ON INVERSE-CONVEX MEROMORPHIC FUNCTIONS

ALINA TOTOI

Abstract

We introduce a new class K_{i} of meromorphic functions, called the class of inverse-convex functions, and we study some properties and we prove some theorems for this class. We also study some properties for the integral operator $$
I_{\gamma}(g)(z)=\frac{\gamma}{z^{\gamma+1}} \int_{0}^{z} t^{\gamma} g(t) d t, \gamma \in \mathbb{C}
$$ with respect to this class K_{i}.

1. Introduction and preliminaries

Let $U=\{z \in \mathbb{C}:|z|<1\}$ be the unit disc in the complex plane, $\dot{U}=U \backslash\{0\}$ and $H(U)=\{f: U \rightarrow \mathbb{C}: f$ is holomorphic in $U\}$.
Let $A_{n}=\left\{f \in H(U): f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots\right\}, n \in \mathbb{N}^{*}$, and for $n=1$ we denote A_{1} by A and this set is called the class of analytic functions normalized at the origin.
Let K be the class of normalized convex functions on the unit disc U, i.e.

$$
K=\left\{f \in A: \operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>0, z \in U\right\}
$$

and let S^{*} be the class of normalized starlike functions on U, i.e.

$$
S^{*}=\left\{f \in A: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in U\right\}
$$

We denote by M_{0} the class of meromorphic functions in \dot{U} of the form

$$
g(z)=\frac{1}{z}+\alpha_{0}+\alpha_{1} z+\cdots, z \in \dot{U}
$$

Let

$$
M_{0}^{*}=\left\{g \in M_{0}: \mathrm{g} \text { is univalent in } \dot{U} \text { and } \operatorname{Re}\left[-\frac{z g^{\prime}(z)}{g(z)}\right]>0, z \in \dot{U}\right\}
$$

be called the class of meromorphic starlike functions in \dot{U}.
We note that if f is a normalized starlike function on U, then the function $g=\frac{1}{f}$ belongs to the class M_{0}^{*}.
For $\alpha \in[0,1)$ and $\beta>1$ let

$$
M_{0}^{*}(\alpha)=\left\{g \in M_{0}: \mathrm{g} \text { is univalent in } \dot{U} \text { and } \operatorname{Re}\left[-\frac{z g^{\prime}(z)}{g(z)}\right]>\alpha, z \in \dot{U}\right\}
$$

and

$$
M_{0}^{*}(\alpha, \beta)=\left\{g \in M_{0}: \mathrm{g} \text { is univalent in } \dot{U} \text { and } \alpha<\operatorname{Re}\left[-\frac{z g^{\prime}(z)}{g(z)}\right]<\beta, z \in \dot{U}\right\} .
$$

Let

$$
M_{0}^{c}=\left\{g \in M_{0}: \mathrm{g} \text { is univalent in } \dot{U} \text { and } \operatorname{Re}\left[-\left(\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}+1\right)\right]>0, z \in \dot{U}\right\}
$$

be called the class of meromorphic convex functions in \dot{U}.
It's easy to see that $M_{0}^{c} \subset M_{0}^{*}$.
Theorem 1.1. [1, Theorem 2.4f.], [2, p.212] Let $p \in H[a, n]$ with $\operatorname{Re} a>0$ and let $P: U \rightarrow \mathbb{C}$ be a function with $\operatorname{Re} P(z)>0, z \in U$. If

$$
\operatorname{Re}\left[p(z)+P(z) z p^{\prime}(z)\right]>0, z \in U
$$

then $\operatorname{Re} p(z)>0, z \in U$.
Lemma 1.2. [1, Exemple 2.4e.], [2, p.211] Let $p \in H[a, n]$ with $\operatorname{Re} a>0$ and let $\alpha: U \rightarrow \mathbb{R}$. If

$$
\operatorname{Re}\left[p(z)+\alpha(z) \frac{z p^{\prime}(z)}{p(z)}\right]>0, z \in U
$$

then $\operatorname{Re} p(z)>0, z \in U$.
Definition 1.3. Let $g: \dot{U} \rightarrow \mathbb{C}$ be a meromorphic function in \dot{U} of the form

$$
g(z)=\frac{\alpha_{-1}}{z}+\alpha_{0}+\alpha_{1} z+\cdots, z \in \dot{U}
$$

We say that the function g is inverse-convex in \dot{U} if there exists a convex function f defined on U with $f(0)=0$ such that $f(z) g(z)=1$ for each $z \in \dot{U}$.

