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Asymptotic behavior of the solution of
nonlinear parametric variational inequalities
in notched beams

Iuliana Marchiş

Abstract. In this article we study the asymptotic behavior of the solu-
tion Uε of a parametric variational inequality governed by a nonlinear
differential operator posed in a notched beam (i.e. a thin cylinder with
small part of it having a diameter much smaller than the rest) which
depends on three positive parameters: ε, rε, and tε.
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1. Introduction

The aim of the paper is to study the asymptotic behavior of the solution of
nonlinear variational inequalities in a notched beam (i.e. a thin cylinder with
small part of it having a diameter much smaller than the rest). Mathemati-
cally, this notched beam is given by

Ωε ={(x1, x
′) ∈ R3 : −1 < x1 < 1, |x′| < ε if |x1| > tε, |x′| < εrε if |x1|≤ tε},

(1.1)
where ε, rε, and tε are positive parameters.

Previous work on domains of this type was done by Hale & Vegas [6],
Jimbo [7, 8], Cabib, Freddi, Morassi, & Percivale [2], Rubinstein, Schatzman
& Sternberg [12], and Casado-Dı́az, Luna-Laynez & Murat [3, 4], Kohn &
Slastikov [9].

The most recent results are of Casado-Dı́az, Luna-Laynez & Murat [4].
They studied the asymptotic behavior of the solution of a diffusion equation
in the notched beam Ωε and obtained at the limit a one-dimensional model.

This research was partially supported by the research grant CNCSIS, PN II, ID 523/2007.
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In the present article the geometrical setting is the same as in [4], but
we consider nonlinear variational inequalities instead of linear variational
equalities.

The paper is organized as follows. In Section 2 the geometrical setting
is described, the studied problem is given, and the assumptions for our re-
sults are formulated. In Section 3 the asymptotic behavior of the solution is
studied. The main results are Theorem 3.6 and Theorem 3.7.

2. Setting the problem

Let ε > 0 be a parameter, rε (rε > 0) and tε (tε > 0) be two sequences of real
numbers, with

rε → 0, tε → 0, when ε → 0.

We assume that
tε
r2
ε

→ µ,
ε

rε
→ ν, with 0 ≤ µ ≤ +∞, 0 ≤ ν ≤ +∞, when ε → 0.

Let S ⊂ R2 be a bounded domain such that 0 ∈ S, which is sufficiently
smooth to apply the Poincaré-Wirtinger inequality.

Define the following subsets of R3:

Ω−ε = (−1,−tε)× (εS), Ω0
ε = [−tε, tε]× (εrεS), Ω+

ε = (tε, 1)× (εS),

Ωε = Ω−ε ∪ Ω0
ε ∪ Ω+

ε , and Ωε = Ω−ε ∪ Ω+
ε .

Ωε is a notched beam, the main part of the beam is Ω1
ε and the notched part

Ω0
ε . The plane section of this domain is presented in Figure 1. A point of Ωε

is denoted by x = (x1, x
′) = (x1, x2, x3).

Figure 1. The plane section of the notched beam Ωε

Denote by

Γ−ε = {−1} × (εS) and Γ+
ε = {1} × (εS)

the two bases of the beam, and let

Γε = Γ−ε ∪ Γ+
ε

be the union of the two bases.
Denote

Vε = {V ∈ H1(Ωε), V = 0 on Γε}.
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We consider the following problem:
find Uε ∈ Mε such that, for all Vε ∈ Mε,∫

Ωε

[AεΦε(x,Uε, Bε∇Uε),∇(Vε − Uε)] dx +
∫

Ωε

Ψε(x, Uε,∇Uε)(Vε − Uε)dx

(2.1)

+
∫

Ωε

[Gε,∇(Vε − Uε)] dx +
∫

Ωε

Θε(x, Uε, Vε − Uε) ≥ 0,

with Aε, Bε, Φε, Ψε, Gε, and Θε given functions, Mε a closed, convex,
nonempty subset of Vε.

