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Abstract. In this paper we introduce generalized semi normed difference
of double gai sequence spaces defined by a modulus function. We study
their different properties and obtain some inclusion relations involving
these semi normed difference double gai sequence spaces.
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1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar
valued single sequences, respectively.

We write w2 for the set of all complex sequences (xm,n), wherem,n ∈ N,
the set of positive integers. Then, w2 is a linear space under the coordinate
wise addition and scalar multiplication.

Some initial works on double sequence spaces were found in Bromwich
[5]. Later on, they were investigated by Hardy [16], Moricz [24], Moricz
and Rhoades [25], Basarir and Solankan [3], Tripathy [42], Colak and Turk-
menoglu [8], Turkmenoglu [44], and many others.

Let us define the following sets of double sequences

Mu (t) :=
{
(xm,n) ∈ w2 : supm,n∈N |xm,n|tm,n < ∞

}
,

Cp (t) :=
{
(xm,n) ∈ w2 : p− limm,n→∞ |xm,n − l|tm,n = 1 for some l ∈ C

}
,

C0p (t) :=
{
(xm,n) ∈ w2 : p− limm,n→∞ |xm,n|tm,n = 1

}
,
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Lu (t) :=
{
(xm,n) ∈ w2 :

∑∞
m=1

∑∞
n=1 |xm,n|tm,n < ∞

}
,

Cbp (t) := Cp (t)
∩
Mu (t) and C0bp (t) = C0p (t)

∩
Mu (t),

where t = (tm,n) is the sequence of strictly positive reals tm,n for all m,n ∈ N
and p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case
tm,n = 1 for all m,n ∈ N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t) and C0bp (t) re-
duce to the setsMu, Cp, C0p,Lu, Cbp and C0bp, respectively. Now, we may sum-
marize the knowledge given in some document related to the double sequence
spaces. Gökhan and Colak [14,15] have proved that Mu (t) and Cp (t) , Cbp (t)
are complete paranormed spaces of double sequences and gave the α−, β−, γ−
duals of the spaces Mu (t) and Cbp (t) . Quite recently, in her PhD thesis, Zel-
ter [46] has essentially studied both the theory of topological double sequence
spaces and the theory of summability of double sequences. Mursaleen and
Edely [27] have recently introduced the statistical convergence and Cauchy
for double sequences and given the relation between statistical convergent and
strongly Cesàro summable double sequences. Nextly, Mursaleen [28] and Mur-
saleen and Edely [29] have defined the almost strong regularity of matrices for
double sequences and applied these matrices to establish a core theorem and
introduced the M−core for double sequences and determined those four di-
mensional matrices transforming every bounded double sequences x = (xj,k)
into one whose core is a subset of the M−core of x. More recently, Altay and
Basar [2] have defined the spaces BS,BS (t) , CSp, CSbp, CSr and BV of dou-
ble sequences consisting of all double series whose sequence of partial sums
are in the spaces Mu,Mu (t) , Cp, Cbp, Cr and Lu, respectively, and also have
examined some properties of those sequence spaces and determined the α−
duals of the spaces BS,BV, CSbp and the β (ϑ)− duals of the spaces CSbp

and CSr of double series. Quite recently Basar and Sever [7] have introduced
the Banach space Lq of double sequences corresponding to the well-known
space ℓq of single sequences and have examined some properties of the space
Lq. Quite recently Subramanian and Misra [36,40] have studied the space
χ2
M (p, q, u) and the generalized gai of double sequences and have given some

inclusion relations.
We need the following inequality in the sequel of the paper. For a, b ≥ 0

and 0 < p < 1, we have
(a+ b)p ≤ ap + bp. (1.1)

The double series
∑∞

m,n=1 xm,n is called convergent if and only if the

double sequence (sm,n) is convergent, where sm,n =
∑m,n

i,j=1 xi,j(m,n ∈ N)
(see[1]).

A sequence x = (xm,n) is said to be double analytic if

sup
m,n

|xm,n|1/(m+n)
< ∞.

The vector space of all double analytic sequences will be denoted by Λ2.

A sequence x = (xm,n) is called double entire sequence if |xm,n|1/(m+n) → 0
as m,n → ∞. The double entire sequences will be denoted by Γ2. A sequence

x = (xm,n) is called double gai sequence if ((m+ n)! |xm,n|)1/(m+n) → 0 as
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m,n → ∞. The double gai sequences will be denoted by χ2. Let ϕ denote
the set of all finite sequences.