Remark 1.4. 1. From the above definition we notice that if g is inverse-convex, then $g(z) \neq 0, z \in \dot{U}$ and g is univalent in \dot{U}.
2. If $\alpha_{-1}=1$, i.e. $g \in M_{0}$, we can easily see that the function f from the above definition is also normalized, hence a function $g \in M_{0}$ is inverse-convex in \dot{U} if there exists a function $f \in K$ such that $f(z) g(z)=1$ for each $z \in \dot{U}$. We will denote the class of these functions by K_{i} (the class of normalized inverse-convex functions on \dot{U}).
3. If g is inverse-convex in \dot{U} and $\lambda \in \mathbb{C}^{*}$, then the meromorphic function λg is also inverse-convex in \dot{U}.
4. If $g \in K_{i}$, then $g \in M_{0}^{*}\left(\frac{1}{2}\right)$.

Definition 1.5. Let $g: \dot{U} \rightarrow \mathbb{C}$ be a meromorphic function in \dot{U} of the form

$$
g(z)=\frac{\alpha_{-1}}{z}+\alpha_{0}+\alpha_{1} z+\cdots
$$

We say that the function g is close-to-inverse-convex in \dot{U} if there exists an inverseconvex function ψ on \dot{U} such that

$$
\operatorname{Re} \frac{g^{\prime}(z)}{\psi^{\prime}(z)}>0, z \in \dot{U}
$$

We denote by C_{i} the class of normalized close-to-inverse-convex functions on \dot{U}.
For $\beta>1$ we say that a close-to-inverse-convex function g is in the class $C_{i ; \beta}$ if the function $\psi \in K_{i} \cap M_{0}^{*}(0, \beta)$.

2. Main results

Theorem 2.1. (Theorem of analytical characterization of the inverseconvexity for meromorphic functions) Let $g: \dot{U} \rightarrow \mathbb{C}$ be a meromorphic function in \dot{U} of the form

$$
g(z)=\frac{1}{z}+\alpha_{0}+\alpha_{1} z+\cdots
$$

such that $g(z) \neq 0, z \in \dot{U}$. Then the function g is inverse-convex on \dot{U} if and only if g is univalent on \dot{U} and

$$
\operatorname{Re}\left[\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}-2 \frac{z g^{\prime}(z)}{g(z)}+1\right]>0, z \in \dot{U}
$$

Proof. Suppose that $g \in K_{i}$. Then there exists $f \in K$ such that $f(z) g(z)=1, z \in \dot{U}$, so

$$
\begin{equation*}
g(z)=\frac{1}{f(z)}, z \in \dot{U}, f \in K \tag{2.1}
\end{equation*}
$$

Because f is univalent also is g, and if we consider the second differential for the equality $f(z) g(z)=1, z \in \dot{U}$ we obtain

$$
\begin{equation*}
f^{\prime \prime}(z) g(z)+2 f^{\prime}(z) g^{\prime}(z)+f(z) g^{\prime \prime}(z)=0 \tag{2.2}
\end{equation*}
$$

Dividing (2.2) by $f(z) g^{\prime}(z) \neq 0, z \in \dot{U}$ and multiplying the result with z we will have

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \frac{f^{\prime}(z) g(z)}{f(z) g^{\prime}(z)}+2 \frac{z f^{\prime}(z)}{f(z)}+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=0 \tag{2.3}
\end{equation*}
$$

Using the derivative for $f(z) g(z)=1$ we obtain

$$
\begin{equation*}
\frac{f^{\prime}(z) g(z)}{f(z) g^{\prime}(z)}=-1 \tag{2.4}
\end{equation*}
$$

From (2.4) and (2.3) we have

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1=\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}-2 \frac{z g^{\prime}(z)}{g(z)}+1, z \in \dot{U}
$$

and, since we know that $\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>0, z \in U$, we obtain

$$
\operatorname{Re}\left[\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}-2 \frac{z g^{\prime}(z)}{g(z)}+1\right]>0, z \in \dot{U} .
$$

