation*}
$$

If we use Theorem 2.1, we have

$$
\begin{equation*}
\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|}=\frac{\gamma_{\left|A^{\prime} B\right|}\left|A^{\prime} B\right|}{\gamma_{\left|A^{\prime} C\right|}\left|A^{\prime} C\right|} . \tag{2.9}
\end{equation*}
$$

From the relations (2.8) and (2.9), we get $\frac{\gamma_{\left|A^{\prime \prime} B\right|^{\left|A^{\prime \prime} B\right|}}}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|}=\left(\frac{\gamma_{|A B|}|A B|}{\gamma_{|A C|}|A C|}\right)^{2}$.
Theorem 2.5. If $A^{\prime} B^{\prime} C^{\prime}$ is the cevian gyrotriangle of gyropoint M with respect to the gyrotriangle $A B C$ such that the gyrolines $B^{\prime} C^{\prime}$ and $B C$ meet at $A^{\prime \prime}$, and $A A^{\prime}$ is a bisector of gyroangle $\measuredangle B A C$, the gyrolines $A^{\prime} C^{\prime}$ and $B B^{\prime}$ meet at $D, A^{\prime} B^{\prime}$ and $C C^{\prime}$ meet at $E, A D$ and $B C$ meet at D^{\prime}, and $A E$ and $B C$ meet in E^{\prime}, then

$$
\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|}=\frac{\gamma_{\left|D^{\prime} B\right|}\left|D^{\prime} B\right|}{\gamma_{\left|D^{\prime} A^{\prime}\right|}\left|D^{\prime} A^{\prime}\right|} \cdot \frac{\gamma_{\left|E^{\prime} A^{\prime}\right|}\left|E^{\prime} A^{\prime}\right|}{\gamma_{\left|E^{\prime} C\right|}\left|E^{\prime} C\right|} .
$$

Proof. If we use Theorem 1.1 in the gyrotriangle $A B A^{\prime}$ (see Figure 2),

Figure 2
we have

$$
\begin{equation*}
\frac{\gamma_{\left|D^{\prime} B\right|}\left|D^{\prime} B\right|}{\gamma_{\left|D^{\prime} A^{\prime}\right|}\left|D^{\prime} A^{\prime}\right|} \left\lvert\, \frac{\gamma_{\left|C^{\prime} A\right|}\left|C^{\prime} A\right|}{\gamma_{\left|C^{\prime} B\right|}\left|C^{\prime} B\right|} \cdot \frac{\gamma_{\left|M A^{\prime}\right|}\left|M A^{\prime}\right|}{\gamma_{|M A|}|M A|}=1 .\right. \tag{2.10}
\end{equation*}
$$

If we use Theorem 1.2 in the gyrotriangle $A B A^{\prime}$, cut by the gyroline $C C^{\prime}$, we get

$$
\begin{equation*}
\frac{\gamma_{|C B|}|C B|}{\gamma_{\left|C A^{\prime}\right| C A^{\prime} \mid} \mid} \cdot \frac{\gamma_{\left|C^{\prime} A\right|}\left|C^{\prime} A\right|}{\gamma_{\left|C^{\prime} B\right|}\left|C^{\prime} B\right|} \cdot \frac{\gamma_{\left|M A^{\prime}\right|}\left|M A^{\prime}\right|}{\gamma_{|M A|}|M A|}=1 . \tag{2.11}
\end{equation*}
$$

From the relations (2.10) and (2.11), we have

$$
\begin{equation*}
\frac{\gamma_{\left|D^{\prime} B\right|}\left|D^{\prime} B\right|}{\gamma_{\left|D^{\prime} A^{\prime}\right|}\left|D^{\prime} A^{\prime}\right|}=\frac{\gamma_{|C B|}|C B|}{\gamma_{\left|C A^{\prime}\right|}\left|C A^{\prime}\right|} . \tag{2.12}
\end{equation*}
$$

