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SUBORDINATION RESULTS AND INTEGRAL MEANS
INEQUALITIES FOR K−UNIFORMLY STARLIKE FUNCTIONS

DEFINED BY CONVOLUTION INVOLVING THE HURWITZ-LERCH
ZETA FUNCTION

GANGADHARAN MURUGUSUNDARAMOORTHY

Abstract. In this paper, we introduce a generalized class of k−uniformly

starlike functions and obtain the subordination results and integral means

inequalities. Some interesting consequences of our results are also pointed

out.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anzn (1.1)

which are analytic and univalent in the open disc U = {z : z ∈ C; |z| < 1}. For

functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z +
∞∑

n=2
bnzn, we define the

Hadamard product (or convolution) of f and g by

(f ∗ g)(z) = z +
∞∑

n=2

anbnzn, z ∈ U. (1.2)

In terms of the Hadamard product (or convolution), we choose g as a fixed function
in A such that (f ∗ g)(z) exists for any f ∈ A, and for various choices of g we get
different linear operators which have been studied in recent past. To illustrate some of
these cases which arise from the convolution structure (1.2), we consider the following
examples.
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The following we recall a general Hurwitz-Lerch Zeta function Φ(z, s, a) de-
fined by (cf., e.g., [28], p. 121 et sep.])

Φ(z, s, a) :=
∞∑

n=0

zn

(n + a)s
(1.3)

(a ∈ C \ {Z−0 }; s ∈ C,R(s) > 1 and |z| = 1)

where, as usual, Z−0 := Z \ {N}, (Z := {±1,±2,±3, ...}); N := {1, 2, 3, ...}.
Several interesting properties and characteristics of the Hurwitz-Lerch Zeta

function Φ(z, s, a) can be found in the recent investigations by Choi and Srivastava
[4], Ferreira and Lopez [5], Garg et al. [8], Lin and Srivastava [15], Lin et al. [16],
and others. In 2007, Srivastava and Attiya [27] (see also Raducanu and Srivastava
[20], and Prajapat and Goyal [19]) introduced and investigated the linear operator:

Jµ,b : A → A

defined, in terms of the Hadamard product (or convolution), by

Jµ,bf(z) = Gµ,b ∗ f(z) (1.4)

(z ∈ U ; b ∈ C \ {Z−0 };µ ∈ C; f ∈ A), where, for convenience,

Gµ,b(z) := (1 + b)µ[Φ(z, µ, b)− b−µ] (z ∈ U). (1.5)

It is easy to observe from (1.4) and (1.5) that, for f(z) of the form(1.1),we
have

Jµ,bf(z) = z +
∞∑

n=2

Cn(b, µ)anzn (1.6)

Cn(b, µ) =
(

1 + b

n + b

)µ

(1.7)

where (and throughout this paper unless otherwise mentioned) the parameters
µ, b and Cn(b, µ) are constrained as follows:

b ∈ C \ {Z−0 };µ ∈ C and Cn(b, µ) =
(

1 + b

n + b

)µ

.

For f(z) ∈ A and z ∈ U

Jµ,bf(z) = z +
∞∑

n=2

(
1 + b

n + b

)µ

anzn (1.8)

For various choices of µ we get different operators and are listed below.

J0,b(f)(z) := f(z), (1.9)
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J1,b(f)(z) :=
∫ z

0

f(t)
t

dt := A(f)(z), (1.10)

J1,ν(f)(z) :=
1 + ν

zν

∫ z

0

t1−νf(t)dt := Fν(f)(z), (ν > −1), (1.11)

Jσ,1(f)(z) := z +
∞∑

n=2

(
2

n + 1

)σ

anzn = Iσ(f)(z)(σ > 0), (1.12)

where A(f) and Fγ are the integral operators introduced by Alexandor [1] and
Bernardi [3], respectively, and Iσ(f) is the Jung-Kim-Srivastava integral operator
[11] closely related to some multiplier transformation studied by Fleet [6].

In this paper, by making use of the operatorJµ,b we introduced a new subclass
of analytic functions with negative coefficients and discuss some interesting properties
of this generalized function class.