Consider a double sequence x = (xi,j). The (m,n)th section x[m,n] of

the sequence is defined by x[m,n] =
∑m,n

i,j=0xi,jℑi,j for all m,n ∈ N , where

ℑij denotes the double sequence whose only non zero term is a 1
(i+j)! in the

(i, j)
th

place for each i, j ∈ N.
An FK-space (or a metric space) X is said to have AK property if (ℑmn)

is a Schauder basis for X. Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete
metrizable locally convex topology under which the coordinate mappings
x = (xk) → (xm,n) (m,n ∈ N) are also continuous.

Orlicz [32] used the idea of Orlicz function to construct the space
(
LM

)
.

Lindenstrauss and Tzafriri [21] investigated Orlicz sequence spaces in more
detail, and they proved that every Orlicz sequence space ℓM contains a
subspace isomorphic to ℓp (1 ≤ p < ∞) . subsequently, different classes of se-
quence spaces were defined by Parashar and Choudhary [33], Mursaleen et
al. [26], Bektas and Altin [4], Tripathy et al. [43], Rao and Subramanian [9],
and many others. The Orlicz sequence spaces are the special cases of Orlicz
spaces studied in [17].

Recalling [32] and [17], an Orlicz function is a function M : [0,∞) →
[0,∞) which is continuous, non-decreasing, and convex with M (0) =
0, M (x) > 0, for x > 0 and M (x) → ∞ as x → ∞. If convexity of Or-
licz function M is replaced by subadditivity of M, then this function is called
modulus function, defined by Nakano [31] and further discussed by Ruckle
[34] and Maddox [23], and many others.

An Orlicz function M is said to satisfy the ∆2− condition for all values
of u if there exists a constant K > 0 such that M (2u) ≤ KM (u) (u ≥ 0) .
The ∆2− condition is equivalent to M (ℓu) ≤ KℓM (u) , for all values of u
and for ℓ > 1.

Lindenstrauss and Tzafriri [21] used the idea of Orlicz function to con-
struct Orlicz sequence space

ℓM =
{
x ∈ w :

∑∞
k=1 M

(
|xk|
ρ

)
< ∞, for someρ > 0

}
.

The space ℓM with the norm

∥x∥ = inf
{
ρ > 0 :

∑∞
k=1 M

(
|xk|
ρ

)
≤ 1

}
becomes a Banach space which is called an Orlicz sequence space. ForM (t) =
tp (1 ≤ p < ∞) , the spaces ℓM coincide with the classical sequence space ℓp.

If X is a sequence space, we give the following definitions

(i) X
′
= the continuous dual of X;

(ii) Xα =
{
a = (am,n) :

∑∞
m,n=1 |am,nxm,n| < ∞, for each x ∈ X

}
;

(iii) Xβ =
{
a = (am,n) :

∑∞
m,n=1am,nxm,n is convergent, for each x ∈ X

}
;

(iv) Xγ =

{
a = (am,n) : sup

m,n
≥1

∣∣∣∑M,N
m,n=1 am,nxm,n

∣∣∣<∞, for each x ∈ X

}
;
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(v) let X be an FK-space ⊃ ϕ; then Xf =
{
f(ℑm,n) : f ∈ X

′
}
;

(vi) Xδ =

{
a = (am,n) : sup

m,n
|am,nxm,n|1/(m+n)

< ∞, for each x ∈ X

}
;

Xα, Xβ , Xγ are called α- (or Köthe-Toeplitz) dual of X, β- (or generalized-
Köthe-Toeplitz) dual of X, γ-dual of X, δ - dual of X respectively. Xα is
defined by Gupta and Kamptan [18]. It is clear that xα ⊂ Xβ and Xα ⊂ Xγ ,
but Xα ⊂ Xγ does not hold, since the sequence of partial sums of a double
convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was in-
troduced by Kizmaz [19] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}
for Z = c, co and ℓ∞, where ∆xk = xk − xk+1 for all k ∈ N. Here w, c, co and
ℓ∞ denote the classes of all, convergent,null and bounded scalar valued single
sequences respectively. The above spaces are Banach spaces normed by

∥x∥ = |x1|+ supk≥1 |∆xk| .
The notion was further investigated by many others. We now introduce the
following difference double sequence spaces defined by

Z (∆) =
{
x = (xm,n) ∈ w2 : (∆xm,n) ∈ Z

}
where Z = Λ2,Γ2 and χ2 respectively.

