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APPROXIMATION AND SHAPE PRESERVING PROPERTIES
OF THE NONLINEAR BASKAKOV OPERATOR OF

MAX-PRODUCT KIND

BARNABÁS BEDE, LUCIAN COROIANU, AND SORIN G. GAL

Abstract. Starting from the study of the Shepard nonlinear operator of

max-prod type in [2], [3], in the recent monograph [5], Open Problem 5.5.4,

pp. 324-326, the Baskakov max-prod type operator is introduced and the

question of the approximation order by this operator is raised. The aim

of this note is to obtain for the discussed operator an upper pointwise

estimate of the approximation error of the form Cω1(f ;
√

x(1+x)
n

) ( with

the explicit constant C = 12 ) and to prove by a counterexample that in

some sense, for arbitrary f this type of order of approximation with respect

to ω1(f ; ) cannot be improved. However, for some subclasses of functions

including for example the nondecreasing concave functions, the essentially

better order of approximation ω1(f ; x+1
n

) is obtained. Finally, some shape

preserving properties are proved.

1. Introduction

Starting from the study of the Shepard nonlinear operator of max-prod type
in [2], [3], by the Open Problem 5.5.4, pp. 324-326 in the recent monograph [5], the
following nonlinear Baskakov operator of max-prod type is introduced (here

∨
means

maximum)

V (M)
n (f)(x) =

∞∨
k=0

bn,k(x)f
(

k
n

)
∞∨

k=0

bn,k(x)
,

where bn,k(x) =
(
n+k−1

k

)
xk/(1 + x)n+k.

The aim of this note is to obtain for the discussed operator an upper pointwise

estimate of the approximation error of the form Cω1(f ;
√

x(1+x)
n ) ( with the explicit
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constant C = 12 ) Also, one proves by a counterexample that in some sense, in gen-
eral this type of order of approximation with respect to ω1(f ; ·) cannot be improved.
However, for some subclasses of functions, including for example the bounded, non-
decreasing concave functions, the essentially better order ω1(f ; (x+1)/n) is obtained.
This allows us to put in evidence large classes of functions (e.g. bounded, nondecreas-
ing concave polygonal lines on [0,∞)) for which the order of approximation given by
the max-product Baskakov operator, is essentially better than the order given by the
linear Baskakov operator. Finally, some shape preserving properties are presented.

Section 2 presents some general results on nonlinear operators, in Section
3 we prove several auxiliary lemmas, Section 4 contains the approximation results,
while in Section 5 we present some shape preserving properties.

2. Preliminaries

For the proof of the main result we need some general considerations on the
so-called nonlinear operators of max-prod kind. Over the set of positive reals, R+, we
consider the operations ∨ (maximum) and ·, product. Then (R+,∨, ·) has a semiring
structure and we call it as Max-Product algebra.

Let I ⊂ R be a bounded or unbounded interval, and

CB+(I) = {f : I → R+; f continuous and bounded on I}.

The general form of Ln : CB+(I) → CB+(I), (called here a discrete max-product
type approximation operator) studied in the paper will be

Ln(f)(x) =
n∨

i=0

Kn,i(x) · f(xn,i),

or

Ln(f)(x) =
∞∨

i=0

Kn,i(x) · f(xn,i),

where n ∈ N, f ∈ CB+(I), Kn,i ∈ CB+(I) and xi ∈ I, for all i. These operators are
nonlinear, positive operators and moreover they satisfy a pseudo-linearity condition
of the form

Ln(α · f ∨ β · g)(x) = α · Ln(f)(x) ∨ β · Ln(g)(x),∀α, β ∈ R+, f, g ∈ CB+(I).

In this section we present some general results on these kinds of operators
which will be useful later in the study of the Baskakov max-product kind operator
considered in Introduction.
Lemma 2.1. ([1]) Let I ⊂ R be a bounded or unbounded interval,

CB+(I) = {f : I → R+; f continuous and bounded on I},
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and Ln : CB+(I) → CB+(I), n ∈ N be a sequence of operators satisfying the following
properties :

(i) If f, g ∈ CB+(I) satisfy f ≤ g then Ln(f) ≤ Ln(g) for all n ∈ N ;
(ii) Ln(f + g) ≤ Ln(f) + Ln(g) for all f, g ∈ CB+(I).
Then for all f, g ∈ CB+(I), n ∈ N and x ∈ I we have

|Ln(f)(x)− Ln(g)(x)| ≤ Ln(|f − g|)(x).

Proof. Since is very simple, we reproduce here the proof in [1]. Let f, g ∈ CB+(I). We
have f = f −g+g ≤ |f −g|+g, which by the conditions (i)− (ii) successively implies
Ln(f)(x) ≤ Ln(|f − g|)(x) + Ln(g)(x), that is Ln(f)(x)−Ln(g)(x) ≤ Ln(|f − g|)(x).

Writing now g = g − f + f ≤ |f − g|+ f and applying the above reasonings,
it follows Ln(g)(x) − Ln(f)(x) ≤ Ln(|f − g|)(x), which combined with the above
inequality gives |Ln(f)(x)− Ln(g)(x)| ≤ Ln(|f − g|)(x). �

Remarks. 1) It is easy to see that the Baskakov max-product operator satisfy the
conditions (i) and (ii) in Lemma 2.1. In fact, instead of (i) it satisfies the stronger
condition

Ln(f ∨ g)(x) = Ln(f)(x) ∨ Ln(g)(x), f, g ∈ CB+(I).

Indeed, taking in the above equality f ≤ g, f, g ∈ CB+(I), it easily follows Ln(f)(x) ≤
Ln(g)(x).

2) In addition, it is immediate that the Baskakov max-product operator is
positive homogeneous, that is Ln(λf) = λLn(f) for all λ ≥ 0.
Corollary 2.2. ([1]) Let Ln : CB+(I) → CB+(I), n ∈ N be a sequence of oper-
ators satisfying the conditions (i)-(ii) in Lemma 2.1 and in addition being positive
homogenous. Then for all f ∈ CB+(I), n ∈ N and x ∈ I we have

|f(x)− Ln(f)(x)| ≤
[
1
δ
Ln(ϕx)(x) + Ln(e0)(x)

]
ω1(f ; δ)I + f(x) · |Ln(e0)(x)− 1|,

where δ > 0, e0(t) = 1 for all t ∈ I, ϕx(t) = |t − x| for all t ∈ I, x ∈ I, ω1(f ; δ)I =
max{|f(x) − f(y)|;x, y ∈ I, |x − y| ≤ δ} and if I is unbounded then we suppose that
there exists Ln(ϕx)(x) ∈ R+

⋃
{+∞}, for any x ∈ I, n ∈ N.

Proof. The proof is identical with that for positive linear operators and because of its
simplicity we reproduce it below. Indeed, from the identity

Ln(f)(x)− f(x) = [Ln(f)(x)− f(x) · Ln(e0)(x)] + f(x)[Ln(e0)(x)− 1],

it follows (by the positive homogeneity and by Lemma 2.1)

|f(x)− Ln(f)(x)| ≤ |Ln(f(x))(x)− Ln(f(t))(x)|+ |f(x)| · |Ln(e0)(x)− 1| ≤

Ln(|f(t)− f(x)|)(x) + |f(x)| · |Ln(e0)(x)− 1|.
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Now, since for all t, x ∈ I we have

|f(t)− f(x)| ≤ ω1(f ; |t− x|)I ≤
[
1
δ
|t− x|+ 1

]
ω1(f ; δ)I ,

replacing above we immediately obtain the estimate in the statement. �

An immediate consequence of Corollary 2.2 is the following.
Corollary 2.3. ([1]) Suppose that in addition to the conditions in Corollary 2.2, the
sequence (Ln)n satisfies Ln(e0) = e0, for all n ∈ N . Then for all f ∈ CB+(I), n ∈ N

and x ∈ I we have

|f(x)− Ln(f)(x)| ≤
[
1 +

1
δ
Ln(ϕx)(x)

]
ω1(f ; δ)I .