For 0 ≤ γ < 1 and k ≥ 0, we let J µ
b (γ, k) be the subclass of A consisting of

functions of the form (1.1) and satisfying the analytic criterion

Re
{

z(J µ
b f(z))′

J µ
b f(z)

− γ

}
> k

∣∣∣∣z(J µ
b f(z))′

J µ
b f(z)

− 1
∣∣∣∣ , z ∈ U, (1.13)

where J µ
b f(z) is given by (1.4). We further let TJ µ

b (γ, k) = J µ
b (γ, k) ∩ T, where

T :=

{
f ∈ A : f(z) = z −

∞∑
n=2

|an|zn, z ∈ U

}
(1.14)

is a subclass of A introduced and studied by Silverman [23].
By suitably specializing the values of µ, γ and k in the class J µ

b (γ, k), we
obtain the various subclasses, we present some examples.

Example 1.1. If µ = 0 then
J 0

b (γ, k) ≡ S(γ, k) :=
{

f ∈ A : Re
{

zf ′(z)
f(z) − γ

}
> k

∣∣∣ zf ′(z)
f(z) − 1

∣∣∣ , z ∈ U
}

.

Further TS(γ, k) = S(γ, k) ∩ T, where T is given by (1.14). The class
TS(γ, k) ≡ UST (γ, k). A function in UST (γ, k) is called k−uniformly starlike of
order γ, 0 ≤ γ < 1 and Note that the classes UST (γ, 0) and UST (0, 0) were first
introduced in [23]. We also observe that UST (γ, 0) ≡ T ∗(γ) is well-known subclass
of starlike functions of order γ.

Example 1.2. If µ = 1 and b = ν with ν > −1 then

J 1
ν (γ, k) ≡ Bν(γ, k) =

{
f ∈ A : Re

(
z(Jνf(z))′

Jνf(z)
− γ

)
>k

∣∣∣∣z(Jνf(z))′

Jνf(z)
− 1
∣∣∣∣ , z ∈ U

}
,

where Jν is a Bernardi operator [3] defined by

Jνf(z) :=
ν + 1
zν

∫ z

0

tν−1f(t)dt.
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Note that the operator J1 was studied earlier by Libera [13] and Livingston
[17]. Further, TBν(γ, k) = Bν(γ, k) ∩ T, where T is given by (1.14).

Example 1.3. If µ = σ and b = 1 with σ > 0 then

J σ
1 (γ, k) ≡ Iσ(γ, k) =

{
f ∈ A : Re

(
z(Iσf(z))′

Iσf(z)
− γ

)
>k

∣∣∣∣z(Iσf(z))′

Iσf(z)
− 1
∣∣∣∣ , z ∈ U

}
,

where Iσ is the Jung-Kim-Srivastava integral operator [11] defined by

Iσf(z) := z +
∞∑

n=2

(
2

n + 1

)σ

anzn.

Further, TIσ(γ, k) = Iσ(γ, k) ∩ T, where T is given by (1.14).

Remark 1.4. Observe that, specializing the parameters µ γ and k in the class
J µ

b (γ, k), we obtain various classes introduced and studied by Goodman [9, 10], Kanas
et.al., [12], Ma and Minda [18], Rønning [21, 22] and others.

The object of the present paper is to investigate the coefficient esti-
mates,extremepoint.Further, we obtain the subordination results and integral means
inequalities for the generalized class k- uniformly starlike functions. Some interesting
consequences of our results are also pointed out.

2. Coefficient Estimates

We first mention a sufficient condition for function f(z) of the form (1.1) to
belong to the class J µ

b (γ, k),given by the following theorem which can be established
easily on lines similar to Aouf and Murugusundaramoorthy [2] hence we omit the
details.

Theorem 2.1. A function f(z) of the form (1.1) is in J µ
b (γ, k) if

∞∑
n=2

[n(1 + k)− (γ + k)]Cn(b, µ) |an| ≤ 1− γ, (2.1)

where 0 ≤ γ < 1, k ≥ 0, and Cn(b, µ) is given by (1.7).