∆xm,n = (xm,n − xm,n+1)− (xm+1,n − xm+1,n+1)

= xm,n − xm,n+1 − xm+1,n + xm+1,n+1

for all m,n ∈ N.
Let r ∈ N be fixed, then

Z (∆r) = {(xm,n) : (∆
rxm,n) ∈ Z} forZ = χ2,Γ2 andΛ2

where ∆rxm,n = ∆r−1xm,n −∆r−1xm,n+1 −∆r−1xm+1,n +∆r−1xm+1,n+1.
Now we introduced a generalized difference double operator as follows.
Let r, γ ∈ N be fixed. Then

Z
(
∆r

γ

)
=

{
(xm,n) :

(
∆r

γxm,n

)
∈ Z

}
forZ = χ2,Γ2 andΛ2,

where ∆r
γxm.n = ∆r−1

γ xm,n − ∆r−1
γ xm,n+1 − ∆r−1

γ xm+1,n + ∆r−1
γ xm+1,n+1

and ∆0
γxm,n = xm,n for all m,n ∈ N.

The notion of a modulus function was introduced by Nakano [31]. We
recall that a modulus f is a function from [0,∞) → [0,∞) , such that

(1) f (x) = 0 if and only if x = 0
(2) f (x+ y) ≤ f (x) + f (y) , for all x ≥ 0, y ≥ 0,
(3) f is increasing,
(4) f is right-continuous at x = 0.
Since |f (x)− f (y)| ≤ f (|x− y|) , it follows from condition (4) that f

is continuous on [0,∞) .
Also from condition (2), we have f (nx) ≤ nf (x) for all n ∈ N and

n−1f (x) ≤ f
(
xn−1

)
, for all n ∈ N.



The generalized semi-normed difference 67

2. Remark

If f is a modulus function, then the composition fs = f · f · · · f (s times) is
also a modulus function, where s is a positive integer.

Let p = (pm,n) be a sequence of positive real numbers. We have the
following well known inequality, which will be used throughout this paper

|am,n + bm,n|pm,n ≤ D (|am,n|pm,n + |bm,n|pm,n) , (2.1)

where am,n and bm,n are complex numbers, D = max
{
1, 2H−1

}
and H =

supm,n pm,n < ∞.

Spaces of strongly summable sequences were studied at the initial stage
by Kuttner [20], Maddox [30] and others. The class of sequences those are
strongly Cesàro summable with respect to a modulus was introduced by
Maddox [23] as an extension of the definition of strongly Cesàro summa-
ble sequences. Cannor [10] further extended this definition to a definition of
strongly A− summability with respect to a modulus when A is non-negative
regular matrix.

Let η = (λi) be a non-decreasing sequence of positive real numbers
tending to infinity and λ1 = 1 and λi+1 ≤ λi+1 + 1, for all i ∈ N.

The generalized de la Vallee-Poussin means is defined by ti (x) =
λ−1
i

∑
k∈Ii

xk, where Ii = [i− λi + 1, i] . A sequence x = (xk) is said to

be (V, λ)− summable to a number L if ti (x) → L, as i → ∞ (see [22]).

3. Definitions and preliminaries

Let w2 denote the set of all complex double sequences. A sequence x = (xm,n)

is said to be double analytic if supm,n |xm,n|1/(m+n)
< ∞. The vector space of

all prime sense double analytic sequences will be denoted by Λ2. A sequence

x = (xm,n) is called prime sense double entire sequence if |xm,n|1/(m+n) → 0
asm,n → ∞. The double entire sequences will be denoted by Γ2. The spaces
Λ2 andΓ2 are metric spaces with the metric

d(x, y) = sup
m,n

{
|xm,n − ym,n|1/(m+n)

: m,n : 1, 2, 3, ...
}
, (3.1)

for allx = (xm,n) andy = (ym,n) inΓ
2.

A sequence x = (xm,n) is called prime sense double gai sequence if

((m+ n)! |xm,n|)1/(m+n) → 0 as m,n → ∞. The double gai sequences will
be denoted by χ2. The space χ2 is a metric space with the metric

d̃(x, y) = sup
m,n

{
((m+ n)! |xm,n − ym,n|)1/(m+n)

: m,n : 1, 2, 3, ...
}
, (3.2)

for allx = (xm,n) andy = (ym,n) inχ
2.

Throughout the article E will represent a semi normed space, semi
normed by q. We define w2 (E) to be the vector space of all E− valued
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sequences. Let f be a modulus function p = (pm,n) be any sequence of posi-
tive real numbers. Let A =

(
aj,km,n

)
be four dimensional infinite regular matrix

of non-negative complex numbers such that supj,k
∑∞

m,n=1 a
j,k
m,n < ∞.