To prove the sufficiency we consider the function $f(z)=\frac{1}{g(z)}, z \in \dot{U}$, with $f(0)=0$ and we prove that $f \in K$.
Remark 2.2.1. An easy computation shows that the function

$$
f(z)=\log (1+z), z \in U\left(\text { with }\left.\log (1+z)\right|_{z=0}=0\right)
$$

is convex on U and normalized, so the function $g(z)=\frac{1}{f(z)}, z \in \dot{U}$ belongs to the class K_{i}.
On the other hand we have

$$
\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}+1=\frac{\log (1+z)+2 z}{(1+z) \log (1+z)}
$$

and it's easy to see that the inequality

$$
\operatorname{Re}\left[-\left(\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}+1\right)\right]>0
$$

doesn't hold for each $z \in \dot{U}$ (for exemple we can take $z=\frac{1}{2}$), so $g \notin M_{0}^{c}$. In other words, $K_{i} \neq M_{0}^{c}$.
2. We know that the function $f(z)=\frac{z}{1+e^{i \tau} z} \in K$, so

$$
g(z)=\frac{1}{f(z)}=\frac{1}{z}+e^{i \tau} \in K_{i}
$$

But on the other hand, it's easy to show that $g \in M_{0}^{c}$, hence $K_{i} \cap M_{0}^{c} \neq \emptyset$.
3. If $g \in K_{i}$, then $f=\frac{1}{g} \in K \subset S^{*}$, so $g \in M_{0}^{*}$. Therefore, we have $K_{i} \subset M_{0}^{*}$.

Theorem 2.3. (Duality theorem between the classes M_{0}^{*} and K_{i}) Let $g: \dot{U} \rightarrow \mathbb{C}$ be a function in M_{0}. Then $g \in K_{i}$ if and only if the function

$$
G(z)=-\frac{g^{2}(z)}{z g^{\prime}(z)} \in M_{0}^{*}
$$

Proof. Using the definition we have $g \in K_{i}$ if and only if $f=\frac{1}{g} \in K$.
On the other hand, in view of Alexander's duality theorem (see [2], [3]) we deduce that

$$
f \in K \quad \text { is equivalent to } \quad F(z)=z f^{\prime}(z)=-\frac{z g^{\prime}(z)}{g^{2}(z)} \in S^{*}
$$

But, we know that $F \in S^{*}$ is equivalent to $G=\frac{1}{F} \in M_{0}^{*}$. So, we obtained

$$
g \in K_{i} \quad \text { if and only if } \quad G(z)=-\frac{1}{z} \frac{g^{2}(z)}{g^{\prime}(z)} \in M_{0}^{*}
$$

Theorem 2.4. (Distortion theorem for the class K_{i}) If the function g belongs to the class K_{i}, then we have:

$$
\begin{gathered}
\frac{1}{r}-1 \leq|g(z)| \leq \frac{1}{r}+1,|z|=r \in(0,1) \quad\left(\text { equivalent to }| | g(z)\left|-\frac{1}{|z|}\right| \leq 1, z \in \dot{U}\right) \\
\left(\frac{1-r}{r+r^{2}}\right)^{2} \leq\left|g^{\prime}(z)\right| \leq\left(\frac{1+r}{r-r^{2}}\right)^{2},|z|=r \in(0,1)
\end{gathered}
$$

For $|g(z)|$ these estimates are sharp and we have equality for $g(z)=\frac{1}{z}+e^{i \tau}, \tau \in \mathbb{R}$. Proof. If $g \in K_{i}$, then $f=\frac{1}{g} \in K$ and in view of the distortion theorem for the class K we have

$$
\begin{gather*}
\frac{r}{1+r} \leq|f(z)| \leq \frac{r}{1-r} \tag{2.5}\\
\frac{1}{(1+r)^{2}} \leq\left|f^{\prime}(z)\right| \leq \frac{1}{(1-r)^{2}},|z|=r<1 \tag{2.6}
\end{gather*}
$$

From (2.5) taking $f=\frac{1}{g}$ we obtain the bounds for $|g(z)|$ and since $r=|z|$ we have

$$
\begin{gathered}
\frac{1}{|z|}-1 \leq|g(z)| \leq \frac{1}{|z|}+1 \Leftrightarrow \\
\left||g(z)|-\frac{1}{|z|}\right| \leq 1
\end{gathered}
$$

For the bounds of $\left|g^{\prime}(z)\right|$ we use: $g^{\prime}=-g^{2} f^{\prime}$, the bounds for $|g(z)|$ and (2.6).

Remark 2.5. If $f: U \rightarrow \mathbb{C}$ is a function of the form $f(z)=z+a_{1} z^{2}+a_{2} z^{3}+\cdots$, then the function $g: \dot{U} \rightarrow \mathbb{C}$ defined as $g(z)=\frac{1}{f(z)}, z \in \dot{U}$ has the form

$$
g(z)=\frac{1}{z}+\alpha_{0}+\alpha_{1} z+\cdots+\alpha_{n} z^{n}+\cdots
$$

where

$$
\left\{\begin{array}{l}
\alpha_{0}=-a_{1} \\
\alpha_{1}=-a_{2}-\alpha_{0} a_{1} \\
\vdots \\
\alpha_{n}=-a_{n+1}-\alpha_{0} a_{n}-\alpha_{1} a_{n-1}-\cdots-\alpha_{n-1} a_{1} \\
\vdots
\end{array}\right.
$$

