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ON INVERSE-CONVEX MEROMORPHIC FUNCTIONS

ALINA TOTOI

Abstract. We introduce a new class Ki of meromorphic functions, called

the class of inverse-convex functions, and we study some properties and

we prove some theorems for this class. We also study some properties for

the integral operator

Iγ(g)(z) =
γ

zγ+1

∫ z

0

tγg(t)dt, γ ∈ C,

with respect to this class Ki.

1. Introduction and preliminaries

Let U = {z ∈ C : |z| < 1} be the unit disc in the complex plane, U̇ = U \ {0}
and H(U) = {f : U → C : f is holomorphic in U}.
Let An = {f ∈ H(U) : f(z) = z+an+1z

n+1 +an+2z
n+2 + . . .}, n ∈ N∗, and for n = 1

we denote A1 by A and this set is called the class of analytic functions normalized at
the origin.
Let K be the class of normalized convex functions on the unit disc U , i.e.

K =
{
f ∈ A : Re

zf ′′(z)
f ′(z)

+ 1 > 0, z ∈ U
}

and let S∗ be the class of normalized starlike functions on U , i.e.

S∗ =
{
f ∈ A : Re

zf ′(z)
f(z)

> 0, z ∈ U
}
.

We denote by M0 the class of meromorphic functions in U̇ of the form

g(z) =
1
z

+ α0 + α1z + · · · , z ∈ U̇ .

Let

M∗
0 =

{
g ∈M0 : g is univalent in U̇ and Re

[
−zg

′(z)
g(z)

]
> 0, z ∈ U̇

}
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be called the class of meromorphic starlike functions in U̇ .

We note that if f is a normalized starlike function on U , then the function g =
1
f

belongs to the class M∗
0 .

For α ∈ [0, 1) and β > 1 let

M∗
0 (α) =

{
g ∈M0 : g is univalent in U̇ and Re

[
−zg

′(z)
g(z)

]
> α, z ∈ U̇

}
and

M∗
0 (α, β) =

{
g ∈M0 : g is univalent in U̇ and α < Re

[
−zg

′(z)
g(z)

]
< β, z ∈ U̇

}
.

Let

M c
0 =

{
g ∈M0 : g is univalent in U̇ and Re

[
−

(
zg′′(z)
g′(z)

+ 1
)]

> 0, z ∈ U̇
}

be called the class of meromorphic convex functions in U̇ .
It’s easy to see that M c

0 ⊂M∗
0 .

Theorem 1.1. [1, Theorem 2.4f.], [2, p.212] Let p ∈ H[a, n] with Re a > 0 and let
P : U → C be a function with ReP (z) > 0, z ∈ U . If

Re [p(z) + P (z)zp′(z)] > 0, z ∈ U,

then Re p(z) > 0, z ∈ U .

Lemma 1.2. [1, Exemple 2.4e.], [2, p.211] Let p ∈ H[a, n] with Re a > 0 and let
α : U → R. If

Re
[
p(z) + α(z)

zp′(z)
p(z)

]
> 0, z ∈ U,

then Re p(z) > 0, z ∈ U .

Definition 1.3. Let g : U̇ → C be a meromorphic function in U̇ of the form

g(z) =
α−1

z
+ α0 + α1z + · · · , z ∈ U̇ .

We say that the function g is inverse-convex in U̇ if there exists a convex function f

defined on U with f(0) = 0 such that f(z)g(z) = 1 for each z ∈ U̇ .

Remark 1.4. 1. From the above definition we notice that if g is inverse-convex, then
g(z) 6= 0, z ∈ U̇ and g is univalent in U̇ .

2. If α−1 = 1, i.e. g ∈ M0, we can easily see that the function f from the
above definition is also normalized, hence a function g ∈M0 is inverse-convex in U̇ if
there exists a function f ∈ K such that f(z)g(z) = 1 for each z ∈ U̇ . We will denote
the class of these functions by Ki( the class of normalized inverse-convex functions
on U̇).
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3. If g is inverse-convex in U̇ and λ ∈ C∗, then the meromorphic function λg
is also inverse-convex in U̇ .