The nonlinear max-product Baskakov operator satisfies for all n ∈ N, n ≥ 2
all the hypothesis in the Lemma 2.1, Corollaries 2.2 and 2.3 as can be seen from the
following considerations.
Lemma 2.4. Let n ∈ N, n ≥ 2. We have

∞∨
k=0

bn,k(x) = bn,j(x), for all x ∈
[

j

n− 1
,
j + 1
n− 1

]
, j = 0, 1, 2, ....

Proof. First we show that for fixed n ∈ N, n ≥ 2 and 0 ≤ k < k + 1 we have

0 ≤ bn,k+1(x) ≤ bn,k(x), if and only if x ∈ [0, (k + 1)/(n− 1)].

Indeed, the inequality one reduces to

0 ≤
(

n + k

k + 1

)
xk+1

(1 + x)n+k+1
≤
(

n + k − 1
k

)
xk

(1 + x)n+k
,

which after simple calculus is obviously equivalent to

0 ≤ x ≤ k + 1
n− 1

.

By taking k = 0, 1, 2, .. in the inequality just proved above, we get

bn,1(x) ≤ bn,0(x), if and only if x ∈ [0, 1/(n− 1)],

bn,2(x) ≤ bn,1(x), if and only if x ∈ [0, 2/(n− 1)],

bn,3(x) ≤ bn,2(x), if and only if x ∈ [0, 3/(n− 1)],

so on,
bn,k+1(x) ≤ bn,k(x), if and only if x ∈ [0, (k + 1)/(n− 1)],

and so on.
From all these inequalities, reasoning by recurrence we easily obtain :

if x ∈ [0, 1/(n− 1)] then bn,k(x) ≤ bn,0(x), for all k = 0, 1, 2, ...
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if x ∈ [1/(n− 1), 2/(n− 1)] then bn,k(x) ≤ bn,1(x), for all k = 0, 1, 2, ...

if x ∈ [2/(n− 1), 3/(n− 1)] then bn,k(x) ≤ bn,2(x), for all k = 0, 1, 2, ...

and so on, in general

if x ∈ [j/(n− 1), (j + 1)/(n− 1)] then bn,k(x) ≤ bn,j(x), for all k = 0, 1, 2, ....

which proves the lemma. �

In what follows we need some notations.
For each n ∈ N, n ≥ 2, k, j ∈ {0, 1, 2, ..., }, and x ∈ [ j

n−1 , j+1
n−1 ], x > 0 let us

denote

mk,n,j(x) =
bn,k(x)
bn,j(x)

=

(
n+k−1

k

)(
n+j−1

j

) ( x

1 + x

)k−j

.

and for x = 0 let us denote m0,n,0(x) = 1 and mk,n,0(x) = 0 for all k ∈ {1, 2, ..., }.
Also, for any n ∈ N, n ≥ 2, k ∈ {0, 1, .., } and j ∈ {0, 1, .., }, let us define the

functions fk,n,j : [ j
n−1 , j+1

n−1 ] → R,

fk,n,j(x) = mk,n,j(x)f
(

k

n

)
=

(
n+k−1

k

)(
n+j−1

j

) ( x

1 + x

)k−j

f

(
k

n

)
.

From Lemma 2.4, it follows that for each j ∈ {0, 1, ..., } and for all x ∈ [ j
n−1 , j+1

n−1 ] we
can write

V (M)
n (f)(x) =

∞∨
k=0

fk,n,j(x).

Lemma 2.5. Let n ∈ N, n ≥ 2. For all k , j ∈ {0 , 1 , 2 , ...} and x ∈ [ j
n−1 , j+1

n−1 ] we
have

mk,n,j(x) ≤ 1.

Proof. Let j ∈ {0, 1, ..., } and let x ∈ [ j
n−1 , j+1

n−1 ]. By Lemma 2.4, it immediately
follows that

mk,n,j(x) ≤ mj,n,j(x).

Since mj,n,j(x) = 1, the conclusion of the lemma is immediate. �

Lemma 2.6. For any arbitrary bounded function f : [0,∞) → R+, V
(M)
n (f) is

positive, bounded, continuous and satisfies V
(M)
n (f)(0) = f(0), for all n ∈ N, n ≥ 3.

Proof. The positivity of V
(M)
n (f) is immediate. Also, taking into account that

bn,0(0) = 1 and bn,k(0) = 0 for all k ∈ {1, 2, ..., } we immediately obtain that
V

(M)
n (f)(0) = f(0).
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If f is bounded then let M ∈ R+ be such that f(x) ≤ M for all x ∈ [0,∞).
Let x ∈ [0,∞) and let j ∈ {0, 1, ...} be such that x ∈ [ j

n−1 , j+1
n−1 ]. Then

V (M)
n (f)(x) =

∞∨
k=0

fk,n,j(x) =
∞∨

k=0

mk,n,j(x)f
(

k

n

)
.

Since by Lemma 2.5. we have mk,n,j(x) ≤ 1 for all k ∈ {0, 1, ..., } and since f
(

k
n

)
≤ M

for all k ∈ {0, 1, ..., }, it is immediate that V
(M)
n (f)(x) ≤ M.

With respect to continuity, it suffices to prove that on each subinterval of
the form [ j

n−1 , j+1
n−1 ], with j ∈ {0, 1, ...}, V

(M)
n (f) is continuous. For this purpose, for

j ∈ {0, 1, ...} fixed and for any l ∈ N let us define the function gl,j : [ j
n−1 , j+1

n−1 ] → R+,

gl,j(x) =
l∨

k=0

fk,n,j(x). It is clear that for each l ∈ N the function gl,j is continuous

on [ j
n−1 , j+1

n−1 ], as a maximum of finite number of continuous functions. Since, for all
x ∈ [ j

n−1 , j+1
n−1 ] we have

0 ≤ V (M)
n (f)(x) = max

{
l∨

k=0

fk,n,j(x),
∞∨

k=l+1

fk,n,j(x)

}

≤
l∨

k=0

fk,n,j(x) +
∞∨

k=l+1

fk,n,j(x),

it follows that for all l ∈ N and x ∈ [ j
n−1 , j+1

n−1 ] we have

0 ≤ V (M)
n (f)(x)− gl,j(x) ≤

∞∨
k=l+1

fk,n,j(x) =
∞∨

k=l+1

mk,n,j(x)f
(

k

n

)

≤ M
∞∨

k=l+1

mk,n,j(x).

For l ≥ j, by the proof Lemma 2.4 it follows that

ml,n,j(x) ≥ ml+1,n,j(x) ≥ ml+2,n,j(x) ≥ ....

Also, for l ≥ j it is easy to prove that ml,n,j(x) ≤ ml,n,j( j+1
n−1 ) for all x ∈ [ j

n−1 , j+1
n−1 ].

From all these reasonings it follows that

0 ≤ V (M)
n (f)(x)− gl,j(x) ≤ Mml+1,n,j(

j + 1
n− 1

)

for all l ≥ j. Let us consider the sequence (al)l≥j , al = Mml+1,n,j( j+1
n ). By simple

calculus we get lim
l→∞

al+1
al

= lim
l→∞

(
(n+l+1)(j+1)
(l+2)(n+j)

)
= j+1

n+j < 1, which immediately im-

plies that lim
l→∞

al = 0. This implies that V
(M)
n (f) is the uniform limit of a sequence
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of continuous functions on [ j
n−1 , j+1

n−1 ], gl,j , l ∈ N, which implies the continuity of

V
(M)
n (f) on [ j

n−1 , j+1
n−1 ]. �

Remark. From Lemmas 2.4-2.6, it is clear that V
(M)
n (f) satisfies all the conditions

in Lemma 2.1, Corollary 2.2 and Corollary 2.3 for I = [0,∞).

3. Auxiliary Results

Remark. Note since by Lemma 2.6 we have V
(M)
n (f)(0) = f(0) for all n ≥ 3, notice

that in the notations, proofs and statements of the all approximation results, that is
in Lemmas 3.1, 3.2, Theorem 4.1, Lemma 4.2, Corollaries 4.4, 4.5, in fact we always
may suppose that x > 0.