We know that if a function f belongs to the class K and it is of the form presented above then we have $\left|a_{n}\right| \leq 1$ for each $n \in \mathbb{N}^{*}$ and therefore, after a short computation we obtain that

$$
\left|\alpha_{n}\right| \leq 2^{n}, \forall n \in \mathbb{N} .
$$

So, if $g \in K_{i}, g(z)=\frac{1}{z}+\alpha_{0}+\alpha_{1} z+\cdots+\alpha_{n} z^{n}+\cdots$, then $\left|\alpha_{n}\right| \leq 2^{n}, \forall n \in \mathbb{N}$.
Theorem 2.6. Let be $g \in K_{i}, \lambda \in \mathbb{C} \backslash\{0\}$ with $\operatorname{Re} \lambda>2|\lambda|^{2}, \beta=\frac{\operatorname{Re} \lambda}{2|\lambda|^{2}}$ and $\operatorname{Re}\left[-\frac{z g^{\prime}(z)}{g(z)}\right]<\beta$ (i.e. $g \in K_{i} \cap M_{0}^{*}(0, \beta)$), then the function

$$
h_{\lambda}(z)=g(z)+\lambda z g^{\prime}(z), z \in \dot{U}
$$

is close-to-inverse-convex.
Proof. From $h_{\lambda}(z)=g(z)+\lambda z g^{\prime}(z)$ we obtain $h_{\lambda}^{\prime}(z)=g^{\prime}(z)+\lambda g^{\prime}(z)+\lambda z g^{\prime \prime}(z)$ which is equivalent to

$$
\frac{h_{\lambda}^{\prime}(z)}{\lambda g^{\prime}(z)}=1+\frac{1}{\lambda}+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=\frac{1}{\lambda}+2 \frac{z g^{\prime}(z)}{g(z)}+\left[\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}-2 \frac{z g^{\prime}(z)}{g(z)}+1\right]
$$

So

$$
\operatorname{Re} \frac{h_{\lambda}^{\prime}(z)}{\lambda g^{\prime}(z)}=\operatorname{Re} \frac{1}{\lambda}+2 \operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}+\operatorname{Re}\left[\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}-2 \frac{z g^{\prime}(z)}{g(z)}+1\right]>0, z \in \dot{U}
$$

For the last inequality we have used the fact that $g \in K_{i}$ implies

$$
\operatorname{Re}\left[\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}-2 \frac{z g^{\prime}(z)}{g(z)}+1\right]>0, z \in \dot{U}
$$

and we have also used the condition

$$
\operatorname{Re}\left[-\frac{z g^{\prime}(z)}{g(z)}\right]<\frac{\operatorname{Re} \lambda}{2|\lambda|^{2}} \quad \text { equivalent to } \quad \operatorname{Re} \frac{1}{\lambda}+2 \operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}>0
$$

Therefore, we have

$$
\operatorname{Re} \frac{h_{\lambda}^{\prime}(z)}{\lambda g^{\prime}(z)}>0, z \in \dot{U}
$$

meaning that the function h_{λ} is close-to-inverse-convex with respect to the inverseconvex function λg.
We note that we need $\operatorname{Re} \lambda>2|\lambda|^{2}$ because $\beta>1$ and that implies $|\lambda|<1 / 2$.
For $\gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma>0$ we consider the integral operator $I_{\gamma}: M_{0} \rightarrow M_{0}$ given by

$$
\begin{equation*}
I_{\gamma}(g)(z)=\frac{\gamma}{z^{\gamma+1}} \int_{0}^{z} t^{\gamma} g(t) d t \tag{2.7}
\end{equation*}
$$

and we have the following result.
Theorem 2.7. Let be $\gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma>1$ and $\beta=\frac{\operatorname{Re} \gamma+1}{2}$. If $I_{\gamma}\left[K_{i}\right] \subset K_{i}$, then $I_{\gamma}\left[C_{i ; \beta}\right] \subset C_{i}$.
Proof. Let $G=I_{\gamma}(g)$. If we take the second derivative for the relation

$$
G(z)=I_{\gamma}(g)(z)=\frac{\gamma}{z^{\gamma+1}} \int_{0}^{z} t^{\gamma} g(t) d t
$$

we obtain

$$
\begin{equation*}
(\gamma+2) G^{\prime}(z)+z G^{\prime \prime}(z)=\gamma g^{\prime}(z) \tag{2.8}
\end{equation*}
$$

