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1. Introduction

Hyperbolic geometry appeared in the first half of the 19*" century as an at-
tempt to understand Euclid’s axiomatic basis for geometry. It is also known
as a type of non-Euclidean geometry, being in many respects similar to Eu-
clidean geometry. Hyperbolic geometry includes such concepts as: distance,
angle and both of them have many theorems in common. There are known
many main models for hyperbolic geometry, such as: Poincaré disc model,
Poincaré half-plane, Klein model, Einstein relativistic velocity model, etc.
The hyperbolic geometry is a non-Euclidian geometry. Here, in this study,
we present a proof of Pappus’s harmonic theorem in the Einstein relativis-
tic velocity model of hyperbolic geometry. Pappus’s harmonic theorem states
that if A’B’C’ is the cevian triangle of point M with respect to the triangle
ABC such that the lines B'C” and BC' meet at A”, then % = ﬁig [4].
Let D denote the complex unit disc in complex z - plane, i.e.

D={zeC:|z| <1}
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The most general Mobius transformation of D is
it 20+ 2
1+ 7%z
which induces the Mobius addition & in D, allowing the M&bius transforma-
tion of the disc to be viewed as a Mobius left gyrotranslation
20+ 2
1+Zzz
followed by a rotation. Here # € R is a real number, z, 29 € D, and Zj is the
complex conjugate of zg. Let Aut(D,®) be the automorphism group of the
grupoid (D, ®). If we define

=e¥(2 ® 2),

z2—= 20Dz =

a@b_ 1+ ab
bda 1+ab

gyr : D x D — Aut(D, ®), gyr|a,b] =

then is true gyrocommutative law
a®b=gyrla,b](b® a).

A gyrovector space (G, ®,®) is a gyrocommutative gyrogroup (G, ®)
that obeys the following axioms:

(1) gyr[u,v]a: gyrju,vlb =a-b for all points a,b,u,v €G.

(2) G admits a scalar multiplication, ®, possessing the following prop-
erties. For all real numbers r, 71,72 € R and all points a €G:

(Gl)1@a=a

(G2) (ri+m)®a=r®adrs®a

(G3) (rry)®a=r;® (r; ®a)

(G4) Trar = To1

(G5) gyr[u, v](r ® a) =r ® gyr[u, v]a

(G6) gyr|ri @ v,r1 @ v] =1

(3) Real vector space structure (|G|, ®,®) for the set |G| of onedi-
mensional ”vectors”

1G]l ={+lall :ac G} CR

with vector addition @ and scalar multiplication ®, such that for all r € R
and a,b € G,

(G7) |r@all = [r[© |all

(G8) |la®b| < [laf| & [b]

Theorem 1.1. (The Hyperbolic Theorem of Ceva in Einstein Gyrovector
Space). Let aj,aq, and a3 be three non-gyrocollinear points in an Finstein
gyrovector space (Vs,®,®). Furthermore, let ajaz be a point in their gyro-
plane, which is off the gyrolines ajas, asas, and aza;. If ajajos meets azag
at ass, etc., then

Yoaidais ||6a1 D 312” Yoasdass Hea? D aQ3H Yoaszdais H@a3 D al3H —
Yoardaiz ”@aQ @ a12|| Yoasdazs H@a?) D a23H Yoa:dais H@al D a13H

(here v, = ﬁ is the gamma factor).
—Iv®

s
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(see [6, p. 461])

Theorem 1.2. (The Hyperbolic Theorem of Menelaus in Einstein Gyrovector
Space). Let ay, as, and ag be three non-gyrocollinear points in an Einstein gy-
rovector space (Vs, ®,®). If a gyroline meets the sides of gyrotriangle ajasas
at points ai2, a3, a3, then

Yoaidais ”@al @ a12|| Veazdazs H@iiQ @ a23H Veasdais H@a3 @ a13H _
Yoazmars S22 ® a12|| Yoassas, O3 © a2 Yoa,0ars [[Oa1 & as||

(see [6, p. 463])

Theorem 1.3. (The Gyrotriangle Bisector Theorem). Let ABC' be a gyrotri-
angle in an Einstein gyrovector space (Vy, ®, ®), and let P be a point lying on
side BC of the gyrotriangle such that AP is a bisector of gyroangle £ BAC.
Then,

YBp|IBP| 7| |AB]

YpcIPCl 7ac| |AC|

(see [7, p. 150])
For further details we refer to the recent book of A.Ungar [6].

Definition 1.4. The symmetric of the median with respect to the internal
bisector issued from the same vertex is called symmedian.

Theorem 1.5. If the gyroline AP is a symmedian of a gyrotriangle ABC, and
the point P is on the gyroside BC, then

Ner [CP] ('YCA |C A )2
YIBP| |BP| VBA| |BA| .

(See [3])

Definition 1.6. We call antibisector of a triangle, the izotomic of a internal
bisector of a triangle interior angle.

2. Main results

In this section, we present a proof of Pappus’s harmonic theorem in the
Einstein relativistic velocity model of hyperbolic geometry.

