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1. Introduction

Hyperbolic geometry appeared in the first half of the 19th century as an at-
tempt to understand Euclid’s axiomatic basis for geometry. It is also known
as a type of non-Euclidean geometry, being in many respects similar to Eu-
clidean geometry. Hyperbolic geometry includes such concepts as: distance,
angle and both of them have many theorems in common. There are known
many main models for hyperbolic geometry, such as: Poincaré disc model,
Poincaré half-plane, Klein model, Einstein relativistic velocity model, etc.
The hyperbolic geometry is a non-Euclidian geometry. Here, in this study,
we present a proof of Pappus’s harmonic theorem in the Einstein relativis-
tic velocity model of hyperbolic geometry. Pappus’s harmonic theorem states
that if A′B′C′ is the cevian triangle of point M with respect to the triangle

ABC such that the lines B′C′ and BC meet at A′′, then A′′B
A′′C

= A′B
A′C

[4].

Let D denote the complex unit disc in complex z - plane, i.e.

D = {z ∈ C : |z| < 1}.
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The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the Möbius transforma-
tion of the disc to be viewed as a Möbius left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the
complex conjugate of z0. Let Aut(D,⊕) be the automorphism group of the
grupoid (D,⊕). If we define

gyr : D × D → Aut(D,⊕), gyr[a, b] =
a ⊕ b

b ⊕ a
=

1 + ab

1 + ab
,

then is true gyrocommutative law

a ⊕ b = gyr[a, b](b ⊕ a).

A gyrovector space (G,⊕,⊗) is a gyrocommutative gyrogroup (G,⊕)
that obeys the following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.

(2) G admits a scalar multiplication, ⊗, possessing the following prop-
erties. For all real numbers r, r1, r2 ∈ R and all points a ∈G:

(G1) 1 ⊗ a = a

(G2) (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a

(G3) (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a)

(G4) |r|⊗a

‖r⊗a‖ = a

‖a‖

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1
(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of onedi-

mensional ”vectors”

‖G‖ = {± ‖a‖ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R

and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖

Theorem 1.1. (The Hyperbolic Theorem of Ceva in Einstein Gyrovector
Space). Let a1,a2, and a3 be three non-gyrocollinear points in an Einstein
gyrovector space (Vs,⊕,⊗). Furthermore, let a123 be a point in their gyro-
plane, which is off the gyrolines a1a2,a2a3, and a3a1. If a1a123 meets a2a3

at a23, etc., then

γ⊖a1⊕a12
‖⊖a1 ⊕ a12‖

γ⊖a2⊕a12
‖⊖a2 ⊕ a12‖

γ⊖a2⊕a23
‖⊖a2 ⊕ a23‖

γ⊖a3⊕a23
‖⊖a3 ⊕ a23‖

γ⊖a3⊕a13
‖⊖a3 ⊕ a13‖

γ⊖a1⊕a13
‖⊖a1 ⊕ a13‖

= 1,

(here γv = 1
√

1− ‖v‖2

s2

is the gamma factor).
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(see [6, p. 461])

Theorem 1.2. (The Hyperbolic Theorem of Menelaus in Einstein Gyrovector
Space). Let a1,a2, and a3 be three non-gyrocollinear points in an Einstein gy-
rovector space (Vs,⊕,⊗). If a gyroline meets the sides of gyrotriangle a1a2a3

at points a12,a13,a23, then

γ⊖a1⊕a12
‖⊖a1 ⊕ a12‖

γ⊖a2⊕a12
‖⊖a2 ⊕ a12‖

γ⊖a2⊕a23
‖⊖a2 ⊕ a23‖

γ⊖a3⊕a23
‖⊖a3 ⊕ a23‖

γ⊖a3⊕a13
‖⊖a3 ⊕ a13‖

γ⊖a1⊕a13
‖⊖a1 ⊕ a13‖

= 1.

(see [6, p. 463])

Theorem 1.3. (The Gyrotriangle Bisector Theorem). Let ABC be a gyrotri-
angle in an Einstein gyrovector space (Vs,⊕,⊗), and let P be a point lying on
side BC of the gyrotriangle such that AP is a bisector of gyroangle ∡BAC.

Then,
γ|BP | |BP |

γ|PC| |PC|
=

γ|AB| |AB|

γ|AC| |AC|
.

(see [7, p. 150])
For further details we refer to the recent book of A.Ungar [6].

Definition 1.4. The symmetric of the median with respect to the internal
bisector issued from the same vertex is called symmedian.

Theorem 1.5. If the gyroline AP is a symmedian of a gyrotriangle ABC, and
the point P is on the gyroside BC, then

γ|CP | |CP |

γ|BP | |BP |
=

(

γ|CA| |CA|

γ|BA| |BA|

)2

.

(See [3])

Definition 1.6. We call antibisector of a triangle, the izotomic of a internal
bisector of a triangle interior angle.

2. Main results

In this section, we present a proof of Pappus’s harmonic theorem in the
Einstein relativistic velocity model of hyperbolic geometry.

Theorem 2.1. (Pappus’s harmonic theorem for hyperbolic gyrotriangle). If
A′B′C′ is the cevian gyrotriangle of gyropoint M with respect to the gyrotri-
angle ABC such that the gyrolines B′C′ and BC meet at A′′, then

γ
|A′B||A

′B|

γ
|A′C||A

′C|
=

γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
.