If $g \in C_{i ; \beta}$, then there exists a function $\psi \in K_{i} \cap M_{0}^{*}(0, \beta)$ such that

$$
\begin{equation*}
\operatorname{Re} \frac{g^{\prime}(z)}{\psi^{\prime}(z)}>0, z \in U \tag{2.9}
\end{equation*}
$$

Let's denote $\phi=I_{\gamma}(\psi)$. From $I_{\gamma}\left[K_{i}\right] \subset K_{i}$ we obtain that $\phi \in K_{i}$.
We also have the relation

$$
\begin{equation*}
(\gamma+2) \phi^{\prime}(z)+z \phi^{\prime \prime}(z)=\gamma \psi^{\prime}(z) \tag{2.10}
\end{equation*}
$$

If we denote

$$
p(z)=\frac{G^{\prime}(z)}{\phi^{\prime}(z)}
$$

then $p(0)=1$ and the relation (2.8) can be rewritten in the following form

$$
\begin{equation*}
(\gamma+2) p(z) \phi^{\prime}(z)+z\left[p^{\prime}(z) \phi^{\prime}(z)+p(z) \phi^{\prime \prime}(z)\right]=\gamma g^{\prime}(z) \tag{2.11}
\end{equation*}
$$

Using (2.11) and (2.10) we obtain

$$
p(z)+\frac{z p^{\prime}(z)}{(\gamma+2)+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}}=\frac{g^{\prime}(z)}{\psi^{\prime}(z)}
$$

which is equivalent to

$$
p(z)+\frac{z p^{\prime}(z)}{P(z)}=\frac{g^{\prime}(z)}{\psi^{\prime}(z)}, \quad \text { where } \quad P(z)=(\gamma+2)+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)} .
$$

Using (2.9) we deduce that

$$
\begin{equation*}
\operatorname{Re}\left[p(z)+\frac{z p^{\prime}(z)}{P(z)}\right]>0, z \in U \tag{2.12}
\end{equation*}
$$

The relation (2.10) is equivalent to $\phi^{\prime}(z) P(z)=\gamma \psi^{\prime}(z)$ and using the logarithmic derivative for this equality we obtain

$$
P(z)+\frac{z P^{\prime}(z)}{P(z)}=\gamma+2+\frac{z \psi^{\prime \prime}(z)}{\psi^{\prime}(z)}=\left[\frac{z \psi^{\prime \prime}(z)}{\psi^{\prime}(z)}-2 \frac{z \psi^{\prime}(z)}{\psi(z)}+1\right]+2 \frac{z \psi^{\prime}(z)}{\psi(z)}+\gamma+1
$$

Since we know that

1. $\psi \in K_{i}$, i.e.

$$
\operatorname{Re}\left[\frac{z \psi^{\prime \prime}(z)}{\psi^{\prime}(z)}-2 \frac{z \psi^{\prime}(z)}{\psi(z)}+1\right]>0, z \in U
$$

2. $\psi \in M_{0}^{*}(0, \beta)$, i.e.

$$
\operatorname{Re}\left[-\frac{z \psi^{\prime}(z)}{\psi(z)}\right]<\beta=\frac{\operatorname{Re} \gamma+1}{2}
$$

we have

$$
\operatorname{Re}\left[P(z)+\frac{z P^{\prime}(z)}{P(z)}\right]>0, z \in U
$$

It is easy to see that $P(0)=\gamma$, so $\operatorname{Re} P(0)>0$ and using Lemma 1.2 we obtain $\operatorname{Re} P(z)>0, z \in U$.
Using (2.12), $\operatorname{Re} P(z)>0, z \in U$ and Theorem 1.1 we have

$$
\operatorname{Re} p(z)>0, z \in U
$$

which is the same with

$$
\operatorname{Re} \frac{G^{\prime}(z)}{\phi^{\prime}(z)}>0, z \in U, \quad \text { hence } \quad G \in C_{i}
$$

References

[1] Miller, S. S., Mocanu, P. T., Differential subordinations. Theory and applications, Marcel Dekker Inc. New York, Basel, 2000.
[2] Mocanu, P. T., Bulboacă, T., Sălăgean, G., The geometric theory of univalent functions, (Romanian) Casa Cărţii de Ştiinţă, Cluj-Napoca, 2006.
[3] Pommerenke, Ch., Univalent Functions, Vanderhoeck \& Ruprecht, Göttingen, 1975.
Department of Mathematics
Faculty of Science
University "Lucian Blaga" Sibiu, Romania
E-mail address: totoialina@yahoo.com