For each n ∈ N, n ≥ 3, k, j ∈ {0, 1, 2, ..., } and x ∈ [ j
n−1 , j+1

n−1 ], let us denote

Mk,n,j(x) = mk,n,j(x)
∣∣∣∣kn − x

∣∣∣∣ .
It is clear that if k ≥ n

n−1 (j + 1) then

Mk,n,j(x) = mk,n,j(x)(
k

n
− x)

and if k ≤ n
n−1j then

Mk,n,j(x) = mk,n,j(x)(x− k

n
).

Also, for each n ∈ N, n ≥ 3, k, j ∈ N, k ≥ n
n−1 (j + 1) and x ∈ [ j

n−1 , j+1
n−1 ] let

us denote

Mk,n,j(x) = mk,n,j(x)(
k

n− 1
− x)

and for each n ∈ N, n ≥ 3, k, j ∈ N, k ≤ n
n+1j and x ∈ [ j

n−1 , j+1
n−1 ] let us denote

Mk,n,j(x) = mk,n,j(x)(x− k

n− 1
).

Lemma 3.1. Let x ∈ [ j
n−1 , j+1

n−1 ] and n ∈ N, n ≥ 3.
(i) For all k, j ∈ {0, 1, 2, ..., } with k ≥ n

n−1 (j + 1) we have

Mk,n,j(x) ≤ Mk,n,j(x ).

(ii) For all k, j ∈ N, k ≥ n
n−2 (j + 1) we have

M k ,n,j (x ) ≤ 2M k ,n,j (x ).

(iii) For all k, j ∈ N, k ≤ n
n+1j we have

Mk,n,j(x) ≤ Mk,n,j(x) ≤ 2Mk,n,j(x).
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Proof. (i) The inequality Mk,n,j(x) ≤ Mk,n,j(x) is immediate.

(ii) Since the function h(x) =
k

n−1−x
k
n−x

is nondecreasing on [ j
n−1 , j+1

n−1 ] we get

Mk,n,j(x)
Mk,n,j(x)

=
k

n−1 − x
k
n − x

≤
k

n−1 −
j+1
n−1

k
n −

j+1
n−1

=
n(k − j − 1)

n(k − j − 1)− k
.

We have

n(k − j − 1)
n(k − j − 1)− k

≤ 2 ⇔ n(k − j − 1) ≤ 2n(k − j − 1)− 2k

⇔ 2k ≤ n(k − j − 1) ⇔ n(j + 1) ≤ k(n− 2)

⇔ k ≥ n

n− 2
(j + 1).

which proves (ii).
(iii) The inequality Mk,n,j(x) ≤ Mk,n,j(x) is immediate.
On the other hand, tacking account of the fact that the function h(x) =

x− k
n

x− k
n−1

is nonincreasing on [ j
n−1 , j+1

n−1 ] we get

Mk,n,j(x)
Mk,n,j(x)

=
x− k

n

x− k
n−1

≤
j

n−1 −
k
n

j
n−1 −

k
n−1

=
n(j − k) + k

n(j − k)
.

We have

n(j − k) + k

n(j − k)
≤ 2 ⇔ n(j − k) + k ≤ 2n(j − k)

⇔ k ≤ n(j − k) ⇔ k(n + 1) ≤ nj ⇔ k ≤ n

n + 1
j.

which proves (iii). �

Lemma 3.2. Let x ∈ [ j
n−1 , j+1

n−1 ] and n ∈ N, n ≥ 3.
(i) If j ∈ {0, 1, 2, ...} is such that k ≥ n

n−1 (j + 1) and

n[(k − j )2−(k + 1 )] + kj − j 2−k2−j ≥ 0 ,

then Mk,n,j(x) ≥ Mk+1,n,j(x).
(ii) If k ∈ {1, 2, ...j} is such that k ≤ n

n+1 j and

n[(k − j )2−k ] + kj − j 2−k2+k ≥ 0 ,

then Mk,n,j(x) ≥ Mk−1,n,j(x).
Proof. (i) We observe that

Mk,n,j(x)
Mk+1,n,j(x)

=
k + 1
n + k

· x + 1
x

·
k

n−1 − x
k+1
n−1 − x

.
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Since the function g(x) = x+1
x ·

k
n−1−x
k+1
n−1−x

clearly is nonincreasing, it follows that g(x) ≥

g( j+1
n−1 ) = n+j

j+1 ·
k−j−1

k−j for all x ∈ [ j
n−1 , j+1

n−1 ].
Then

Mk,n,j(x)
Mk+1,n,j(x)

≥ k + 1
n + k

· n + j

j + 1
· k − j − 1

k − j
.

Through simple calculus we obtain

(k + 1)(n + j)(k − j − 1)− (n + k)(j + 1)(k − j)

= n[(k − j)2 − (k + 1)] + kj − j2 − k2 − j

which proves (i).
(ii) We observe that

Mk,n,j(x)
Mk−1,n,j(x)

=
n + k − 1

k
· x

1 + x
·
x− k

n−1

x− k−1
n

.

Since the function h(x) = x
1+x ·

x− k
n−1

x− k−1
n−1

is nondecreasing, it follows that h(x) ≥

h( j
n−1 ) = j

n+j−1 ·
j−k

j−k+1 for all x ∈ [ j
n−1 , j+1

n−1 ].
Then

Mk,n,j(x)
Mk−1,n,j(x)

≥ n + k − 1
k

· j

n + j − 1
· j − k

j − k + 1
.

Through simple calculus we obtain

j(n + k − 1)(j − k)− k(n + j − 1)(j − k + 1)

= n[(j − k)2 − k] + kj − j2 − k2 + k

which proves (ii) and the lemma. �

4. Approximation Results

If V
(M)
n (f)(x) represents the Baskakov operator of max-product kind defined

in Introduction, then the first main result of this section is the following.
Theorem 4.1. Let f : [0,∞) → R+ be bounded and continuous on [0 ,∞). Then we
have the estimate

|V (M)
n (f)(x)− f(x)| ≤ 12ω1

(
f,

√
x(x + 1)
n− 1

)
, n ∈ N, n ≥ 4, x ∈ [0,∞),

where

ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0,∞), |x− y| ≤ δ}.
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Proof. It is easy to check that the max-product Baskakov operator fulfills the condi-
tions in Corollary 2.3 and we have

|V (M)
n (f)(x)− f(x)| ≤

(
1 +

1
δn

V (M)
n (ϕx)(x)

)
ω1(f, δn), (4.1)

where ϕx(t) = |t− x|. So, it is enough to estimate

En(x) := V (M)
n (ϕx)(x) =

∞∨
k=0

bn,k(x)
∣∣ k
n − x

∣∣
∞∨

k=0

bn,k(x)
, x ∈ [0,∞).

Let x ∈ [j/n − 1, (j + 1)/n − 1] where j ∈ {0, 1, ..., } is fixed, arbitrary. By Lemma
2.4 we easily obtain

En(x) = max
k=0,1,...,

{Mk,n,j(x)}, x ∈ [j/n− 1, (j + 1)/n− 1].

In all what follows we may suppose that j ∈ {1, 2, ..., }, because for j = 0 we get

En(x) < 5
√

x(x+1)
n−1 , for all x ∈ [0, 1/n− 1]. Indeed, in this case we have

Mk,n,0(x) =
(

n + k − 1
k

)(
x

1 + x

)k ∣∣∣∣kn − x

∣∣∣∣ ,
which for k = 0 gives

Mk,n,0(x) = x =
√

x ·
√

x ≤
√

x · 1√
n− 1

≤
√

x(x + 1)
n− 1

.

Also, for k = 1 we have x ≤ 2
n which implies

∣∣ 1
n − x

∣∣ ≤ 1
n and further one

M1,n,0(x) ≤
(

n

1

)(
x

1 + x

)
· 1
n

=
x

1 + x
≤ x ≤

√
x(x + 1)
n− 1

.