4. If g ∈ Ki, then g ∈M∗
0

(
1
2

)
.

Definition 1.5. Let g : U̇ → C be a meromorphic function in U̇ of the form

g(z) =
α−1

z
+ α0 + α1z + · · · .

We say that the function g is close-to-inverse-convex in U̇ if there exists an inverse-
convex function ψ on U̇ such that

Re
g′(z)
ψ′(z)

> 0, z ∈ U̇ .

We denote by Ci the class of normalized close-to-inverse-convex functions on U̇ .
For β > 1 we say that a close-to-inverse-convex function g is in the class Ci;β

if the function ψ ∈ Ki ∩M∗
0 (0, β).

2. Main results

Theorem 2.1. (Theorem of analytical characterization of the inverse-
convexity for meromorphic functions) Let g : U̇ → C be a meromorphic function
in U̇ of the form

g(z) =
1
z

+ α0 + α1z + · · · ,

such that g(z) 6= 0, z ∈ U̇ . Then the function g is inverse-convex on U̇ if and only if
g is univalent on U̇ and

Re
[
zg′′(z)
g′(z)

− 2
zg′(z)
g(z)

+ 1
]
> 0, z ∈ U̇ .

Proof. Suppose that g ∈ Ki. Then there exists f ∈ K such that f(z)g(z) = 1, z ∈ U̇ ,
so

g(z) =
1

f(z)
, z ∈ U̇ , f ∈ K. (2.1)

Because f is univalent also is g, and if we consider the second differential for the
equality f(z)g(z) = 1, z ∈ U̇ we obtain

f ′′(z)g(z) + 2f ′(z)g′(z) + f(z)g′′(z) = 0. (2.2)

Dividing (2.2) by f(z)g′(z) 6= 0, z ∈ U̇ and multiplying the result with z we will have

zf ′′(z)
f ′(z)

f ′(z)g(z)
f(z)g′(z)

+ 2
zf ′(z)
f(z)

+
zg′′(z)
g′(z)

= 0. (2.3)
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Using the derivative for f(z)g(z) = 1 we obtain

f ′(z)g(z)
f(z)g′(z)

= −1. (2.4)

From (2.4) and (2.3) we have

zf ′′(z)
f ′(z)

+ 1 =
zg′′(z)
g′(z)

− 2
zg′(z)
g(z)

+ 1, z ∈ U̇ ,

and, since we know that Re
zf ′′(z)
f ′(z)

+ 1 > 0, z ∈ U , we obtain

Re
[
zg′′(z)
g′(z)

− 2
zg′(z)
g(z)

+ 1
]
> 0, z ∈ U̇ .

To prove the sufficiency we consider the function f(z) =
1
g(z)

, z ∈ U̇ , with

f(0) = 0 and we prove that f ∈ K. �

Remark 2.2. 1. An easy computation shows that the function

f(z) = log(1 + z), z ∈ U
(

with log(1 + z)
∣∣∣∣
z=0

= 0
)

is convex on U and normalized, so the function g(z) =
1

f(z)
, z ∈ U̇ belongs to the

class Ki.
On the other hand we have

zg′′(z)
g′(z)

+ 1 =
log(1 + z) + 2z

(1 + z) log(1 + z)
,

and it’s easy to see that the inequality

Re
[
−

(
zg′′(z)
g′(z)

+ 1
)]

> 0

doesn’t hold for each z ∈ U̇
(

for exemple we can take z =
1
2

)
, so g /∈M c

0 . In other

words, Ki 6= M c
0 .

2. We know that the function f(z) =
z

1 + eiτz
∈ K, so

g(z) =
1

f(z)
=

1
z

+ eiτ ∈ Ki.

But on the other hand, it’s easy to show that g ∈M c
0 , hence Ki ∩M c

0 6= ∅.
3. If g ∈ Ki, then f =

1
g
∈ K ⊂ S∗, so g ∈M∗

0 . Therefore, we have Ki ⊂M∗
0 .
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Theorem 2.3. (Duality theorem between the classes M∗
0 and Ki)

Let g : U̇ → C be a function in M0. Then g ∈ Ki if and only if the function

G(z) = − g2(z)
zg′(z)

∈M∗
0 .

