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Vanishing viscosity method for quasilinear
variational inequalities

Tünde Zsuzsánna Szász

Abstract. In this paper we first define the notion of viscosity solution
for the following partial differential quasilinear variational inequalities
involving a subdifferential operator:

∂u(t, x)

∂t
+ F (t, x, u(t, x)) ·Du(t, x) + f(t, x, u(t, x)) ∈ ∂ϕ(u(t, x)) in O

t ∈ [0, T ] , x ∈ Rd, where ∂ϕ is the subdifferential operator of the proper
convex lower semicontinuous function ϕ : Rd → (−∞, +∞]. We prove
the existence of a viscosity solution u : O → Rn, where O an open set
in [0, T ]× Rd.
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1. Introduction

The viscosity solution was first introduced by M.G. Crandall and P.L. Lions
[3] in 1983. These generalized solutions need not be differentiable anywhere,
as the only regularity required in the definition is continuity (for example see
[4]). M.G. Crandall, L.C. Evans, P.L. Lions in [2] give the existence theorem
to use the vanishing viscosity method for the nonlinear scalar partial differen-
tial equation of the form F (y, u(y), Du(y)) = 0 for y ∈ O, where O is an open
set from Rn, F : O × R × Rn → R is continuous. The name viscosity comes
from a traditional engineering application where a nonlinear first order PDE
is approximated by quasilinear first order equations which are obtained from
the initial PDE by adding a regularizing ε∆uε term, which is called a ’vis-
cosity term’, and these approximate equations can be solved by classical or
numerical methods and the limit of their solution hopefully solves the initial
equation.
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L. Maticiuc, E. Pardoux, A. Răşcanu, A. Zălinescu in [6] studied the ex-
istence of a viscosity solution of a system of parabolic variational inequalities
involving a subdifferential operator. The authors use a stochastic approach
in order to prove the existence result (see in [6] pg.6).

The aim of this paper is to give an existence for a viscosity solution
u : O → Rn, where O is an open set in [0, T ]×Rd, by the classical vanishing
viscosity method for the following partial differential quasilinear variational
inequalities involving a subdifferential operator:

∂u(t, x)
∂t

+ F (t, x, u(t, x)) ·Du(t, x) + f(t, x, u(t, x)) ∈ ∂ϕ(u(t, x)) in O
(1.1)

t ∈ [0, T ] , x ∈ Rd, where ∂ϕ is the subdifferential operator of the proper
convex lower semicontinuous function ϕ : Rd → (−∞,+∞]. This method
can be used just in the quasilinear case .

2. Main results

Throughout this paper O is an open set in [0, T ]×Rd, where T is a positive
number.

We make the following assumptions:
(A.1) the functions

F : [0, T ]× Rd × Rn → Rd, f : [0, T ]× Rd × Rn → Rn

are continuous.
(A.2) The functions ϕ : Rd → (−∞,+∞] is proper (i.e. ϕ 6= +∞), convex,

lower semicontinuous.
We recall that the subdifferential ∂ϕ is defined by

∂ϕ(u) = {u∗ ∈ Rn : 〈u∗, v − u〉 ≤ ϕ(v)− ϕ(u),∀v ∈ Rn} .

It is a common practice to regard sometimes ∂ϕ as a subset of Rn × Rn by
writing (u, u∗) ∈ ∂ϕ(u) instead of u∗ ∈ ∂ϕ(u).

We denote by

Dom(ϕ) = {u ∈ Rn : ϕ(u) < +∞}
Dom(∂ϕ) = {u ∈ Rn : ∂ϕ(u) 6= ∅}

We recall some definitions and results which will be used in the following
(see [1] for more details).

Theorem 2.1. Let ϕ : Rd → (−∞,+∞] be a convex function. Then, for all
u ∈ Dom(ϕ) and z ∈ Rn, there exist

ϕ
′

−(u; z) := lim
t↗0

ϕ(u + tz)− ϕ(u)
t

= sup
t<0

ϕ(u + tz)− ϕ(u)
t

ϕ
′

+(u; z) := lim
t↘0

ϕ(u + tz)− ϕ(u)
t

= inf
t>0

ϕ(u + tz)− ϕ(u)
t

. (2.1)
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Moreover, the following hold:
(a) ϕ

′

−(u; z) ≤ ϕ
′

+(u; z), ∀u ∈ Dom(ϕ) and z ∈ Rn,

(b) ϕ
′

−(u;−z) = −ϕ
′

+(u; z), ∀u ∈ Dom(ϕ) and z ∈ Rn,

(c) ϕ
′

−(u, ·) is superlinear and ϕ
′

+(u, z) is sublinear,
(d) if u and z are such that there exists δ > 0 such that u + tz ∈ Dom(ϕ),

∀t ∈ (−δ,+δ), then ϕ
′

−(u, z), ϕ
′

+(u, z) ∈ R.

