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ON INVERSE-CONVEX MEROMORPHIC FUNCTIONS

ALINA TOTOI

Abstract. We introduce a new class K; of meromorphic functions, called
the class of inverse-convex functions, and we study some properties and
we prove some theorems for this class. We also study some properties for
the integral operator

L)) = o5 [ e ec

with respect to this class K;.

1. Introduction and preliminaries

Let U = {z € C : |z| < 1} be the unit disc in the complex plane, U = U \ {0}
and H({U) ={f:U — C: f is holomorphic in U}.
Let A, = {f € HU) : f(2) = 2+ ani12" " +an422" 2 +...}, n € N* and forn = 1
we denote A; by A and this set is called the class of analytic functions normalized at
the origin.
Let K be the class of normalized convex functions on the unit disc U, i.e.
21"(2)
f'(z)

and let S* be the class of normalized starlike functions on U, i.e.

K:{feA:Re +1>0,26U}

. _ na 2f(2)
S —{feA.Re ) >0,zeU}.

We denote by My the class of meromorphic functions in U of the form

1 .
g(z):;+a0+a1z+~--,z€U.

Let

/
My = {g € My : g is univalent in U and Re [_zg (Z)} >0,z¢€ U}
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be called the class of meromorphic starlike functions in U.

1
We note that if f is a normalized starlike function on U, then the function g = 7

belongs to the class M.
For av € [0,1) and 8 > 1 let

* . . - 2g'(2) .
Mg (a) =49 € My : g is univalent in U and Re |— >a,z€U

and

/
M (a, B) = {geMO:giS univalent in U and o < Re [_zg (z)} < B, zEU}.
g

Let

. . - 29" (2) .
M§ = 4qg¢€ My:gis univalent in U and Re |— ,()+1 >0,z€U
g (z
be called the class of meromorphic convex functions in U.
It’s easy to see that M5 C M.

Theorem 1.1. [1, Theorem 2.4f.], [2, p.212] Let p € Hla,n] with Rea > 0 and let
P :U — C be a function with Re P(z) >0, z € U. If

Re[p(z) + P(2)zp'(2)] > 0, z € U,

then Rep(z) >0, z € U.

Lemma 1.2. [1, Exemple 2.4e.], [2, p.211] Let p € Hla,n] with Rea > 0 and let
a:U—=R.If
zp'(2)

Re p(z) +a(z) o)

>0,z€eU,

then Rep(z) >0, z € U.

Definition 1.3. Let g : U — C be a meromorphic function in U of the form
o .
g(z):71+ao+a1z+~-- ,zeU.

We say that the function g¢ is inverse-convex in U if there exists a convex function f
defined on U with f(0) = 0 such that f(z)g(z) = 1 for each z € U.

Remark 1.4. 1. From the above definition we notice that if g is inverse-convex, then
g(z) #0, z € U and g is univalent in U.

2. If a_y =1, ie. g € My, we can easily see that the function f from the
above definition is also normalized, hence a function g € Mj is inverse-convex in U if
there exists a function f € K such that f(z)g(z) =1 for each z € U. We will denote
the class of these functions by K;( the class of normalized inverse-convex functions
on U).
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3. If g is inverse-convex in U and ) € C*, then the meromorphic function Ag

is also inverse-convex in U.

1
4. If g € K;, then g € M§ (2)

Definition 1.5. Let g : U — C be a meromorphic function in U of the form

a_
62) = hap bzt

We say that the function g is close-to-inverse-convex in U if there exists an inverse-
convex function ¢ on U such that

g'(2)
R

We denote by C; the class of normalized close-to-inverse-convex functions on U.

>0,z€U.

For 3 > 1 we say that a close-to-inverse-convex function g is in the class Cj.3
if the function ¢ € K; N Mg(0, 3).

2. Main results

Theorem 2.1. (Theorem of analytical characterization of the inverse-

convexity for meromorphic functions) Let g : U—Cbhea meromorphic function
in U of the form

1
9(z) = T tazt,
such that g(z) £ 0, z € U. Then the function g is inverse-convez on U if and only if

g is univalent on U and

') ,2/)
g (2) 9(z)

Proof. Suppose that g € K;. Then there exists f € K such that f(z)g(z) =1, z € U,
0

Re +1] >0,z€eU.