Proof. Using the definition we have g ∈ Ki if and only if f =
1
g
∈ K.

On the other hand, in view of Alexander’s duality theorem (see [2], [3]) we
deduce that

f ∈ K is equivalent to F (z) = zf ′(z) = −zg
′(z)

g2(z)
∈ S∗.

But, we know that F ∈ S∗ is equivalent to G =
1
F
∈M∗

0 . So, we obtained

g ∈ Ki if and only if G(z) = −1
z

g2(z)
g′(z)

∈M∗
0 .

�

Theorem 2.4. (Distortion theorem for the class Ki) If the function g belongs
to the class Ki, then we have:

1
r
− 1 ≤ |g(z)| ≤ 1

r
+ 1, |z| = r ∈ (0, 1)

(
equivalent to

∣∣∣∣|g(z)| − 1
|z|

∣∣∣∣ ≤ 1, z ∈ U̇
)
,

(
1− r

r + r2

)2

≤ |g′(z)| ≤
(

1 + r

r − r2

)2

, |z| = r ∈ (0, 1).

For |g(z)| these estimates are sharp and we have equality for g(z) =
1
z

+ eiτ , τ ∈ R.

Proof. If g ∈ Ki, then f =
1
g
∈ K and in view of the distortion theorem for the class

K we have
r

1 + r
≤ |f(z)| ≤ r

1− r
(2.5)

1
(1 + r)2

≤ |f ′(z)| ≤ 1
(1− r)2

, |z| = r < 1. (2.6)

From (2.5) taking f =
1
g

we obtain the bounds for |g(z)| and since r = |z| we have

1
|z|

− 1 ≤ |g(z)| ≤ 1
|z|

+ 1 ⇔∣∣∣∣|g(z)| − 1
|z|

∣∣∣∣ ≤ 1.

For the bounds of |g′(z)| we use: g′ = −g2f ′, the bounds for |g(z)| and (2.6). �
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Remark 2.5. If f : U → C is a function of the form f(z) = z + a1z
2 + a2z

3 + · · · ,
then the function g : U̇ → C defined as g(z) =

1
f(z)

, z ∈ U̇ has the form

g(z) =
1
z

+ α0 + α1z + · · ·+ αnz
n + · · · ,

where 

α0 = −a1

α1 = −a2 − α0a1

...
αn = −an+1 − α0an − α1an−1 − · · · − αn−1a1

...

We know that if a function f belongs to the class K and it is of the form presented
above then we have |an| ≤ 1 for each n ∈ N∗ and therefore, after a short computation
we obtain that

|αn| ≤ 2n,∀n ∈ N.

So, if g ∈ Ki, g(z) =
1
z

+ α0 + α1z + · · ·+ αnz
n + · · ·, then |αn| ≤ 2n, ∀n ∈ N.

Theorem 2.6. Let be g ∈ Ki, λ ∈ C \ {0} with Reλ > 2|λ|2, β =
Reλ
2|λ|2

and

Re
[
−zg

′(z)
g(z)

]
< β (i.e. g ∈ Ki ∩M∗

0 (0, β)), then the function

hλ(z) = g(z) + λzg′(z), z ∈ U̇ ,

is close-to-inverse-convex.

Proof. From hλ(z) = g(z) + λzg′(z) we obtain h′λ(z) = g′(z) + λg′(z) + λzg′′(z)
which is equivalent to

h′λ(z)
λg′(z)

= 1 +
1
λ

+
zg′′(z)
g′(z)

=
1
λ

+ 2
zg′(z)
g(z)

+
[
zg′′(z)
g′(z)

− 2
zg′(z)
g(z)

+ 1
]

so

Re
h′λ(z)
λg′(z)

= Re
1
λ

+ 2Re
zg′(z)
g(z)

+ Re
[
zg′′(z)
g′(z)

− 2
zg′(z)
g(z)

+ 1
]
> 0, z ∈ U̇ .