If we take d = 1, then we know that, in every point u ∈ Dom(ϕ),

∂ϕ(u) = R ∩
[
ϕ
′

−(u), ϕ
′

+(u)
]

(2.2)

where ϕ
′

−(u) and ϕ
′

+(u) are respectively, the left and the right derivative of
ϕ at the point u.

The following proposition generalizes the above characterization to the
case of d ≥ 1:

Proposition 2.2. Let ϕ : Rd → (−∞,+∞] be a proper, convex function and
u ∈ Dom(ϕ). The following statements are equivalent:

(i) u? ∈ ∂ϕ(u);
(ii) 〈u∗, z〉 ≥ ϕ

′

−(u; z),∀z ∈ Rn;
(iii) 〈u∗, z〉 ≤ ϕ

′

+(u; z),∀z ∈ Rn.

Let us define, for u ∈ Dom(ϕ) and z ∈ Rn,

ϕ
′

?(u; z) = lim inf
v→u

v∈Dom(∂ϕ)

ϕ
′

−(v; z), ϕ
′,?(u; z) = lim sup

v→u
v∈Dom(∂ϕ)

ϕ
′

+(v; z)

For u ∈ Rn, let (with the usual convention inf ∅ = +∞)

|∂ϕ|0(u) = inf |∂ϕ(u)|.
If u ∈ Dom(∂ϕ), then there is a unique u? ∈ Rn, denoted (∂ϕ)0(u) such that
|∂ϕ|0(u) = |(∂ϕ)0(u)|.

Let u, v ∈ Rd. The notation u · v denotes the euclidean inner product
(also known as the dot product) on Rd. We denote by Du the gradient of u,
and ∆u the Laplace operator of u:

Du(x1, ..., xd) =


∂u1
∂x1

. . . ∂un

∂x1
∂u1
∂x2

. . . ∂un

∂x2
...

. . .
...

∂u1
∂xd

. . . ∂un

∂xd


∆u(x1, ..., xd) = (∆u1,∆u2, . . . ,∆un) =

(
d∑

i=1

∂2u1

∂x2
i

, . . . ,
d∑

i=1

∂2un

∂x2
i

)
We may now define the concept of viscosity solution of (1.1):

Definition 2.3. Let u : O → Rn be a continuous function. We say the function
u is a viscosity solution of (1.1), if:

u(t, x) ∈ Dom(∂ϕ), ∀(t, x) ∈ O
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and for all Ψ : [0, T ]× Rd → R continuous function, and z ∈ Rn,

if u · z − Ψ attains a local maximum at (t0, x0) ∈ O, then

we have
∂Ψ(t0, x0)

∂t
+ F (t0, x0, u(t0, x0)) ·DΨ(t0, x0) +

+ f(t0, x0, u(t0, x0)) · z ≤ ϕ‘,∗(u(t0, x0); z) (2.3)

Remark 2.4. Observe that the Definition 2.3 is the particular case of the
definition given in ([6]) for the quasilinear case.

The main result is the following:

Theorem 2.5. Let ε > 0, and Fε : [0, T ]× Rd × Rn → Rd, fε : [0, T ]× Rd ×
Rn → Rn be a family of continuous functions such that Fε(t, x, p), fε(t, x, p)
converges uniformly on compact subsets of O×Rn to some function F (t, x, p)
and f(t, x, p), as ε tends to 0. Finally, suppose that for all ε > 0 uε ∈ C2(O)
is a solution of

∂uε(t, x)
∂t

− ε∆uε(t, x)

+Fε(t, x, uε(t, x)) ·Duε(t, x) + fε(t, x, uε(t, x)) ∈ ∂ϕ(uε(t, x)) in O. (2.4)
Then if uε converge uniformly on compact subsets of O to some u ∈

C(O), we have
u is a viscosity solution of (1.1).