Suppose now that k ≥ 2. We observe that in this case all the hypothesis of the
Lemma 3.1 (i) are fulfilled, therefore in this case we have Mk,n,0(x) ≤ Mk,n,0(x). Also
by Lemma 3.2 (i), for j = 0 it follows that Mk,n,0(x) ≥ Mk+1,n,0(x) for every k ≥ 2
such that (n−1)k2−nk−n ≥ 0. Because the function f(x) = (n−1)x2−nx−n, x ≥ 1
is nondecreasing and because f(

√
n) ≥ 0, it follows that Mk,n,0(x) ≥ Mk+1,n,0(x) for

every k ∈ N, k ≥
√

n. Let us denote A = {k ∈ N, 2 ≤ k ≤
√

n + 1} and let k ∈ A.
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We have by Lemma 2.5

Mk,n,0(x) =

=
(

n + k − 1
k

)(
x

1 + x

)k

(
k

n− 1
− x)

≤
(

n + k − 1
k

)(
x

1 + x

)k
k

n− 1
≤
(

n + k − 1
k

)(
x

1 + x

)k

· 3k

2n

=
(n + k − 1)!
k!(n− 1)!

·
(

x

1 + x

)k

· 3k

2n
=
(

n + k − 1
k − 1

)(
x

1 + x

)k−1( 3x

2(1 + x)

)
=

(
n + k − 1

k − 1

)(
1/n

1 + 1/n

)k−1(
x

1 + x
· 1 + 1/n

1/n

)k−1

·
(

3x

2(1 + x)

)
=

(
n + k − 1

k − 1

)(
1/n

1 + 1/n

)k−1( (n + 1)x
1 + x

)k−1

·
(

3x

2(1 + x)

)
= mk−1,n+1,0(

1
n

)
(

(n + 1)x
1 + x

)k−1

·
(

3x

2(1 + x)

)
≤

(
(n + 1)x

1 + x

)k−1

·
(

3x

2(1 + x)

)
.

Since the function g(x) =
(

(n+1)x
1+x

)k−1

is nondecreasing on the interval [0, 1
n−1 ], it

follows that

g(x) ≤ g

(
1

n− 1

)
=
(

n + 1
n

)k−1

for all x ∈ [0, 1
n−1 ]. Then

Mk,n,0(x) ≤ 3
2
·
(

n + 1
n

)k−1

· x

1 + x
≤ 3

2
·
(

n + 1
n

)√n

· x

1 + x

<
3
2
·
(

n + 1
n

)n

· x

1 + x
<

3e

2
· x ≤ 3e

2
·
√

x(x + 1)
n− 1

< 5

√
x(x + 1)
n− 1

.

Based on the above results, we obtain

En(x) =

= max
k=0,1,...,

{Mk,n,0(x)} ≤ max{M0,,n,0(x),M1,n,0(x), max
k=2,3,...,

{Mk,n,0(x)}}

= max{M0,,n,0(x),M1,n,0(x),max
k∈A

{Mk,n,0(x)}} < 5

√
x(x + 1)
n− 1

.
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So it remains to obtain an upper estimate for each Mk,n,j(x) when j = 1, 2, ..., is
fixed, x ∈ [j/(n− 1), (j + 1)/(n− 1)] and k = 0, 1, ...,. In fact we will prove that

Mk,n,j(x) < 6

√
x(x + 1)

n
, for all x ∈ [j/(n− 1), (j + 1)/(n− 1)], k = 0, 1, ..., (4.2)

which immediately will imply that

En(x) ≤ 6

√
x(x + 1)

n
, for all x ∈ [0,∞), n ∈ N,

and taking δn = 6
√

x(x+1)
n in (4.1), we immediately obtain the estimate in the state-

ment.
In order to prove (4.2) we distinguish the following cases:
1) n

n+1 · j ≤ k ≤ n
n−1 · (j + 1) ; 2) k > n

n−1 · (j + 1) and 3) k < n
n+1 · j.

Case 1) We have

k

n
− x ≤

n
n−1 · (j + 1)

n
− j

n− 1
=

j + 1
n− 1

− j

n− 1
=

1
n− 1

.

On the other hand

k

n
− x ≥

n
n+1 · j

n
− j + 1

n− 1
=

j

n + 1
− j + 1

n− 1
=

−2j

(n− 1)(n + 1)
− 1

n− 1

≥ −2x

n + 1
− 1

n− 1
.

Therefore
∣∣ k
n − x

∣∣ ≤ 2x
n−1 + 1

n−1 . It is immediate that x
n−1 ≤

√
x(x+1)

n−1 for all x ≥ 0.

On the other hand, 1
n−1 =

√
1

n−1 ·
√

1
n−1 ≤

√
1

n−1 ·
√

j
n−1 ≤

√
1

n−1 ·
√

x ≤
√

x(x+1)
n−1 .

It follows that

Mk,n,j(x) = mk,n,j(x)
∣∣∣∣kn − x

∣∣∣∣ ≤ ∣∣∣∣kn − x

∣∣∣∣ ≤ 3

√
x(x + 1)
n− 1

.

Case 2). Subcase a). Suppose first that n[(k−j)2−(k+1)]+kj−j2−k2−j < 0.

Denoting k = j + α, the previous inequality becomes α2(n − 1) − α(n + j) − (j +
1)(n + j) < 0 where evidently α ≥ 1.Let us define the function f(t) = t2(n − 1) −

t(n + j) − (j + 1)(n + j), t ∈ R. We claim that f

(√
3(j+1)(n+j)

n−1

)
> 0 which will

imply α <
√

3(j+1)(n+j)
n−1 and further one k − j <

√
3(j+1)(n+j)

n−1 . Indeed, after simple
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calculation we get

f

(√
3(j + 1)(n + j)

n− 1

)
= (n + j)

√
j + 1

(
2
√

j + 1−
√

3(n + j)
n− 1

)

= (n + j)
√

j + 1

(√
4j + 4−

√
3 +

3j + 3
n− 1

)

≥ (n + j)
√

j + 1

(√
4j + 4−

√
3 +

3j + 3
2

)

= (n + j)
√

j + 1

(√
4j + 4−

√
4 +

3j + 1
2

)
> 0

where we used the obvious inequality 4j > 3j+1
2 for all j ≥ 1.

Based on the above results we have

Mk,n,j(x) =

= mk,n,j(x)(
k

n− 1
− x) ≤ k

n− 1
− x ≤ k

n− 1
− j

n− 1

=
k − j

n− 1
<

√
3(j+1)(n+j)

n−1

n− 1
=

1√
n− 1

·

√
3(j + 1)(n + j)

(n− 1)2

≤ 1√
n− 1

·

√
6j(n + j)
(n− 1)2

=
1√

n− 1
·
√

6j

n− 1
·
√

n + j

n− 1

=
1√

n− 1
·
√

6j

n− 1
·
√

n + j − 1
n− 1

·

√
n + j

n + j − 1

=
1√

n− 1
·
√

6j

n− 1
·
√

1 +
j

n− 1
·

√
n + j

n + j − 1
≤
√

6x(x + 1)
n− 1

· 2√
3

= 2
√

2

√
x(x + 1)
n− 1

.

Subcase b). Suppose now that n[(k − j)2 − (k + 1)] + kj − j2 − k2 − j ≥ 0.

Because n and j are fixed, we can define the real function

g(x) = n[(x− j)2 − (x + 1)] + xj − j2 − x2 − j

= (n− 1)x2 − x(2nj − j + n) + nj2 − n− j2 − j,
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for all x ∈ R. For x ≥ n
n−1 (j + 1) we get

g′(x) = 2(n− 1)x− 2nj + j − n ≥ 2(n− 1) · n(j + 1)
n− 1

− 2nj + j − n

= n + j > 0.

Therefore, g is nondecreasing on the interval [ n
n−1 (j + 1),∞). Since

g

(
n

n− 1
(j + 1)

)
= −nj − n− j2 − j < 0

and because lim
x→∞

g(x) = ∞, by the monotonicity of g too, it follows that there

exists k ∈ N, k > n
n−1 (j + 1) of minimum value, such that g(k) = n[(k − j)2 −

(k + 1)] + kj − j2 − k
2 − j ≥ 0. Denote k1 = k − 1 where evidently k1 ≥ j + 1.