We define the following sets of sequences[
V E
λ , A,∆r

γ , f, p
]
χ2

=
{
x∈ w2(E) : lim

p,q→∞
λ−1
pq

∑
m,n∈Ip,q

aj,km,n[f(q((m+n)!∆r
γxm,n)

1/(m+n))]pm,n =0
}

uniformly in m,n, [
V E
λ , A,∆r

γ , f, p
]
Γ2

=
{
x ∈ w2(E) : lim

p,q→∞
λ−1
pq

∑
m,n∈Ip,q

aj,km,n[f(q(∆
r
γxm,n)

1/(m+n))]pm,n = 0
}

uniformly in m,n, [
V E
λ , A,∆r

γ , f, p
]
Λ2

=
{
x ∈ w2(E) : sup

j,k
sup
p,q

λ−1
pq

∑
m,n∈Ip,q

aj,km,n[f(q(∆
r
γxm,n)

1/(m+n))]pm,n < ∞
}
.

For γ = 1, these spaces are denoted by
[
V E
λ , A,∆r, f, p

]
Z
, for Z =

χ2, Γ2 and Λ2 respectively. We define[
V E
λ , A,∆r

γ , f, p
]
χ2

=
{
x ∈ w2(E) : lim

p,q→∞
λ−1
pq

∑
m,n∈Ip,q

[f(q((m+ n)!∆r
γxmn)

1/(m+n))]pmn = 0
}
.

Similarly
[
V E
λ ,∆r

γ , f, p
]
Γ2 and

[
V E
λ ,∆r

γ , f, p
]
Λ2 can be defined.

For E = C, the set of complex numbers, q (x) = |x| ; f (x) =
x1/(m+n); pm,n = 1, for all m,n ∈ N. For r = 0, γ = 0 the spaces[
V E
λ ,∆r

γ , f, p
]
Z
, represent the spaces [V, λ]Z , for Z = χ2,Γ2 and Λ2. These

spaces are called as λ− strongly gai to zero, λ− strongly entire to zero and
λ− strongly analytic by the de la Vallée-Poussin method. In the special case,
where λpq = pq, for all p, q = 1, 2, 3, · · · the sets [V, λ]χ2 , [V, λ]Γ2 and [V, λ]Λ2

reduce to the sets w2
χ2 , w2

Γ2 and w2
Λ2 .

4. Main results

Theorem 4.1. Let the sequence p = (pm,n) be bounded. Then the set[
V E
λ , A,∆r

γ , f, p
]
Z

is linear space over the complex field C, for Z = χ2 and

Λ2.

The proof is easy, consequently we omit it.

Theorem 4.2. Let f be a modulus function. One has
[
V E
λ , A,∆r

γ , f, p
]
χ2 ⊂[

V E
λ , A,∆r

γ , f, p
]
Λ2 .
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Proof. Let x = (xm,n) ∈
[
V E
λ , A,∆r

γ , f, p
]
χ2 will represent a semi normed

space, semi normed by q. Here there exists a positive integer M1 such that
q ≤ M1. Then we have

λ−1
p,q

∑
m,n∈Ip,q

aj,km,n

[
f
(
q
(
∆r

γxm,n

)1/(m+n)
)]pm,n

≤ Dλ−1
pq

∑
m,n∈Ipq

aj,km,n

[
f
(
q
(
(m+ n)!∆r

γxm,n

)1/(m+n)
)]pm,n

+D (M1, f (1))
H
λ−1
p,q

∑
m,n∈Ipq

aj,km,n.

Thus x ∈
[
V E
λ , A,∆r

γ , f, p
]
Λ2 . This completes the proof. �

Theorem 4.3. Let p = (pm,n) ∈ χ2, then
[
V E
λ , A,∆r

γ , f, p
]
χ2 is a paranormed

space with

g (x) =

supp,q

(
λ−1
p,q

∑
m,n∈Ip,q

aj,km,n

[
f
(
q
(
(m+ n)!∆r

γxm,n

)1/(m+n)
)]pm,n

)1/H

,

where H = max
(
1, supm,n pm,n

)
.

Proof. From Theorem 4.1, for each x ∈
[
V E
λ , A,∆r

γ , f, p
]
χ2 , g (x) exists.