1 )
g(z):%,zéU,fGK. (2.1)

Because f is univalent also is g, and if we consider the second differential for the

equality f(2)g(z) =1, z € U we obtain
f"(2)g(2) +2f"(2)g'(2) + f(2)g" (2) = 0. (2.2)
Dividing (2.2) by f(2)¢'(z) # 0, z € U and multiplying the result with z we will have

) PRe() | ) | )
) e e T e

(2.3)
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Using the derivative for f(z)g(z) =1 we obtain

Foee)
eric . (24)
From (2.4) and (2.3) we have
) W)W
7 T e TheEY
21"(2)

and, since we know that Re +1>0, z €U, we obtain

)
e [0

29’ (%) } .
-2 +1] >0,z€U.
g'(2) 9(2)
1 .
To prove the sufficiency we consider the function f(z) = Ok z € U, with
f(0) = 0 and we prove that f € K. O

Remark 2.2. 1. An easy computation shows that the function

z=0

f(z)=log(l1+2),z€U (with log(1 + 2)

is convex on U and normalized, so the function g(z) = ﬁ, zeU belongs to the
class K;.
On the other hand we have

29" (2) ~log(1+2)+22

g'(2) (14 2)log(1+z2)’

and it’s easy to see that the inequality
1"
e |- (2241 >0
g'(2)
. 1
doesn’t hold for each z € U ( for exemple we can take z = 2), so g ¢ M§. In other
words, K; # M.

2. We know that the function f(z) = — 2 ¢ K, so
1+e7z
1 1 ;
qg(z) = =—-+e7 e K;.
AN O

But on the other hand, it’s easy to show that g € M§, hence K; N M§ # 0.
1
3. Ifg € K;, then f = — € K C 5%, s0g € M{. Therefore, we have K; C M.
g
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Theorem 2.3. (Duality theorem between the classes M} and K;)
Let g : U — C be a function in My. Then g € K; if and only if the function

Glz) = - Zgg/(é)) M.

1
Proof. Using the definition we have g € K; if and only if f = J eK.

On the other hand, in view of Alexander’s duality theorem (see [2], [3]) we
deduce that

29'(2) _ o
0 € S*.

1
But, we know that F' € S* is equivalent to G = I € M. So, we obtained

1 2
1)
z g'(2)

f € K isequivalent to F(z)=zf'(z) = —

g€ K; ifand only if G(z) =

O
Theorem 2.4. (Distortion theorem for the class K;) If the function g belongs

to the class K;, then we have:

! 1 1 .
- —1<|g(z)|<=+1,|z|=re€(0,1) (equivalent to |lg(2)| — ||‘ <1, ze€ U),
T r >
1-r\? / 1+7\°
<T+T2) <lg'(z)] < (r_rg) .2l =7 € (0,1).

1 ,
For |g(2)| these estimates are sharp and we have equality for g(z) = 2 +e7, TeR.

1
Proof. If g € K;, then f = — € K and in view of the distortion theorem for the class
g

K we have
e O (2.5)
1 1
m§|f/(z)|§m, |z =7 < 1. (2.6)

1
From (2.5) taking f = — we obtain the bounds for |g(z)| and since r = |z| we have
g

1 1
S 1<) < ol e

2| 2|
1
9(2)| = | < 1.
‘ |2l
For the bounds of |¢/(2)| we use: ¢’ = —g*f’, the bounds for |g(z)| and (2.6). O
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Remark 2.5. If f : U — C is a function of the form f(2) = z + a12? + a22® + -+ -,