Theorem 2.2. Let 0 ≤ γ < 1, k ≥ 0 and a function f of the form (1.14) to be in the
class TJ µ

b (γ, k) if and only if

∞∑
n=2

[n(1 + k)− (γ + k)]Cn(b, µ) |an| ≤ 1− γ, (2.2)

where Cn(b, µ) is given by (1.7).
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Corollary 2.3. If f ∈ T J µ
b (γ, k), then

|an| ≤
1− γ

[n(1 + k)− (γ + k)]Cn(b, µ)
, , 0 ≤ γ < 1, k ≥ 0, (2.3)

where Cn(b, µ) is given by (1.7).
Equality holds for the function f(z) = z − 1−γ

[n(1+k)−(γ+k)]Cn(b,µ)z
n.

Theorem 2.4. (Extreme Points) Let

f1(z) = z and fn(z) = z − 1− γ

[n(1 + k)− (γ + k)]Cn(b, µ)
zn, n ≥ 2,

for 0 ≤ γ < 1, k ≥ 0, and Cn(b, µ) is given by (1.7). Then f(z) is in the class

TJ µ
b (γ, k) if and only if it can be expressed in the form f(z) =

∞∑
n=1

ωnfn(z),

where ωn ≥ 0 and
∞∑

n=1
ωn = 1.

3. Subordination Results

Before stating and proving our subordination theorem for the class
T J µ

b (γ, k), we need the following definitions and lemmas.

Definition 3.1. For analytic functions g and h with g(0) = h(0), g is said to be
subordinate to h, denoted by g ≺ h, if there exists an analytic function w such that
w(0) = 0, |w(z)| < 1 and g(z) = h(w(z)), for all z ∈ U.

Definition 3.2. A sequence {bn}∞n=1 of complex numbers is said to be a subordinating

sequence if, whenever f(z) =
∞∑

n=1
anzn, a1 = 1 is regular, univalent and convex in U,

we have
∞∑

n=1

bnanzn ≺ f(z), z ∈ U. (3.1)

In 1961, Wilf [29] proved the following subordinating factor sequence.

Lemma 3.3. The sequence {bn}∞n=1 is a subordinating factor sequence if and only if

Re

{
1 + 2

∞∑
n=1

bnzn

}
> 0, z ∈ U. (3.2)

Theorem 3.4. Let f ∈ T J µ
b (γ, k) and g(z) be any function in the usual class of

convex functions C, then

(2 + k − γ))C2

2[1− γ + (2 + k − γ)C2]
(f ∗ g)(z) ≺ g(z) (3.3)

where 0 ≤ γ < 1; k ≥ 0 with

C2 = C2(b, µ) =
(

1 + b

2 + b

)µ

(3.4)
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and

Re {f(z)} > − [1− γ + (2 + k − γ)C2]
(2 + k − γ)C2

, z ∈ U. (3.5)

The constant factor (2+k−γ)C2
2[1−γ+(2+k−γ)C2]

in (3.3) cannot be replaced by a larger number.

Proof. Let f ∈ T J µ
b (γ, k) and suppose that g(z) = z +

∞∑
n=2

cnzn ∈ C. Then

(2 + k − γ)C2

2[1− γ + (2 + k − γ)C2]
(f ∗ g)(z)

=
(2 + k − γ)C2

2[1− γ + (2 + k − γ)C2]

(
z +

∞∑
n=2

cnanzn

)
. (3.6)

Thus, by Definition 3.2, the subordination result holds true if{
(2 + k − γ)C2

2[1− γ + (2 + k − γ)C2]

}∞
n=1

is a subordinating factor sequence, with a1 = 1. In view of Lemma 3.3, this is
equivalent to the following inequality

Re

{
1 +

∞∑
n=1

(2 + k − γ)C2

[1− γ + (2 + k − γ)C2]
anzn

}
> 0, z ∈ U. (3.7)

Since (n(1+k)−(γ+k))Cn(b,µ)
(1−γ) ≥ (2+k−γ)C2

(1−γ) > 0, for n ≥ 2 we have

Re

{
1 +

(2 + k − γ)C2

[1− γ + (2 + k − γ)C2]