If k1 ≥ n
n−1 (j + 1), then from the properties of g and by the way we choose k it

results that g(k1) < 0. If k1 < n
n−1 (j + 1), then j < k1 < n

n−1 (j + 1). Since g is a

quadratic function and because g(j) < 0 and g
(

n
n−1 (j + 1)

)
< 0, it is immediate that

we get to the same conclusion as in the other case, that is g(k1) < 0 or equivalently
α2(n− 1)−α(n+ j)− (j +1)(n+ j) < 0, where k1 = j +α. Using the same technique

as in subcase a) we get k1 − j <
√

3(j+1)(n+j)
n−1 . Then

Mk,n,j(x) = mk,n,j(x)(
k

n− 1
− x) ≤ k

n− 1
− x

≤ k

n− 1
− j

n− 1
=

k1 − j

n− 1
+

1
n− 1

< 2
√

2

√
x(x + 1)
n− 1

+
1

n− 1

≤ 2
√

2

√
x(x + 1)
n− 1

+

√
x(x + 1)
n− 1

< 4

√
x(x + 1)
n− 1

.

By Lemma 3.2., (i) it follows that Mk,n,j(x) ≥ Mk+1,n,j(x) ≥ .... We thus obtain

Mk,n,j(x) < 4
√

x(x+1)
n−1 for any k ∈ {k, k + 1, ..., }.

Therefore, in both subcases, by Lemma 3.1, (i) too, we get

Mk,n,j(x) < 4

√
x(x + 1)
n− 1

.

Case 3). Subcase a). Suppose first that n[(k− j)2−k]+kj− j2−k2 +k < 0.
Denoting k = j − α the previous inequality becomes α2(n− 1) + α(n + j − 1)− nj −
j2 + j < 0 where evidently α ≥ 1. Let us define the function f(t) = t2(n− 1) + t(n +

j − 1)− nj − j2 + j, t ∈ R. Because f

(√
j(n+j−1)

n−1

)
= (n + j − 1) ·

√
j(n+j−1)

n−1 > 0 it
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follows that α <
√

j(n+j−1)
n−1 and further one j − k <

√
j(n+j−1)

n−1 . Then we obtain

Mk,n,j(x) =

= mk,n,j(x)(x− k

n− 1
) ≤ j + 1

n− 1
− k

n− 1
=

j − k

n− 1
+

1
n− 1

<

√
j(n+j−1)

n−1

n− 1
+

√
x(x + 1)
n− 1

=

√
1

n− 1
·

√
j(n + j − 1)

(n− 1)2
+

√
x(x + 1)
n− 1

=

√
1

n− 1
·

√
j

(n− 1)
·

√
1 +

j

(n− 1)
+

√
x(x + 1)
n− 1

≤ 2

√
x(x + 1)
n− 1

.

Subcase b). Suppose now that n[(k− j)2 − k] + kj − j2 − k2 + k ≥ 0. Because n and
j are fixed we can define the real function

g(x) = n[(x− j)2 − x] + xj − j2 − x2 + x

= (n− 1)x2 − x(2nj + j + n + 1) + nj2 − j2,

for all x ∈ R. For x ≤ n
n+1 · j we get

g′(x) = 2(n− 1)x− (2nj + j + n + 1) ≤ 2(n− 1)nj

n + 1
− (2nj + j + n + 1)

≤ 2nj − (2nj + j + n + 1) = −j − n− 1 < 0.

Therefore, g in nonincreasing on the interval [0, nj
n+1 ]. We have

g(
nj

n + 1
) =

(n− 1)n2j2

(n + 1)2
− nj

n + 1
· (2nj + j + n + 1) + nj2 − j2

≤ n2j2

n + 1
− nj

n + 1
· (2nj + j + n + 1) + nj2 − j2

=
−n2j2 − nj2 − n2j − nj

n + 1
+ nj2 − j2 =

−n2j − nj

n + 1
− j2

= −nj − j2 < 0.

Based on the above result and because g(0) > 0, by the monotonicity of g too,
it follows that there exists k̃ ∈ N, k̃ < nj

n+1 of maximum value, such that g(k̃) =
n[(k̃ − j)2 − k̃] + k̃j − j2 − k̃2 + k̃ ≥ 0. Denoting k2 = k̃ + 1 and reasoning as in case
(ii), subcase b) we obtain g(k2) < 0. Further, reasoning as in case (iii), subcase a) we

obtain j − k2 <
√

j(n+j−1)
n−1 . It follows

M k̃,n,j(x) = mk̃,n,j(x)(x− k̃

n− 1
) ≤ j + 1

n− 1
− k̃

n− 1

=
j − k2

n− 1
+

2
n− 1

< 3

√
x(x + 1)
n− 1

.
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By Lemma 3.2, (ii) it follows that M k̃,n,j(x) ≥ M k̃−1,n,j(x) ≥ ... ≥ M0,n,j(x). We

thus obtain Mk,n,j(x) < 3
√

x(x+1)
n−1 for any k ∈ {0, 1, ..., k̃}

In both subcases, by Lemma 3.1, (iii) too, we get Mk,n,j(x) < 6
√

x(x+1)
n−1 .

In conclusion, collecting all the estimates in the above cases and subcases we
easily get the relationship (4.2), which completes the proof. �

Remark. In what follows we prove that the order of approximation in Theorem
4.1 cannot be improved. Indeed, for n ∈ N, n ≥ 3 let us take jn = (n − 1)2 − 1,

kn = jn + [
√

(jn+1)(n+jn)
n−1 ] + 1 = jn + [(n − 1)

√
n] + 1, xn = jn+1

n−1 = n − 1. Because

lim
n→∞

(
kn − n

n−2 · (j + 1)
)

= ∞, it follows that there exists n0 ∈ N, n0 ≥ 3 such that

kn ≥ n
n−2 · (jn +1) for each n ∈ N, n ≥ n0.Then, according to Lemma 3.1 (ii) for each

n ∈ N, n ≥ n0 we can write

Mkn,n,jn
(xn) =

(
n+kn−1

kn

)
xkn

n /(1 + xn)n+kn(
n+jn−1

jn

)
xjn

n /(1 + xn)n+jn

(
kn

n− 1
− xn

)

=
(n + kn − 1)!
(n + jn − 1)!

· jn!
kn!

(
xn

1 + xn

)kn−jn
(

kn

n− 1
− xn

)

≥ (n + jn)(n + jn + 1)...(n + kn − 1)
(jn + 1)(jn + 2)...kn

(
n− 1

n

)[(n−1)
√

n]+1

·

·
(

kn

n− 1
− jn + 1

n− 1

)
=

(n + jn)(n + jn + 1)...(n + kn − 1)
(jn + 1)(jn + 2)...kn

(
n− 1

n

)[(n−1)
√

n]+1

·

· kn − jn

n− 1
· kn − jn − 1

kn − jn

≥ (n + jn)(n + jn + 1)...(n + kn − 1)
(jn + 1)(jn + 2)...kn

(
n− 1

n

)[(n−1)
√

n]+1

· kn − jn

2(n− 1)
.

Since

kn − jn

n− 1
=

[
√

(jn+1)(n+jn)
n−1 ] + 1

n− 1
≥

√
(jn+1)(n+jn)

n−1

n− 1
=

√
(jn+1)

n−1 (1 + jn+1
n−1 )

√
n− 1

=

√
xn(xn + 1)√

n− 1
,

it follows that
Mkn,n,jn(xn) ≥

(n + jn)(n + jn + 1)...(n + kn − 1)
(jn + 1)(jn + 2)...kn

(
n− 1

n

)[(n−1)
√

n]+1

·
√

xn(xn + 1)
2
√

n− 1
.
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It is easy to prove that if 0 < a ≤ b then b
a ≥

b+1
a+1 . Using this result, we get

n + jn

jn + 1
≥ n + jn + 1

jn + 2
≥ ... ≥ n + kn − 1

kn
,

which implies
Mkn,n,jn(xn)

≥
(

n + kn − 1
kn

)[(n−1)
√

n]+1(
n− 1

n

)[(n−1)
√

n]+1

·
√

xn(xn + 1)
2
√

n− 1
.