This problem has applications in Physics. Bruno [1] observed that when
a ferromagnet has a thin neck, this will be preferred location for the domain
wall. He also notice that if the geometry of the neck varies rapidly enough,
it can influence and even dominate the structure of the wall.

We impose the following assumptions:

(B1) The matrix Aε has the following form

Aε(x) = χΩ1
ε
(x)A1

(
x1,

x′

ε

)
+ χΩ0

ε
(x)A0

(
x1

tε
,

x′

εrε

)
,

where A1, A0 ∈ L∞((−1, 1)× S)3×3.

(B2) The matrix Bε has the following form

Bε(x) = χΩ1
ε
(x)B1

(
x1,

x′

ε

)
+ χΩ0

ε
(x)B0

(
x1

tε
,

x′

εrε

)
,

where B1, B0 ∈ L∞((−1, 1)× S)3×3.

(B3) The functions Φε : Ωε × R× R3 → R3 and Ψε : Ωε × R× R3 → R
are Carathédory mappings having the following form

Φε(x, η, ξ) = χΩ1
ε
(x)Φ1

ε

(
x1,

x′

ε
, η,B1

(
x1,

x′

ε

)
ξ

)
+ χΩ0

ε
(x)Φ0

ε

(
x1

tε
,

x′

εrε
, η, B0

(
x1

tε
,

x′

εrε
ξ

)
ξ

)
;

Ψε(x, η, ξ) = χΩ1
ε
(x)Ψ1

ε

(
x1,

x′

ε
, η, ξ

)
+ χΩ0

ε
(x)Ψ0

ε

(
x1

tε
,

x′

εrε
, η, ξ

)
;

for a.e. x ∈ Ωε, for all η ∈ R, and ξ ∈ R3;
for all Uε ∈ H1(Ωε), Φ1

ε(·, Uε(·), B1
ε (·)∇Uε(·)),Φ0

ε(·, Uε(·), B0
ε (·)∇Uε(·)) ∈

L2((−1, 1)× S)3; Ψ1
ε(·, Uε(·),∇Uε(·)),Ψ0

ε(·, Uε(·),∇Uε(·)) ∈ L2((−1, 1)× S).

(B4) Coercivity conditions
There exist C1, C2 > 0 and k1 ∈ L∞(Ωε) such that for all ξ ∈ R3, η ∈ R
[Aε(x)Φε(x, η, Bε(x)ξ), ξ]+Ψε(x, η, ξ)η ≥ C1‖ξ‖2+C2|η|q1−k1(x) a.e. x ∈ Ωε,

(2.2)
for some 1 < q1 < 2, for each ε > 0.
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(B5) Growth conditions
There exist C > 0 and α ∈ L∞(Ωε) such that for all ξ ∈ R3, η ∈ R

‖Aε(x)Φε(x, η, ξ)‖ ≤ C‖ξ‖+ C|η|+ α(x) a.e. x ∈ Ωε, (2.3)

for each ε > 0.
There exist C > 0 and β ∈ L∞(Ωε) such that for all ξ ∈ R3, η ∈ R

|Ψε(x, η, ξ)| ≤ C‖ξ‖+ C|η|+ β(x) a.e. x ∈ Ωε, (2.4)

for each ε > 0.

(B6) Monotonicity condition For all ξ, τ ∈ Rn, η ∈ R,

[Aε(x)φε(x, η, Bε(x)ξ)−Aε(x)φε(x, η, Bε(x)τ), ξ − τ ] ≥ 0, a. e. x ∈ Ωε,

for each ε > 0.

(B7) The function Gε ∈ L2((−1, 1)× S)3 has the following form

Gε(x) = χΩ1
ε
(x)G1

ε

(
x1,

x′

ε

)
+ χΩ0

ε
(x)G0

ε

(
x1

tε
,

x′

εrε

)
a.e. x ∈ Ωε,

where G1
ε , G

0
ε ∈ L2((−1, 1)× S)3.

(B8) There exists C > 0 such that

1
ε2

∫
Ωε

‖Gε(x)‖2 dx < C, (2.5)

for each ε > 0.