Proof. If we use Theorem 1.1 in the gyrotriangle ABC (see Figure 1), we
have
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γ
|A′B||A

′B|

γ
|A′C||A

′C|
·
γ
|B′C||B

′C|

γ
|B′A||B

′A|
·
γ
|C′A||C

′A|

γ
|C′B||C

′B|
= 1. (2.1)

If we use Theorem 1.2 in the gyrotriangle ABC, cut by the gyroline A′A′′,

we get
γ
|A′′B||A

′′B|

γ
|A′′

C||
A

′′
C|

·
γ
|B′C||B

′C|

γ
|B′A||B

′A|
·
γ
|C′A||C

′A|

γ
|C′B||C

′B|
= 1. (2.2)

From the relations (2.1) and (2.2) we have
γ
|A′B||A

′B|

γ
|A′C||A

′C|
=

γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
. �

Corollary 2.2. If A′B′C′ is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC such that the gyrolines B′C′ and BC meet at A′′,
and AA′ is a bisector of gyroangle ∡BAC, then

γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
=

γ
|AB||AB|

γ
|AC||AC|

.

Proof. If we use Theorem 1.3 in the triangle ABC, we get

γ
|A′B||A

′B|

γ
|A′C||A

′C|
=

γ
|AB||AB|

γ
|AC||AC|

. (2.3)

If we use Theorem 2.1 in the triangle ABC, we get

γ
|A′B||A

′B|

γ
|A′C||A

′C|
=

γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
. (2.4)

From the relations (2.3) and (2.4) we have
γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
=

γ
|AB||AB|

γ
|AC||AC|

. �

Corollary 2.3. If A′B′C′ is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC such that the gyrolines B′C′ and BC meet at A′′, and
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AA′ is a bisector of gyroangle ∡BAC, and AA1 is a antibisector of gyroangle
∡BAC, then

γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
=

(

γ
|A1B||A1B|

γ
|A1C||A1C|

)−1

.

Proof. Because the gyroline AA1 is a isotomic line of the bisector AA′, then

γ
|A1B||A1B|

γ
|A1C||A1C|

=
γ
|A′C||A

′C|

γ
|A′B||A

′B|
=

γ
|AC||AC|

γ
|AB||AB|

. (2.5)

If we use Corollary 2.2, we have
γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
=

γ
|AB||AB|

γ
|AC||AC|

. (2.6)

From the relations (2.5) and (2.6), we have

γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
=

(

γ
|A1B||A1B|

γ
|A1C||A1C|

)−1

. (2.7)

�

Corollary 2.4. If A′B′C′ is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC such that the gyrolines B′C′ and BC meet at A′′,
and AA′ is a symmedian of gyroangle ∡BAC, and the point A′ is on the
gyroside BC, then

γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
=

(

γ
|AB||AB|

γ
|AC||AC|

)2

.

Proof. If we use Theorem 1.5, we have

γ
|A′B||A

′B|

γ
|A′C||A

′C|
=

(

γ
|AB||AB|

γ
|AC||AC|

)2

. (2.8)

If we use Theorem 2.1, we have
γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
=

γ
|A′B||A

′B|

γ
|A′C||A

′C|
. (2.9)

From the relations (2.8) and (2.9), we get
γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
=

(

γ
|AB||AB|

γ
|AC||AC|

)2

. �

Theorem 2.5. If A′B′C′ is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC such that the gyrolines B′C′ and BC meet at A′′,
and AA′ is a bisector of gyroangle ∡BAC, the gyrolines A′C′ and BB′ meet
at D, A′B′ and CC′ meet at E, AD and BC meet at D′, and AE and BC

meet in E′, then
γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
=

γ
|D′B||D

′B|

γ
|D′A′||D

′A′|
·
γ
|E′A′||E

′A′|

γ
|E′C||E

′C|
.
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Proof. If we use Theorem 1.1 in the gyrotriangle ABA′ (see Figure 2),

we have
γ
|D′B||D

′B|

γ
|D′A′||D

′A′|
·
γ
|C′A||C

′A|

γ
|C′B||C

′B|
·
γ
|MA′||MA′|

γ
|MA||MA|

= 1. (2.10)

If we use Theorem 1.2 in the gyrotriangle ABA′, cut by the gyroline CC′,

we get
γ

|CB||CB|

γ
|CA′||CA′|

·
γ
|C′A||C

′A|

γ
|C′B||C

′B|
·
γ
|MA′||MA′|

γ
|MA||MA|

= 1. (2.11)

From the relations (2.10) and (2.11), we have

γ
|D′B||D

′B|

γ
|D′A′||D

′A′|
=

γ
|CB||CB|

γ
|CA′||CA′|

. (2.12)

Similarly, we obtain that

γ
|E′C||E

′C|

γ
|E′A′||E

′A′|
=

γ
|BC||BC|

γ
|BA′||BA′|

. (2.13)

If ratios the equations (2.12) and (2.13) among themselves, respectively, then

γ
|D′B||D

′B|

γ
|D′A′||D

′A′|
·
γ
|E′A′||E

′A′|

γ
|E′C||E

′C|
=

γ
|BA′||BA′|

γ
|CA′||CA′|

. (2.14)

If we use Theorem 1.3 and the Corollary 2.2 in the triangle ABC, we get

γ
|A′B||A

′B|

γ
|A′C||A

′C|
=

γ
|AB||AB|

γ
|AC||AC|

=
γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
. (2.15)
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From the relations (2.14) and (2.15), we get
γ
|D′B||D

′B|

γ
|D′A′||D

′A′|
·
γ
|E′A′||E

′A′|

γ
|E′C||E

′C|
=

γ
|A′′B||A

′′B|

γ
|A′′C||A

′′C|
.

�
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