We have

lim
n→∞

(
n + kn − 1

kn

)[(n−1)
√

n]+1(
n− 1

n

)[(n−1)
√

n]+1

= lim
n→∞

(
(n− 1)2 + (n− 1) + [(n− 1)

√
n]

(n− 1)2 + [(n− 1)
√

n]

)[(n−1)
√

n]+1

·

·
(

n− 1
n

)[(n−1)
√

n]+1

= lim
n→∞

(
(n− 1)2 + (n− 1) + (n− 1)

√
n

(n− 1)2 + (n− 1)
√

n

)(n−1)
√

n+1

·

·
(

n− 1
n

)(n−1)
√

n+1

= lim
n→∞

(
n +

√
n

(n− 1) +
√

n

)(n−1)
√

n+1(
n− 1

n

)(n−1)
√

n+1

= lim
n→∞

(
1 +

1
n− 1 +

√
n

)(n−1)
√

n+1(
1− 1

n

)(n−1)
√

n+1

= lim
n→∞

[
1 +

(
1−

√
n

n(n− 1 +
√

n)
− 1

n(n− 1 +
√

n)

)](n−1)
√

n+1

= e−1.

It follows that there exists n1 ∈ N, such that(
n + kn − 1

kn

)[(n−1)
√

n]+1(
n− 1

n

)[(n−1)
√

n]+1

≥ e−2

for any n ≥ n1. Then we get

Mkn,n,jn(xn) ≥
√

xn(xn + 1)
2e2

√
n− 1

for all n ≥ max{n0, n1}. Taking into account Lemma 3.1, (ii) too, it follows that for

all n ≥ max{n0, n1} we have Mkn,n,jn
(xn) ≥

√
xn(xn+1)

4e2
√

n−1
for all n ≥ max{n0, n1},

which combined with the fact lim
n→∞

xn = ∞ will imply the desired conclusion.
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In what follows we will prove that for large subclasses of functions f , the
order of approximation ω1(f ;

√
x(x + 1)/(n− 1)) in Theorem 4.1 can essentially be

improved to ω1(f ; (x + 1)/(n− 1)).
For this purpose, for any n ∈ N, n ≥ 3, k ∈ {0, 1, .., } and j ∈ {0, 1, .., }, let

us denote Aj = {k ∈ N : j ≤ k ≤ n
n−1 (j + 1) + 1}.

We need the following auxiliary lemmas.
Lemma 4.2. Let f : [0,∞) → [0,∞) be bounded and suppose that there exists
j ∈ {0 , 1 , ..., } and x ∈ [j/(n− 1), (j + 1)/(n− 1)] such that

V (M)
n (f)(x) =

∨
k∈Aj

fk,n,j(x),

Then ∣∣∣V (M)
n (f)(x)− f(x)

∣∣∣ ≤ 2ω1

(
f ;

x + 1
n− 1

)
, n ≥ 3.

Proof. We distinguish two cases:
Case (i) Suppose that V

(M)
n (f)(x) ≤ f(x). Because V

(M)
n (f)(x) ≥ fj,n,j(x) =

f( j
n ) it follows that f( j

n ) ≤ V
(M)
n (f)(x) ≤ f(x), which implies∣∣∣V (M)

n (f)(x)− f(x)
∣∣∣ = f(x)− V (M)

n (f)(x) ≤ f(x)− f(
j

n
).

By simple calculation we have 0 ≤ x− j
n ≤

j+1
n−1−

j
n = j

(n−1)n + 1
n−1 ≤

x+1
n−1 . Therefore,

in this case we obtain ∣∣∣V (M)
n (f)(x)− f(x)

∣∣∣ ≤ ω1

(
f ;

x + 1
n− 1

)
.

Case (ii) Suppose that V
(M)
n (f)(x) > f(x). From the hypothesis we get that

there exists k ∈ Aj such that V
(M)
n (f)(x) = fk,n,j(x), which implies∣∣∣V (M)

n (f)(x)− f(x)
∣∣∣ = V (M)

n (f)(x)− f(x) = fk,n,j(x)− f(x)

= mk,n,j(x)f(
k

n
)− f(x) ≤ f(

k

n
)− f(x).

We have k
n − x ≤

n
n−1 (j+1)+1

n − j
n−1 = 1

n−1 + 1
n ≤

2
n−1 ≤

2(x+1)
n−1 . On the other hand

we have
k

n
− x ≥ j

n
− j + 1

n− 1
=

−j

n(n− 1)
− 1

n− 1
≥ −x

n
− 1

n− 1

≥ −x

n− 1
− 1

n− 1
=
−(x + 1)

n− 1
.

Therefore, we obtain
∣∣∣ kn − x

∣∣∣ ≤ 2(x+1)
n−1 and it follows that

∣∣∣V (M)
n (f)(x)− f(x)

∣∣∣ ≤
2ω1

(
f ; x+1

n−1

)
which proves the lemma. �
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Lemma 4.3. If the function f : [0,∞) → [0,∞) is concave, then the function
g : (0,∞) → [0,∞), g(x) = f(x)

x is nonincreasing.
Proof. Let x, y ∈ (0,∞) be with x ≤ y. Then

f(x) = f

(
x

y
y +

y − x

y
0
)
≥ x

y
f(y) +

y − x

y
f(0) ≥ x

y
f(y),

which implies f(x)
x ≥ f(y)

y . �

Corollary 4.4. If f : [0,∞) → [0,∞) is bounded, nondecreasing and such that the
function g : (0,∞) → [0,∞), g(x) = f(x)

x is nonincreasing, then∣∣∣V (M)
n (f)(x)− f(x)

∣∣∣ ≤ 2ω1

(
f ;

x + 1
n− 1

)
, for all x ∈ [0,∞), n ≥ 3.

Proof. Since f is nondecreasing it follows (see the proof of Theorem 5.3 in the next
section)

V (M)
n (f)(x) =

∞∨
k≥j

fk,n,j(x), for all x ∈ [j/(n− 1), (j + 1)/(n− 1)].

Let x ∈ [0,∞) and j ∈ {0, 1, ..., } such that x ∈ [ j
n−1 , j+1

n−1 ]. Let k ∈ {1, 2..., } be with
k ≥ j. Then

fk+1,n,j(x) =

(
n+k
k+1

)(
n+j−1

j

) ( x

1 + x
)k+1−jf(

k + 1
n

)

=

(
n+k−1

k

)(
n+j−1

j

) · n + k

k + 1
(

x

1 + x
)k−j x

1 + x
f(

k + 1
n

).

Since g(x) is nonincreasing we get f( k+1
n )

k+1
n

≤ f( k
n )

k
n

that is f(k+1
n ) ≤ k+1

k f( k
n ). From

x ≤ j+1
n−1 it follows

fk+1,n,j(x) ≤
(
n+k−1

k

)(
n+j−1

j

) ( x

1 + x
)k−j j + 1

n + j
· n + k

k + 1
· k + 1

k
f(

k

n
)

= fk,n,j(x)
j + 1
n + j

· n + k

k
=

(n + j)k + n(j + 1− k) + k

(n + j)k
· fk,n,j(x).

Since for each k ≥ n
n−1 (j + 1) we get n(j + 1− k) + k ≤ 0, it follows that fk,n,j(x) ≥

fk+1,n,j(x) for any k ≥ n
n−1 (j + 1) which will immediately imply that V

(M)
n (f)(x) =∨

k∈Aj

fk,n,j(x). By Lemma 4.2 we immediately obtain the desired conclusion. �
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Corollary 4.5. Let f : [0,∞) → [0,∞) be a bounded, nondecreasing, concave func-
tion. Then∣∣∣V (M)

n (f)(x)− f(x)
∣∣∣ ≤ 2ω1

(
f ;

x + 1
n− 1

)
, for all x ∈ [0,∞), n ≥ 3.