For the last inequality we have used the fact that g ∈ Ki implies

Re
[
zg′′(z)
g′(z)

− 2
zg′(z)
g(z)

+ 1
]
> 0, z ∈ U̇ ,

and we have also used the condition

Re
[
−zg

′(z)
g(z)

]
<

Reλ
2|λ|2

equivalent to Re
1
λ

+ 2Re
zg′(z)
g(z)

> 0.
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Therefore, we have

Re
h′λ(z)
λg′(z)

> 0, z ∈ U̇

meaning that the function hλ is close-to-inverse-convex with respect to the inverse-
convex function λg.
We note that we need Reλ > 2|λ|2 because β > 1 and that implies |λ| < 1/2. �

For γ ∈ C with Re γ > 0 we consider the integral operator Iγ : M0 → M0

given by

Iγ(g)(z) =
γ

zγ+1

∫ z

0

tγg(t)dt (2.7)

and we have the following result.

Theorem 2.7. Let be γ ∈ C with Re γ > 1 and β =
Re γ + 1

2
.

If Iγ [Ki] ⊂ Ki, then Iγ [Ci;β ] ⊂ Ci.

Proof. Let G = Iγ(g). If we take the second derivative for the relation

G(z) = Iγ(g)(z) =
γ

zγ+1

∫ z

0

tγg(t)dt

we obtain
(γ + 2)G′(z) + zG′′(z) = γg′(z). (2.8)

If g ∈ Ci;β , then there exists a function ψ ∈ Ki ∩M∗
0 (0, β) such that

Re
g′(z)
ψ′(z)

> 0, z ∈ U. (2.9)

Let’s denote φ = Iγ(ψ). From Iγ [Ki] ⊂ Ki we obtain that φ ∈ Ki.
We also have the relation

(γ + 2)φ′(z) + zφ′′(z) = γψ′(z). (2.10)

If we denote

p(z) =
G′(z)
φ′(z)

,

then p(0) = 1 and the relation (2.8) can be rewritten in the following form

(γ + 2)p(z)φ′(z) + z[p′(z)φ′(z) + p(z)φ′′(z)] = γg′(z). (2.11)

Using (2.11) and (2.10) we obtain

p(z) +
zp′(z)

(γ + 2) +
zφ′′(z)
φ′(z)

=
g′(z)
ψ′(z)

which is equivalent to

p(z) +
zp′(z)
P (z)

=
g′(z)
ψ′(z)

, where P (z) = (γ + 2) +
zφ′′(z)
φ′(z)

.
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Using (2.9) we deduce that

Re
[
p(z) +

zp′(z)
P (z)

]
> 0, z ∈ U. (2.12)

The relation (2.10) is equivalent to φ′(z)P (z) = γψ′(z) and using the logarithmic
derivative for this equality we obtain

P (z) +
zP ′(z)
P (z)

= γ + 2 +
zψ′′(z)
ψ′(z)

=
[
zψ′′(z)
ψ′(z)

− 2
zψ′(z)
ψ(z)

+ 1
]

+ 2
zψ′(z)
ψ(z)

+ γ + 1.

Since we know that

1. ψ ∈ Ki, i.e.

Re
[
zψ′′(z)
ψ′(z)

− 2
zψ′(z)
ψ(z)

+ 1
]
> 0, z ∈ U.

2. ψ ∈M∗
0 (0, β), i.e.

Re
[
−zψ

′(z)
ψ(z)

]
< β =

Re γ + 1
2

we have

Re
[
P (z) +

zP ′(z)
P (z)

]
> 0, z ∈ U.

It is easy to see that P (0) = γ, so ReP (0) > 0 and using Lemma 1.2 we obtain
ReP (z) > 0, z ∈ U .
Using (2.12), ReP (z) > 0, z ∈ U and Theorem 1.1 we have

Re p(z) > 0, z ∈ U

which is the same with

Re
G′(z)
φ′(z)

> 0, z ∈ U, hence G ∈ Ci.

�
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