Remark 2.6. By the Proposition 2.2 the inequation (2.4) can be written in
the form(

u
′

εt
· z
)

(t, x) − ε∆uε(t, x) · z + Fε(t, x, uε(t, x)) ·Duε(t, x) · z +

+ + fε(t, x, uε(t, x)) · z ≤ ϕ
′

+(uε(t, x); z) in O, for all z ∈ Rn (2.5)

Proof. Let us check (2.3) first for Ψ ∈ C2(O). We assume that ∀z ∈ Rn ,
u · z −Ψ has a local maximum point at (t0, x0) ∈ O .

Choose ξ ∈ C∞(O), such that

0 ≤ ξ < 1, if (t, x) 6= (t0, x0), and ξ(t0, x0) = 1.

Obviously, u·z−(Ψ−ξ) has a strict local minimum point at (t0, x0) ∈ O,
and thus for ε small enough, uε · z − (Ψ − ξ) has a local maximum point at
some (tε, xε) ∈ O , and (tε, xε) → (t0, x0) as ε → 0.

But at the point (tε, xε) = (t0, x0), we have

D(uε · z − (Ψ − ξ))(tε, xε) = 0(
u
′

εt
· z
)

(tε, xε) = Ψ
′

t(tε, xε) − ξ
′

t(tε, xε) (2.6)

(Dxuε · z) (tε, xε) = DxΨ(tε, xε) − Dxξ(tε, xε) (2.7)
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By taking (2.6) and (2.7) in (2.4) we have

Ψ
′

t(tε, xε) − ξ
′

t(tε, xε) − ε∆uε(tε, xε) · z
+Fε(tε, xε, uε(tε, xε)) · (DxΨ(tε, xε) − Dxξ(tε, xε))

+fε(tε, xε, uε(tε, xε)) · z ≤ ϕ
′

+(uε(tε, xε); z) in O, for all z ∈ Rn (2.8)
Since, as ε → 0

uε(tε, xε) → u(t0, x0),
D (uε · z) (tε, xε) = D (Ψ − ξ) (tε, xε) → D (Ψ − ξ) (t0x0) = DΨ(t0x0)

ε∆uε(tε, xε) · z ≤ ε∆ (Ψ − ξ) (tε, xε) → 0
and F, f are continuous functions, ϕ is lower semicontinuous, we have

∂Ψ(t0, x0)
∂t

+ F (t0, x0, u(t0, x0)) ·DΨ(t0, x0)+

+ f(t0, x0, u(t0, x0)) · z ≤ ϕ‘,∗(u(t0, x0); z) (2.9)

However, we have to show this for test functions from C1(O). Let Ψ ∈
C1(O), and assume that ∀z ∈ Rn , u · z − Ψ has a local maximum point at
(t0, x0) ∈ O .

We have to show that
∂Ψ(t0, x0)

∂t
+ F (t0, x0, u(t0, x0)) ·DΨ(t0, x0) + f(t0, x0, u(t0, x0)) · z

≤ ϕ‘,∗(u(t0, x0); z)
Let Ψn ∈ C1(O) such that Ψn → Ψ in C1(O) and, as before, choose

ξ ∈ C∞(O) such that

0 ≤ ξ < 1, if (t, x) 6= (t0, x0), and ξ(t0, x0) = 1.

For n large enough, uε · z − (Ψn − ξ) has a local maximum point at
some (tn, xn) ∈ O , and (tn, xn) → (t0, x0) as n →∞.

It follows

(Du · z) (tn, xn) = DΨn(tn, xn) − Dξ(tn, xn) (2.10)

Then as shown above, for each n we have
∂Ψn(tn, xn)

∂t
−∂ξ(tn, xn)

∂t
+ F (tn, xn, u(tn, xn))·(DxΨn(tn, xn)−Dxξ(tn, xn))

+f(tn, xn, u(tn, xn)) · z ≤ ϕ
′

+(u(tn, xn); z) in O, for all z ∈ Rn (2.11)
Since, as n →∞

u(tn, xn) → u(t0, x0),

D (u · z) (tn, xn) = D (Ψn − ξ) (tn, xn) → D (Ψ − ξ) (t0x0) = DΨ(t0x0)
and F, f are continuous functions, ϕ lower semicontinuous, we have

∂Ψ(t0, x0)
∂t

+ F (t0, x0, u(t0, x0)) ·DΨ(t0, x0) + f(t0, x0, u(t0, x0)) · z

≤ ϕ‘,∗(u(t0, x0); z)
Therefore u is a viscosity solution of (1.1). �
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