Proof. The proof is immediate by Lemma 4.3 and Corollary 4.4. �

Remarks. 1) If we suppose, for example, that in addition to the hypothesis in
Corollary 4.4, f : [0,∞) → [0,∞) is a Lipschitz function, that is there exists M > 0
such that |f(x) − f(y)| ≤ M |x − y|, for all x, y ∈ [0,∞), then it follows that the
order of pointwise approximation on [0,∞) by V

(M)
n (f)(x) is x+1

n−1 , which is essentially
better than the order a√

n
obtained from Theorem 4.1 on each compact subinterval

[0, a] for f Lipschitz function on [0,∞).
2) It is known that for the linear Baskakov operator given by

Vn(f)(x) = (1 + x)−n
∞∑

k=0

(
n + k − 1

k

)(
x

1 + x

)k

f(k/n),

the following pointwise approximation result is known (see [4])

|Vn(f)(x)− f(x)| ≤ Cωϕ
2 (f ;

√
x(1 + x)/n), x ∈ [0,∞), n ∈ N, (4.3)

where ϕ(x) =
√

x(1 + x) and ωϕ
2 (f ; δ) is the Ditzian-Totik second order modulus of

smoothness on [0,∞) defined by
ωϕ

2 (f ; δ)

= sup{sup{|f(x + hϕ(x))− 2f(x) + f(x− hϕ(x))|;x ≥ h2/(1− h2)}, h ∈ [0, δ]},

with δ < 1.
Now, for example, if f has the second derivative bounded by the constant K

on [0,∞), because in this case we have ωϕ
2 (f ; δ) ≤ Kδ2, then by (4.3) we obtain the

estimate

|Vn(f)(x)− f(x)| ≤ CK
x(1 + x)

n
, x ∈ [0,∞), n ∈ N,

while by Corollary 4.5 it follows the much better estimate (on large subintervals of
[0,∞) )

|V (M)
n (f)(x)− f(x)| ≤ 4‖f ′‖(1 + x)

n
, x ∈ [0,∞), n ∈ N, n ≥ 3.

Also, if f is, for example a nondecreasing concave polygonal line on [0,∞),
constant on an interval [a,∞), then by simple reasonings we get that ωϕ

2 (f ; δ) ∼ δ for
δ ≤ 1 and by (4.3) it easily follows the estimate

|Vn(f)(x)− f(x)| ≤ C

√
x(1 + x)√

n
, x ∈ [0,∞), n ∈ N, (4.4)
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while because such of function f obviously is a Lipschitz function on [0,∞) (as having
bounded all the derivative numbers) by Corollary 4.5 we get the essentially better
estimate than in (4.4)

|V (M)
n (f)(x)− f(x)| ≤ C(1 + x)

n
, x ∈ [0,∞), n ∈ N, n ≥ 3.

In a similar manner, by Corollary 4.4 we can produce many subclasses of functions
for which the order of approximation given by the max-product Baskakov operator
is essentially better than the order of approximation given by the linear Baskakov
operator. Intuitively, the max-product Baskakov operator has better approximation
properties than its linear counterpart, for non-differentiable functions in a finite num-
ber of points (with the graphs having some ”corners”), as for example for functions
defined as a maximum of a finite number of continuous functions on [0,∞).

3) Since it is clear that a bounded nonincreasing concave function on [0,∞)
necessarily one reduces to a constant function, the approximation of such functions
is not of interest.

5. Shape Preserving Properties

In this section we will present some shape preserving properties.
Remark. Note that because of the continuity of V

(M)
n (f)(x) on [0,∞) in Lemma

2.6, it will suffice to prove the shape properties of V
(M)
n (f)(x) on (0,∞) only. As a

consequence, in the notations and proofs below we always may suppose that x > 0.
Lemma 5.1. Let n ∈ N, n ≥ 3. If f : [0,∞) → R+ is a nondecreasing function
then for any k ∈ {0, 1, ..., }, j ∈ {0, 1, ..., } with k ≤ j and x ∈ [ j

n−1 , j+1
n−1 ] we have

fk,n,j(x) ≥ fk−1,n,j(x).
Proof. Because k ≤ j, by direct computation it follows that mk,n,j(x) ≥ mk−1,n,j(x).
From the monotonicity of f we get f

(
k
n

)
≥ f

(
k−1

n

)
. Thus we obtain

mk,n,j(x)f
(

k

n

)
≥ mk−1,n,j(x)f

(
k − 1

n

)
,

which proves the lemma. �

Corollary 5.2. Let n ∈ N, n ≥ 3. If f : [0,∞) → R+ is nonincreasing then
fk,n,j(x) ≥ fk+1,n,j(x) for any k ∈ {0, 1, ..., }, j ∈ {0, 1, .., } with k ≥ j and x ∈
[ j
n−1 , j+1

n−1 ].
Proof. Because k ≥ j, by direct computation it follows that mk,n,j(x) ≥ mk+1,n,j(x).
From the monotonicity of f we get f

(
k
n

)
≥ f

(
k+1

n

)
. Thus we obtain

mk,n,j(x)f
(

k

n

)
≥ mk+1,n,j(x)f

(
k + 1

n

)
,

which proves the corollary. �
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Theorem 5.3. If f : [0,∞) → R+ is nondecreasing and bounded (on [0,∞)), then
V

(M)
n (f) is nondecreasing and bounded, for any n ∈ N with n ≥ 3.

Proof. Because V
(M)
n (f) is continuous on [0,∞), it suffice to prove that on each

subinterval of the form [ j
n−1 , j+1

n−1 ], with j ∈ {0, 1, ..., }, V
(M)
n (f) is nondecreasing.

So let j ∈ {0, 1, ..., } and x ∈ [ j
n−1 , j+1

n−1 ]. Because f is nondecreasing, from
Lemma 5.1 it follows that

fj,n,j(x) ≥ fj−1,n,j(x) ≥ fj−2,n,j(x) ≥ ... ≥ f0,n,j(x).

But then it is immediate that

V (M)
n (f)(x) =

∞∨
k=j

fk,n,j(x),

for all x ∈ [ j
n−1 , j+1

n−1 ]. Clearly that for k ≥ j the function fk,n,j is nondecreasing and

since V
(M)
n (f) is defined as the supremum of nondecreasing functions, it follows that

it is nondecreasing. �

Corollary 5.4. If f : [0,∞) → R+ is nonincreasing then V
(M)
n (f) is nonincreasing,

for any n ∈ N with n ≥ 3.
Proof. Because V

(M)
n (f) is continuous on [0,∞), it suffice to prove that on each

subinterval of the form [ j
n−1 , j+1

n−1 ], with j ∈ {0, 1, ..., }, V
(M)
n (f) is nonincreasing.

So let j ∈ {0, 1, ..., } and x ∈ [ j
n−1 , j+1

n−1 ]. Because f is nonincreasing, from
Corollary 5.2 it follows that

fj,n,j(x) ≥ fj+1,n,j(x) ≥ fj+2,n,j(x) ≥ ... ≥ fn,n,j(x).

But then it is immediate that

V (M)
n (f)(x) =

j∨
k=0

fk,n,j(x),

for all x ∈ [ j
n−1 , j+1

n−1 ]. Clearly that for k ≤ j the function fk,n,j is nonincreasing and

since V
(M)
n (f) is defined as the maximum of nonincreasing functions, it follows that

it is nonincreasing. �

In what follows, let us consider the following concept generalizing the mono-
tonicity and convexity.
Definition 5.5. Let f : [0,∞) → R be continuous on [0,∞). One says that f is
quasi-convex on [0,∞) if it satisfies the inequality

f(λx + (1− λ)y) ≤ max{f(x), f(y)}, for all x, y ∈ [0,∞) and λ ∈ [0, 1].

(see e.g. the book [5], p. 4, (iv) ).
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Remark. By [6], the continuous function f is quasi-convex on the bounded interval
[0, a], equivalently means that there exists a point c ∈ [0, a] such that f is nonincreas-
ing on [0, c] and nondecreasing on [c, a]. But this property easily can be extended to
continuous quasiconvex functions on [0,∞), in the sense that there exists c ∈ [0,∞]
(c = ∞ by convention for nonincreasing functions on [0,∞)) such that f is nonin-
creasing on [0, c] and nondecreasing on [c,∞). This easily follows from the fact that
the quasiconvexity of f on [0,∞) means the quasiconvexity of f on any bounded
interval [0, a], with arbitrary large a > 0.

The class of quasi-convex functions includes the both classes of nondecreasing
functions and of nonincreasing functions (obtained from the class of quasi-convex
functions by taking c = 0 and c = ∞, respectively). Also, it obviously includes the
class of convex functions on [0,∞).
Corollary 5.6. If f : [0,∞) → R+ is continuous, bounded and quasi-convex on
[0,∞) then V

(M)
n (f) is quasi-convex on [0,∞) for any n ∈ N with n ≥ 3.