Clearly g (−x) = g (x) . It is trivial that
(
(m+ n)!∆r

γxm,n

)1/(m+n)
= θ

for x = θ. Hence, we get g
(
θ
)

= 0. By Minkowski inequality, we have
g (x+ y) ≤ g (x) + g (y) . Now we show that the scalar multiplication is con-
tinuous. Let α be any fixed complex number. By definition of f, we deduce
that x → θ implies g (αx) → 0. Similarly, we have x fixed and α → 0 implies
g (αx) → 0. Finally x → θ and α → 0 implies g (αx) → 0. This completes
the proof. �

Theorem 4.4. If r ≥ 1, then the inclusion[
V E
λ , A,∆r−1

γ , f, p
]
χ2 ⊂

[
V E
λ , A,∆r

γ , f, p
]
χ2

is strict. In general[
V E
λ , A,∆j

γ , f, p
]
χ2 ⊂

[
V E
λ , A,∆r

γ , f, p
]
χ2

for j = 0, 1, 2, · · · r − 1 and the inclusions are strict.

Proof. The result follows from the following inequality

λ−1
pq

∑
m,n∈Ipq

aj,km,n

[
f
(
q
(
(m+ n)!∆r

γxm,n

)1/(m+n)
)]pm,n

≤ Dλ−1
pq

∑
m,n∈Ipq

aj,km,n

[
f
(
q ((m+ n)!xm,n)

1/(m+n)
)]pm,n

+Dλ−1
pq

∑
m,n∈Ip,q

aj,km,n

[
f
(
q ((m+ n+ 1)!xm,n+1)

1/(m+n+1)
)]pm,n
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+Dλ−1
pq

∑
m,n∈Ip,q

aj,km,n

[
f
(
q ((m+ 1 + n)!xm+1,n)

1/(m+1+n)
)]pm,n

+Dλ−1
p,q

∑
m,n∈Ip,q

aj,km,n

[
f
(
q ((m+ n+ 2)!xm+1,n+1)

1/(m+n+2)
)]pm,n

.

Proceeding inductively, we have[
V E
λ , A,∆j

γ , f, p
]
χ2 ⊂

[
V E
λ , A,∆r

γ , f, p
]
χ2 for j = 0, 1, 2, · · · r − 1.

The inclusion is strict follows from the following example.
Let E = C, q (x) = |x| ; λpq = 1 for all p, q ∈ N, pm,n = 2 for all

m,n ∈ N. Let f (x) = x, for all x ∈ [0,∞) ; aj,km,n = m−2n−2 for all m,n, j, k ∈
N; γ = 1, r ≥ 1. Consider the sequence x = (xm,n) defined by xm,n =

1
(m+n)! (mn)

r(m+n)
for all m,n ∈ N. Hence (xm,n) ∈

[
V C
λ , A,∆r, f, p

]
χ2 but

(xm,n) /∈
[
V C
λ , A,∆r−1, f, p

]
χ2 . �

Theorem 4.5. Let f be a modulus function and s be a positive integer. Then,[
V E
λ , A,∆r

γ , f, q
]
Λ2 ⊂

[
V E
λ , A,∆r

γ , f, p
]
Λ2 .

Proof. Let ϵ > 0 be given and choose δ with 0 < δ < 1 such that f (t) < ϵ for

0 ≤ t ≤ δ. Write ym,n = fs−1
(
q
(
∆r

γxm,n

)1/(m+n) −M
)
and consider∑

m,n∈Ir

aj,km,n [f (ym,n)]
pm,n =

∑
m,n∈Ir, ym,n≤δ

aj,km,n [f (ym,n)]
pm,n

+
∑

m,n∈Ir

aj,km,n [f (ym,n)]
pm,n .

Since f is continuous, we have∑
m,n∈Ir, ym,n≤δ

aj,km,n [f (ym,n)]
pm,n ≤ ϵH

∑
m,n∈Ir, ym,n≤δ

aj,km,n (4.1)

and for ym,n > δ, we use the fact that, ym,n <
ym,n

δ ≤ 1 +
ym,n

δ and so, by
the definition of f , we have for ym,n > δ,

f (ym,n) < 2f (1)
ym,n

δ .

Hence
1

λpq

∑
m,n∈Ir, ym,n≤δ

aj,km,n [f (ym,n)]
pm,n

≤ max
(
1,
(
2f (1) δ−1

)H) 1

λpq

∑
m,n∈Ir, ym,n≤δ

aj,km,ny
pm,n
m,n . (4.2)

From (4.1) and (4.2) we obtain
[
V E
λ , A,∆r

γ , f, q
]
Λ2 ⊂

[
V E
λ , A,∆r

γ , f, p
]
Λ2 .

This completes the proof. �
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