(B9) Θε : Ωε × R × R → R, Θε(x, ·, ·) is upper semi-continuous for
almost all x ∈ Ωε; Θε(·, y, z) is measurable for all y, z ∈ R; Θε is sublinear in
its second variable, for each ε.

(B10) There exists g1, g2 ∈ L∞(Ωε) nonnegative functions such that

|Θε(x, y, z)| ≤ g1(x) + g2(x)|z| (2.6)

for almost all x ∈ Ωε, for all z ∈ R, for each ε > 0.

Remark 2.1. From Theorem 3.4 in [10] it follows that, for all ε > 0, the
variational inequality (2.1) has at least one solution.

3. Asymptotic behavior of the solution

To study the asymptotic behavior we use the change of variables y = yε(x)
given by

y1 = x1 y′ =
x′

ε
(3.1)

which transforms the beam (except the notch) in a cylinder of fixed diameter.
This change of variable is classical in the study of asymptotic behavior of
variational equalities in thin cylinders or beams (see [5], [11], [13]). We denote
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by Y −ε , Y 0
ε , Y +

ε , Yε, and Y 1
ε the images of Ω−ε , Ω0

ε , Ω+
ε , Ωε, and Ω1

ε by the
change of variables y = yε(x), i.e.

Y −ε = (−1,−tε)× S, Y 0
ε = [−tε, tε]× (rεS), Y +

ε = (tε, 1)× S,

Yε = Y −ε ∪ Y 0
ε ∪ Y +

ε , Y 1
ε = Y −ε ∪ Y +

ε .

Denote by Y −, Y +, and Y 1 the ”limits”of Y −ε , Y +
ε , and Y 1

ε , i.e.

Y − = (−1, 0)× S, Y + = (0, 1)× S, Y 1 = Y − ∪ Y +.

Note that Y 1
ε is contained in its limit Y 1.

The two bases of the beam Γ−ε and Γ+
ε are transformed to Λ− and Λ+,

respectively, where

Λ− = {−1} × S and Λ+ = {1} × S.

Γε transforms to Λ = Λ− ∪ Λ+, which doesn’t depend on ε.
Let Uε ∈ Mε be the solution of the variational inequality (2.1). Define

uε ∈ Kε by
uε(y) = Uε(y−1

ε (y)) a.e. y ∈ Yε, (3.2)
Kε being the image of Mε. Kε is a closed, convex, nonempty cone in Dε, with
Dε = {v ∈ H1(Yε) | v = 0 on Λ}. We need the following two assumptions

(B11) There exists a nonempty, convex cone K in H1(Y 1) such that
(i) K ∩H1((−1, 0) ∪ (0, 1)) 6= ∅;
(ii) εi → 0, uεi

∈ Kεi
, u ∈ H1((−1, 0)∪(0, 1)), uεi

⇀ u (weakly)
in H1(Y 1)

imply u ∈ K.

(B12) There exists a nonempty, convex cone L in L2((−1, 1);H1(S))
such that εi → 0, wεi

∈ Kεi
, w ∈ L2((−1, 1);H1(S)), wεi

⇀ w (weakly) in
L2((−1, 1);H1(S)) imply w ∈ L.

By change of variables y = yε(x) the operator ∇ transforms to

∇ε· =
(

∂·
∂y1

,
1
ε

∂·
∂y2

,
1
ε

∂·
∂y3

)
. (3.3)

Using the change of variables y = yε(x), given by (3.1), the inequality
(2.1) transforms to∫

Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇ε(vε(y)− uε(y))
]

dy

+
∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))(vε(y)− uε(y)) dy (3.4)

+
∫

Yε

[
Gε(y−1

ε (y)),∇ε(vε(y)− uε(y))
]

dy

+
∫

Yε

Θε(y−1
ε (y), uε(y), vε(y)− uε(y)) dy ≥ 0,

for all vε ∈ Kε, where vε(y) = Vε(y−1
ε (y)) a. e. y ∈ Yε.
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Lemma 3.1. Assume that (B4) holds, Uε ∈ Mε, and uε ∈ Kε is given by (3.2).
Then there exist C1, C2 > 0 and C3 ∈ R such that∫

Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇εuε(y)
]

dy

+
∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))uε(y) dy (3.5)

≥ C1‖∇εuε‖2L2(Yε)
− C2‖uε‖q1

L2(Yε)
− C3

Proof. Putting η = Uε(x) and ξ = ∇Uε(x) in coercivity condition (2.2),
integrating on Ωε we get∫

Ωε

[Aε(x)Φε(x,Uε(x), Bε(x)∇Uε(x)),∇Uε(x)] dx

+
∫

Ωε

Ψε(x, Uε(x),∇Uε(x))Uε(x) dx

≥ C1

∫
Ωε

‖∇Uε(x)‖2 dx− C2

∫
Ωε

|Uε(x)|q1 dx− |Ωε|‖k1‖∞.

Multiplying by 1
ε2 and using the change of variables y = yε(x), given by (3.1),

we obtain∫
Yε

[Aε(y−1
ε (y))Φε(y−1

ε (y), uε(y), Bε(y−1
ε (y))∇εuε(y)),∇εuε(y)] dy

+
∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))uε(y) dy

≥ C1

∫
Yε

‖∇εuε(y)‖2 dy − C2

∫
Yε

|uε(y)|q1 dy − k1

≥ C1‖∇εuε‖2L2(Yε)
− C2‖uε‖q1

Lq1 (Yε)
− k1,

as q1 < 2. �

Lemma 3.2. Assume that (B5) holds and let vε ∈ Kε, (vε)ε bounded in H1(Yε).
Then the following properties hold

a) There exist k1, k2, and k3 constants such that∫
Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇εvε(y)
]

dy (3.6)

≤ k1‖∇εuε‖L2(Yε) + k2‖uε‖L2(Yε) + k3.

b) There exists k4, k5, and k6 such that∫
Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))vε(y) dy ≤ k4‖∇εuε‖L2(Yε) +k5‖uε‖L2(Yε) +k6.

(3.7)
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Proof. a) Applying the Cauchy-Schwarz inequality and then the growth con-
dition (2.3) for x = y−1

ε (y) we get∫
Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇εvε(y)
]

dy

≤
∫

Yε

‖Aε(y−1
ε (y))Φε(y−1

ε (y), uε(y), Bε(y−1
ε (y))∇εuε(y))‖‖∇εvε(y)‖ dy

≤
∫

Yε

(
C‖∇εuε(y)‖+ C|uε(y)|+ α(y−1

ε (y))
)
‖∇εvε(y)‖ dy

(by Cauchy-Schwarz inequality)

≤
(
C‖∇εuε‖L2(Yε) + C‖uε‖L2(Yε) + α

)
‖∇εvε‖L2(Yε),

as (vε)ε is bounded.
b) Using the growth condition (2.4) for x = y−1

ε (y) and the Cauchy-
Schwarz inequality, we get∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))vε(y) dy

≤
∫

Yε

(
C‖∇εuε(y)‖+ C|uε(y)|+ β(y−1

ε (y))
)
|vε(y)| dy

≤
(
C‖∇εuε‖L2(Yε) + C‖uε‖L2(Yε) + β

)
‖vε‖L2(Yε),

as (vε)ε is bounded. �

Lemma 3.3. If assumption (B10) is satisfied, Uε, Vε ∈ Mε, uε and vε are given
by (3.2), then there exist ḡ1, ḡ2 ∈ R such that∫

Yε

Θε(uε(y), vε(y)− uε(y)) dy ≤ ḡ1 + ḡ2‖vε − uε‖L2(Yε).

Proof. Putting y = Uε(x) and z = Vε(x)− Uε(x) in (2.6), multiplying by 1
ε2 ,

then integrating over Ωε, we obtain
1
ε2

∫
Ωε

Θε(Uε(x), Vε(x)− Uε(x)) dx ≤ 1
ε2

∫
Ωε

|Θε(Uε(x), Vε(x)− Uε(x))| dx

≤ 1
ε2

∫
Ωε

(g1(x) + g2(x)|Vε(x)− Uε(x)|) dx

≤ ḡ1
|Ωε|
ε2

+
1
ε2

ḡ2

∫
Ωε

|Vε(x)− Uε(x)| dx,

where ḡ1 = ‖g1‖∞ and ḡ2 = ‖g2‖∞. Using the change of variable yε, the
result follows. �

Lemma 3.4. Let Uε ∈ Mε be the solution of the variational inequality (2.1)
and uε ∈ Kε defined by

uε(y) = Uε(y−1
ε (y)) a.e. y ∈ Yε.