Similarly, we obtain that

$$
\begin{equation*}
\frac{\gamma_{\left|E^{\prime} C\right|}\left|E^{\prime} C\right|}{\gamma_{\left|E^{\prime} A^{\prime}\right|}\left|E^{\prime} A^{\prime}\right|}=\frac{\gamma_{|B C|}|B C|}{\gamma_{\left|B A^{\prime}\right|}\left|B A^{\prime}\right|} . \tag{2.13}
\end{equation*}
$$

If ratios the equations (2.12) and (2.13) among themselves, respectively, then

$$
\begin{equation*}
\frac{\gamma_{\left|D^{\prime} B\right|}\left|D^{\prime} B\right|}{\gamma_{\left|D^{\prime} A^{\prime}\right|}\left|D^{\prime} A^{\prime}\right|} \cdot \frac{\gamma_{\left|E^{\prime} A^{\prime}\right|}\left|E^{\prime} A^{\prime}\right|}{\gamma_{\left|E^{\prime} C\right|}\left|E^{\prime} C\right|}=\frac{\gamma_{\left|B A^{\prime}\right|}\left|B A^{\prime}\right|}{\gamma_{\left|C A^{\prime}\right|}\left|C A^{\prime}\right|} . \tag{2.14}
\end{equation*}
$$

If we use Theorem 1.3 and the Corollary 2.2 in the triangle $A B C$, we get

$$
\begin{equation*}
\frac{\gamma_{\left|A^{\prime} B\right|}\left|A^{\prime} B\right|}{\gamma_{\left|A^{\prime} C\right|}\left|A^{\prime} C\right|}=\frac{\gamma_{|A B|}|A B|}{\gamma_{|A C|}|A C|}=\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|} \tag{2.15}
\end{equation*}
$$

From the relations (2.14) and (2.15), we get

$$
\frac{\gamma_{\left|D^{\prime} B\right|}\left|D^{\prime} B\right|}{\gamma_{\left|D^{\prime} A^{\prime}\right|}\left|D^{\prime} A^{\prime}\right|} \cdot \frac{\gamma_{\left|E^{\prime} A^{\prime}\right|\left|E^{\prime} A^{\prime}\right|}}{\gamma_{\left|E^{\prime} C\right|}\left|E^{\prime} C\right|}=\frac{\gamma_{\left|A^{\prime \prime} B\right|}\left|A^{\prime \prime} B\right|}{\gamma_{\left|A^{\prime \prime} C\right|}\left|A^{\prime \prime} C\right|} .
$$

References

[1] Barbu, C., Teoreme fundamentale din geometria triunghiului, Ed. Unique, Bacău, 2008.
[2] Barbu, C., Smarandache's cevian triangle theorem in the Einstein relativistic velocity model of hyperbolic geometry, Progress in Physics, 2010.
[3] Barbu, C., Steiner's Isogonals Theorem in the Einstein Relativistic Model of Hyperbolic Geometry, Annales Mathematicae et Informaticae (to appear).
[4] Coxeter, H., Greitzer, S., Geometry revisited, Washington, DC, Math. Assoc. Amer., 1967, 67-68.
[5] Smarandache, F., Eight Solved and Eight Open Problems in Elementary Geometry, arXiv: 1003.2153.
[6] Ungar, A. A., Analytic hyperbolic geometry and Albert Einstein's Special Theory of Relativity, World Scientific Publishing Co., Hackensack (NJ), 2008.
[7] Ungar, A. A., A Gyrovector Space Approach to Hyperbolic Geometry, Morgan \& Claypool Publishers, 2009.

Laurian-Ioan Pişcoran
North University of Baia Mare
Department of Mathematics and Computer Science
Victoriei 76, 430122 Baia Mare, Romania
e-mail: plaurian@yahoo.com
Cătălin Barbu
"Vasile Alecsandri" College
Bacău, str. Vasile Alecsandri nr. 37
600011 Bacău, Romania
e-mail: kafka_mate@yahoo.com