Theorem 2.1. (Pappus’s harmonic theorem for hyperbolic gyrotriangle). If
A'B'C" is the cevian gyrotriangle of gyropoint M with respect to the gyrotri-
angle ABC' such that the gyrolines B'C’ and BC meet at A", then

Vars||ABl V) arp||A” B

Narc|lACL V| ane)lA7C|

Proof. If we use Theorem 1.1 in the gyrotriangle ABC (see Figure 1), we
have
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Figure 1

V) ar5|1AB| '7|B’O“B,C‘ ' VcrallC Al _1q 21)
VarclACL Vipra)lB'Al Vo) 1C Bl
If we use Theorem 1.2 in the gyrotriangle ABC, cut by the gyroline A’A”,
we get
7|A”B||A”B| -7|BICHB'C\ . 7|C'AHC'A\ _

(2.2)
7|A”C||A”C| Tpra|lB AL Vjorp) 0B

’YlA,B||AlB| _ ’YlA,,B||A“B|

From the relations (2.1) and (2.2) we have O

|arc| |arc| ’

Bt
|arc| |arc|
Corollary 2.2. If A’B'C’ is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC such that the gyrolines B'C’ and BC meet at A",

and AA’ is a bisector of gyroangle £ BAC, then

7|A”B||A”B‘ _ ’Y\AB\‘AB|

'Y‘A,,C||A”C\ Y ac||AC]
Proof. If we use Theorem 1.3 in the triangle ABC', we get

VNars||ABl Y, 4p/AB|

. (2.3)
7‘A'c||A'C| ’Y\AC\‘AC‘
If we use Theorem 2.1 in the triangle ABC', we get
Tars| 4Bl Tjang) A7 Bl (2.4)
Narc|lACL V| anc)lA7C|
Y Py A'B
From the relations (2.3) and (2.4) we have - L Diapl 451 O
lavc|l4”cl Nac|l4cl

Corollary 2.3. If A’B'C’ is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC' such that the gyrolines B'C’ and BC meet at A", and
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AA' is a bisector of gyroangle L BAC, and AA;1 is a antibisector of gyroangle

ABAC, then
-1
’Y|A”B‘|A”B| [ Vay1A1B]
V‘A//O“ANC‘ 7\A10\|AIC|

Proof. Because the gyroline AA; is a isotomic line of the bisector AA’, then

Y4, 5/|A1B] _ fY\A’CllAlc| _ Tac|lAC|

(2.5)
Y 4,c)1A1C| 7|A/B||A’B\ Y ap||AB|
If we use Corollary 2.2, we have
Va5 1A B _ ’Y‘AB‘\ABl. (2.6)

fY‘A//c||A”C‘ ’Y\AC\‘AC‘
From the relations (2.5) and (2.6), we have

—1
7|A”B\|A,,B| _ <7A13|A13> . (27)

Y arrc|A”C Y4 0114:1C|

O

Corollary 2.4. If A’B'C’ is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC' such that the gyrolines B'C’ and BC meet at A",
and AA" is a symmedian of gyroangle L BAC, and the point A’ is on the

gyroside BC', then
Vanp||AVBl (’YAB|AB|>2
Y arc)|ACl - Yac||AC| '
Proof. If we use Theorem 1.5, we have

2
’Y‘A/B\\A'BI _ <'7ABAB|> . (2.8)

Y arc|lACl Yiac||AC|

If we use Theorem 2.1, we have

Y|4 5| |A” B| Y\ ar 1A' B|
el T e (2.9)
7|A,,C‘\A”C| ’Y‘A,CllA’C|

, 2

From the relations (2.8) and (2.9), we get Jars|27EL <7ABAB> .0
|arc|l4” €l Tjac|lAC]
Theorem 2.5. If A’B’C" is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC such that the gyrolines B'C’ and BC meet at A",
and AA’ is a bisector of gyroangle £ BAC, the gyrolines A’C" and BB’ meet
at D, A’B’ and CC'" meet at E, AD and BC meet at D', and AE and BC
meet in E', then

PY\A”BHA“B‘ ’Y|D’BHD,B| 7‘E1A1||E’A’\

7|A,,C||A'/C| 7|D/A/‘\D’A’| 7|E,C||EIC|
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Proof. Tf we use Theorem 1.1 in the gyrotriangle ABA’ (see Figure 2),

Figure 2

we have

’Y|D’B||D,B| ’Y‘C’A||C,A| ’Y‘JMA,”MA"
: : = (2.10)
Vpran DAL Vjerp|ICBl - Vina|MA|

If we use Theorem 1.2 in the gyrotriangle ABA’, cut by the gyroline CC’,
we get

YieratlCrAl Y /| MA’|
Y\cn/ICB| eral Marar -1 (2.11)
NearflCA'L Viorp)IC'Bl - Viara | MA
From the relations (2.10) and (2.11), we have
’Y‘D/B“D/Bl _ ’Y‘CB‘|CB| ) (212)
'Y‘D,AlllD’A’| 'YlCA,‘\CA’\
Similarly, we obtain that
IY|EICHE’C‘ _ ’Y\BCHBC‘ . (213)
’Y‘E’A’HE/A/‘ ’Y\BA’HBAll

If ratios the equations (2.12) and (2.13) among themselves, respectively, then

’Y‘D/B”D’B\ 7|E/A/‘\E'A’| ’Y\BA’HBAll

. (2.14)
’Y‘D,A,”D'A'\ 'Y‘E,C‘\E’C\ 'YlCA,HCA’\

If we use Theorem 1.3 and the Corollary 2.2 in the triangle ABC, we get

Vars|lABl Y ap1aB|  Vjarp|lA”B

’y|A/c||A/c| ’Y\Ac\lAcl ’Y‘Aﬂc“A”C‘

(2.15)
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From the relations (2.14) and (2.15), we get
Vps|ID' Bl Vigran|B'AY Y 4 |A B

Vo ar|D'A'l Vi) |1 BC Y arc|lA”C
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