If assumptions (B1)-(B10) are verified then the following statements hold
2) (uε)ε is bounded in H1(Yε);
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1)
(

1
ε

∂uε

∂y2

)
ε

and
(

1
ε

∂uε

∂y3

)
ε

are bounded in L2(Yε);

3) (σε)ε is bounded in L2(Yε)3, where

σε(y) = Aε(y−1
ε (y))Φε(y−1

ε (y), uε(y), Bε(y−1
ε (y))∇εuε(y)) a.e. y ∈ Yε.

Proof. Suppose that (vε)ε is bounded in H1(Yε). From coercivity condition
(B4) by Lemma 3.1, then inequality (3.4), we obtain

C1‖∇εuε‖2L2(Yε)
− C2‖uε‖q1

L2(Yε)
− C3

≤
∫

Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇εuε(y)
]

dy

+
∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))uε(y) dy

≤
∫

Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇εvε(y)
]

dy

+
∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))vε(y) dy

+
∫

Yε

[
Gε(y−1

ε (y)),∇εvε(y)−∇εuε(y)
]

dy

+
∫

Yε

Θε(y−1
ε (y), uε(y), vε(y)− uε(y)) dy ≤

(using Lemma 3.2 for the first two terms, the Cauchy-Schwarz inequality and
then assumption (2.5) for the third term, assumption (2.6) for the fourth
term)

≤ k1‖∇εuε‖L2(Yε) + k2‖uε‖L2(Yε)

+ C‖∇εvε −∇εuε‖L2(Yε) + c′1‖vε − uε‖L2(Yε) + k

≤ c1‖∇εuε‖L2(Yε) + c2,

using the Poincaré inequality , where c1 and c2 are constants. On the other
hand

C1‖∇εuε‖2L2(Yε)
− C2‖uε‖q1

L2(Yε)
− C3

≥ c3‖∇εuε‖2L2(Yε)
− c4‖∇εuε‖q1

L2(Yε)
− c5,

by the Poincaré inequality , where c3, c4, and c5 are constants. Thus

c3‖∇εuε‖2L2(Yε)
≤ c1‖∇εuε‖L2(Yε) + c4‖∇εuε‖q1

L2(Yε)
+ c6,

where c6 is a constant, q1 < 2, and c3 > 0.
It follows that, for ε ≤ 1, ‖∇εuε‖L2(Yε) is bounded.

Then
(

1
ε

∂uε

∂y2

)
ε

and
(

1
ε

∂uε

∂y3

)
ε

are bounded in L2(Yε). Using

‖∇uε‖L2(Yε) ≤ ‖∇εuε‖L2(Yε),

we get that (uε)ε is bounded in H1(Yε), so 2) is true.
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To prove 3), we take the square of the first inequality of (B5) and we
obtain