] 1 i
then the function g : U — C defined as g(z) = m, z € U has the form
z

1 n
g(z)=;+ao+alz+---+anz +-

where
Qg = —a1
Q] = —a2 — Qpay
AOp = —0p41 — O00p — A1Ap—1 — -+ — Op_107

We know that if a function f belongs to the class K and it is of the form presented
above then we have |a,| < 1 for each n € N* and therefore, after a short computation

we obtain that
lan| <27, ¥n € N,

1
So,ifge K;, g(z) =—+ap+arz+ -+ a,z" + -, then |a,| < 2" Vn e N.

Tz
Re )\

Theorem 2.6. Let be g € K;, A € C\ {0} with ReX > 2|\? 3 = INE and

Re {_ Zgggg)} < B (i.e. g€ K;NM;(0,08)), then the function

ha(z) = g(2) + A\zg'(2), z € U,
is close-to-inverse-conver.

Proof.  From hy(z) = g(z) + Azg'(z) we obtain h)(z) = ¢'(z) + Ag'(z) + Azg"(2)
which is equivalent to

MG 1 ') 1 ) [ ae(e)

ME AT e T e [g%z) 0) “]
NG L 29 (2) 29"(2) _ ,29'(2) Lel
i =Ry v e 02 0 ] ok er

For the last inequality we have used the fact that g € K; implies

29"(2)  z9'(2) sl
Re [ e 2 ) +1} >0,z€U,

and we have also used the condition

zg’(z)} Re A , 1 zg'(#)
Re |— equivalent to Re — + 2Re
[ 9(2) 2[A)2 A 9(2)

> 0.
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Therefore, we have

hA (2

Re >\( )
Ag'(2)

meaning that the function h) is close-to-inverse-convex with respect to the inverse-

>0,z€U

convex function \g.
We note that we need Re A > 2|A|> because 8 > 1 and that implies |\| < 1/2. O
For v € C with Rey > 0 we consider the integral operator I, : My — My

given by
,y z
L)) = 2 [ Patt (27)
and we have the following result.
R 1
Theorem 2.7. Let be v € C with Rey > 1 and 8 = %.

[f I’y[Ki] C K;, then I'y[Ci;B] c ;.
Proof. Let G = IL,(g). If we take the second derivative for the relation

G(z) =1,(9)(z) = 2'7-&-1 /OZ tYg(t)dt

we obtain
(749G (2) + 26" (2) = 79 (2). (2.8)
If g € C;.3, then there exists a function ¢ € K; N M (0, 5) such that
9'(2)
Re >0,zeU. 2.9
V) 29

Let’s denote ¢ = I,(¢). From I,[K;] C K; we obtain that ¢ € K.

We also have the relation

(7 +2)¢'(2) + 24" (2) = 7¢'(2). (2.10)
If we denote &2
p(Z) = Wa
then p(0) = 1 and the relation (2.8) can be rewritten in the following form
(v +2)p(2)¢(2) + 2[p'(2)8' (2) + p(2)8" (2)] = 79/ (2). (2.11)
Using (2.11) and (2.10) we obtain
zp'(2) 9'(2)
p(2) + P Iz =
2¢"(z)  '(2)
DT
which is equivalent to
PE IO 6/(2)
B+ Pe Twey M PESOERE G
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Using (2.9) we deduce that

zp'(2)
P(z)
The relation (2.10) is equivalent to ¢'(2)P(z) = v¢'(z) and using the logarithmic
derivative for this equality we obtain

Re [p(z) + ] >0,z€U. (2.12)

2P'(2) 2"(z) _[2"(2) L #Y(2) 2’ (2)
P = = [ 2 e
Since we know that
1. 'l)/J € Ki; i.e.
W) () .
Re [ PR +1] >0,z€U.
2. ¢ € Mg (0, ), ie.
~2)(2) _ Rey+1
e |- <0="4
we have
{ 2P'(2)
Re |P(z) + Pl2) } >0, zeU.

It is easy to see that P(0) = 7, so ReP(0) > 0 and using Lemma 1.2 we obtain
ReP(z) >0, z€U.
Using (2.12), Re P(z) > 0, z € U and Theorem 1.1 we have

Rep(z) >0,z€U
which is the same with
G'(2)

Re 5

>0,z€U, hence GeC;.
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