Proof. If f is nonincreasing (or nondecreasing) on [0,∞) (that is the point c = ∞ (or
c = 0) in the above Remark) then by the Corollary 5.4 (or Theorem 5.3, respectively)
it follows that for all n ∈ N, V

(M)
n (f) is nonincreasing (or nondecreasing) on [0,∞).

Suppose now that there exists c ∈ (0,∞), such that f is nonincreasing on [0, c]
and nondecreasing on [c,∞). Define the functions F,G : [0,∞) → R+ by F (x) = f(x)
for all x ∈ [0, c], F (x) = f(c) for all x ∈ [c,∞) and G(x) = f(c) for all x ∈ [0, c],
G(x) = f(x) for all x ∈ [c,∞).

It is clear that F is nonincreasing and continuous on [0,∞), G is nondecreas-
ing and continuous on [0,∞) and that f(x) = max{F (x), G(x)}, for all x ∈ [0,∞).

But it is easy to show (see also Remark 1 after the proof of Lemma 2.1) that

V (M)
n (f)(x) = max{V (M)

n (F )(x), V (M)
n (G)(x)}, for all x ∈ [0,∞),

where by the Corollary 5.4 and Theorem 5.3 , V
(M)
n (F )(x) is nonincreasing and con-

tinuous on [0,∞) and V
(M)
n (G)(x) is nondecreasing and continuous on [0,∞). We

have two cases : 1) V
(M)
n (F )(x) and V

(M)
n (G)(x) do not intersect each other ; 2)

V
(M)
n (F )(x) and V

(M)
n (G)(x) intersect each other.

Case 1). We have max{V (M)
n (F )(x), V (M)

n (G)(x)} = V
(M)
n (F )(x) for all x ∈

[0,∞) or max{V (M)
n (F )(x), V (M)

n (G)(x)} = V
(M)
n (G)(x) for all x ∈ [0,∞), which

obviously proves that V
(M)
n (f)(x) is quasi-convex on [0,∞).

Case 2). In this case it is clear that there exists a point c′ ∈ [0,∞) such
that V

(M)
n (f)(x) is nonincreasing on [0, c′] and nondecreasing on [c′,∞), which by the

considerations in the above Remark implies that V
(M)
n (f)(x) is quasiconvex on [0,∞)

and proves the corollary. �
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It is of interest to exactly calculate V
(M)
n (f) for f(x) = e0(x) = 1 and for

f(x) = e1(x) = x. In this sense we can state the following.
Lemma 5.7. For all x ∈ [0,∞) and n ∈ N, n ≥ 3 we have V

(M)
n (e0)(x) = 1 and

V (M)
n (e1)(x) = x · bn+1,0(x)

bn,0(x)
=

x

1 + x
, if x ∈ [0, 1/n],

V (M)
n (e1)(x) = x · bn+1,1(x)

bn,0(x)
=

(n + 1)x2

(1 + x)2
, if x ∈ [1/n, 1/(n− 1)],

V (M)
n (e1)(x) = x · bn+1,1(x)

bn,1(x)
=

x

1 + x
· n + 1

n
, if x ∈ [1/(n− 1), 2/n],

V (M)
n (e1)(x) = x · bn+1,2(x)

bn,1(x)
=

x2

(1 + x)2
· (n + 1)(n + 2)

2n
, if x ∈ [2/n, 2/(n− 1)],

V (M)
n (e1)(x) = x · bn+1,2(x)

bn,2(x)
=

x

1 + x
· n + 2

n
, if x ∈ [2/(n− 1), 3/n],

V (M)
n (e1)(x) = x · bn+1,3(x)

bn,2(x)
=

x2

(1 + x)2
· (n + 2)(n + 3)

3n
, if x ∈ [3/n, 3/(n− 1)],

and so on, in general we have

V (M)
n (e1)(x) =

x

1 + x
· n + j

n
, if x ∈ [j/(n− 1), (j + 1)/n],

V (M)
n (e1)(x) =

x2

(1 + x)2
· (n + j)(n + j + 1)

n(j + 1)
, if x ∈ [(j + 1)/n, (j + 1)/(n− 1)],

for j ∈ {0, 1, ..., }.
Proof. The formula V

(M)
n (e0)(x) = 1 is immediate by the definition of V

(M)
n (f)(x).

To find the formula for V
(M)
n (e1)(x) we will use the explicit formula in Lemma

2.4 which says that
∞∨

k=0

bn,k(x) = bn,j(x), for all x ∈
[

j

n− 1
,
j + 1
n− 1

]
, j = 0, 1, ...,

where bn,k(x) =
(
n+k−1

k

)
xk/(1 + x)n+k.

Since

max
k=0,1...,

{
bn,k(x)

k

n

}
= max

k=1,...,n

{
bn,k(x)

k

n

}
= x · max

k=0,1...,
{bn+1,k(x},
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we obtain

V (M)
n (e1)(x) = x ·

∞∨
k=0

bn+1,k(x)

∞∨
k=0

bn,k(x)

Now the conclusion of the lemma is immediate by applying Lemma 2.4 to both expres-

sions
∞∨

k=0

bn+1,k(x),
∞∨

k=0

bn,k(x), taking into account that we get the following division

of the interval [0,∞)

0 <
1
n
≤ 1

n− 1
≤ 2

n
≤ 2

n− 1
≤ 3

n
≤ 3

n− 1
≤ 4

n
≤ 4

n− 1
...., .

�

Remarks. 1) The convexity of f on [0,∞) is not preserved by V
(M)
n (f) as can be

seen from Lemma 5.8. Indeed, while f(x) = e1(x) = x is obviously convex on [0,∞),
it is easy to see that V

(M)
n (e1) is not convex on [0, 1].

2) Also, if f is supposed to be starshaped on [0,∞) (that is f(λx) ≤ λf(x) for
all x, λ ∈ [0,∞)), then again by Lemma 5.8 it follows that V

(M)
n (f) for f(x) = e1(x)

is not starshaped on [0,∞), although e1(x) obviously is starshaped on [0,∞).
Despite of the absence of the preservation of the convexity, we can prove the

interesting property that for any arbitrary nonincreasing function f , the max-product
Baskakov operator V

(M)
n (f) is piecewise convex on [0,∞). We present the following.

Theorem 5.8. Let n ∈ N be with n ≥ 3. For any nonincreasing function f : [0,∞) →
[0,∞), V

(M)
n (f) is convex on any interval of the form [ j

n−1 , j+1
n−1 ], j = 0, 1, ...,.

Proof. From the proof of Corollary 5.4 we have

V (M)
n (f)(x) =

j∨
k=0

fk,n,j(x),

for any j ∈ {0, 1, ..., } and x ∈ [ j
n−1 , j+1

n−1 ].
We will prove that for any fixed j and k ≤ j, each function fk,n,j(x) is convex

on [ j
n−1 , j+1

n−1 ], which will imply that V
(M)
n (f) can be written as a maximum of some

convex functions on [ j
n−1 , j+1

n−1 ].
Since f ≥ 0 it suffices to prove that the functions gk,j : [0, 1] → R+, gk,j(x) =(

x
1+x

)k−j

are convex on [ j
n−1 , j+1

n−1 ].
For k = j, gj,j is constant so is convex.
For k = j − 1 it follows gj−1,j(x) = x+1

x for any x ∈ [ j
n−1 , j+1

n−1 ]. Then
g′′j−1,j(x) = 2

x3 > 0 for any x ∈ [ j
n−1 , j+1

n−1 ].

If k ≤ j − 2 then g′′k,j(x) = (k− j)
(

x
1+x

)k−j−2

· 1
(x+1)4 · (k− j − 1− 2x) > 0,

for any x ∈ [ j
n−1 , j+1

n−1 ].
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Since all the functions gk,j are convex on [ j
n−1 , j+1

n−1 ], we get that V
(M)
n (f) is

convex on [ j
n−1 , j+1

n−1 ] as maximum of these functions, which proves the theorem. �
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