‖Aε(x)Φε(x, Uε(x), Bε(x)∇Uε(x))‖2 ≤ C‖∇Uε(x)‖2 + C|Uε(x)|2 + |α(x)|2

for a.e. x ∈ Ωε.
Multiplying by 1

ε2 and integrating on Ωε we get

1
ε2

∫
Ωε

‖Aε(x)Φε(x, Uε(x), Bε(x)∇Uε(x))‖2 dx

≤ C

ε2

∫
Ωε

‖∇Uε(x)‖2 dx +
C

ε2

∫
Ωε

|Uε(x)|2 dx +
1
ε2

∫
Ωε

|α|2 dx

≤ C

ε2

∫
Ωε

‖∇Uε(x)‖2 dx +
C

ε2

∫
Ωε

|Uε(x)|2 dx +
|Ωε|
ε2

ᾱ,

where ᾱ is a constant. Using the change of variables y = yε(x), we get∫
Yε

‖Aε(y−1
ε (y))Φε(y−1

ε (y), uε(y), Bε(y−1
ε (y))∇εuε(y))‖2 dy

≤ C

∫
Yε

‖∇εuε(y)‖2 dy + C

∫
Yε

|uε(y)|2 dy + ᾱ,

which can be written as

‖Aε(y−1
ε (·))Φε(y−1

ε (·), uε, Bε(y−1
ε (·))∇εuε)‖2L2(Yε)

≤ C‖∇εuε‖2L2(Yε)
+ C‖uε(y)‖2L2(Yε)

+ ᾱ ≤ C̄,

as ‖∇εuε‖L2(Yε) and ‖uε‖L2(Yε) are bounded. It follows that (σε)ε is bounded
in L2(Yε). �

Corollary 3.5. Let Uε ∈ Mε be the solution of the inequality (2.1) and uε ∈ Kε

given by (3.2). If assumptions (B1) - (B10) are verified then the sequence Uε

satisfies

Uε ∈ Mε,
1
|Ωε|

∫
Ωε

|∇Uε|2dx ≤ C. (3.8)

Proof. By Lemma 3.4 we get that (∇εuε)ε is bounded in L2(Yε), i.e. there
exists C > 0 such that ∫

Yε

‖∇εuε(y)‖2 dy ≤ C.

Using the change of variables x = y−1
ε (y), we get

1
ε2

∫
Ωε

‖∇εUε(x)‖2 dx < C,

from where the statement of the corollary follows, as

|Ωε| = 2π|S|2ε2(1− tε + tεr
2
ε ).

�
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Theorem 3.6. Let Uε be the solution of the variational inequality (2.1) and
uε ∈ Kε defined by

uε(y) = Uε(y−1
ε (y)) a.e. y ∈ Yε.

If assumptions (B1)-(B12) are verified, then there exist three functions u, w,
and σ1 with

u ∈ H1((−1, 0) ∪ (0, 1)) ∩K, u(−1) = u(1) = 0,

w ∈ L, σ1 ∈ L2(Y 1)3,

such that up to extraction of a subsequence

χY 1
ε
uε → u in L2(Y 1); (3.9)

χY −
ε

∂uε

∂y1
⇀

∂u

∂y1
in L2(Y −);

χY +
ε

∂uε

∂y1
⇀

∂u

∂y1
in L2(Y +);

χY 1
ε

1
ε
∇y′uε ⇀ ∇y′w in L2(Y 1)2;

and
χY 1

ε
σε ⇀ σ1 in L2(Y 1)3.

Proof. From Lemma 3.4 it follows that there exist three functions u ∈
H1((−1, 0) ∪ (0, 1)), w ∈ L2((−1, 1);H1(S)), and σ1 ∈ L2(Y 1)3, which
satisfy the statement of the lemma. From assumption (B11) we get that
u ∈ H1((−1, 0) ∪ (0, 1)) ∩K, and from (B12) we obtain that w ∈ L. �

Theorem 3.7. Let Uε be the solution of the variational inequality (2.1) and
u ∈ H1((−1, 0)∪(0, 1))∩K given in Theorem 3.6. If assumptions (B1)-(B11)
are verified, then there exists a subsequence of solutions Uε, also denoted by
Uε, such that

lim
ε→0

1
|Ωε|

∫
Ωε

|Uε(x)− u(x1)|2 dx = 0. (3.10)

Proof. Let uε ∈ Kε given by (3.2). From Theorem 3.6 follows that there exists
u with

u ∈ H1((−1, 0) ∪ (0, 1)) ∩K, u(−1) = u(1) = 0,

such that up to extraction of a subsequence

χY 1
ε
uε → u in L2(Y 1),

which is equivalent with∫
Yε

|uε(y)− u(y1)|2 dy = 0.

Using the change of variables x = y−1
ε (y), we get (3.10). �
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Psychology and Educational Sciences Faculty
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