∞∑
n=1

anzn

}

= Re

1 +
(2 + k − γ)C2

[1− γ + (2 + k − γ)C2]
z +

∞∑
n=2

(2 + k − γ)C2anzn

[1− γ + (2 + k − γ)C2]


≥ 1− (2 + k − γ)C2

[1− γ + (2 + k − γ)C2]
r

− 1
[1− γ + (2 + k − γ)C2]

∞∑
n=2

|[n(1 + k)− (γ + k)(1 + nλ− λ)]Cn(b, µ)an| rn

≥ 1− (2 + k − γ)C2

[1− γ + (2 + k − γ)C2]
r − 1− γ

[1− γ + (2 + k − γ)C2]
r

> 0, |z| = r < 1,
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where we have also made use of the assertion (2.1) of Theorem 2.1. This evidently
proves the inequality (3.7) and hence the subordination result (3.3) asserted by The-
orem 3.4. The inequality (3.5) follows from (3.3) by taking

g(z) =
z

1− z
= z +

∞∑
n=2

zn ∈ C.

Next we consider the function

F (z) := z − 1− γ

(2 + k − γ)C2
z2

where 0 ≤ γ < 1, k ≥ 0, and C2 is given by (3.4). Clearly F ∈ T J µ
b (γ, k). For this

function ,(3.3)becomes

(2 + k − γ)C2

2[1− γ + (2 + k − γ)C2]
F (z) ≺ z

1− z
.

It is easily verified that

min
{

Re
(

(2 + k − γ)C2

2[1− γ + (2 + k − γ)C2]
F (z)

)}
= −1

2
, z ∈ U.

This shows that the constant (2+k−γ)C2
2[1−γ+(2+k−γ)C2]

cannot be replaced by any larger one. �

By taking different choices of µ, γ and k in the above theorem and in view
of Examples 1 and 2 in Section 1, we state the following corollaries for the subclasses
defined in those examples.

Corollary 3.5. If f ∈ S∗(γ, k), then

2 + k − γ

2[3 + k − γ]
(f ∗ g)(z) ≺ g(z), (3.8)

where 0 ≤ γ < 1, , k ≥ 0, g ∈ C and

Re{f(z)} > −3 + k − 2γ

2 + k − γ
, z ∈ U.

The constant factor
2 + k − γ

2[3 + k − 2γ]

in (3.8) cannot be replaced by a larger one.

Remark 3.6. Corollary 3.5, yields the result obtained by Singh [26] when γ = k = 0.

Remark 3.7. Corollary 3.5 yields the results obtained by Frasin [7] for the special
values of γ and k.
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Corollary 3.8. If f ∈ Bν(γ, k), then

(ν + 1)(2 + k − γ)
2[(ν + 2)(1− γ) + (ν + 1)(2 + k − γ)]

(f ∗ g)(z) ≺ g(z), (3.9)

where 0 ≤ γ < 1, , k ≥ 0, ν > −1, g ∈ C and

Re{f(z)} > − [(ν + 2)(1− γ) + (ν + 1)(2 + k − γ)]
(ν + 1)(2 + k − γ)

, z ∈ U.

The constant factor

(ν + 1)(2 + k − γ)
2[(ν + 2)(1− γ) + (ν + 1)(2 + k − γ)]

in (3.9) cannot be replaced by a larger one.

4. Integral Means Inequalities

Due to , Littlewood [14] we obtain integral means inequalities for the functions
in the familyT J µ

b (γ, k). We also state the integral means inequalities for several known
as well as new subclasses.

Lemma 4.1. If the functions f and g are analytic in U with g ≺ f, then for η > 0,

and 0 < r < 1,
2π∫
0

∣∣g(reiθ)
∣∣η dθ ≤

2π∫
0

∣∣f(reiθ)
∣∣η dθ. (4.1)

In [23], Silverman found that the function f2(z) = z − z2

2 is often extremal
over the family T. He applied this function to resolve his integral means inequality,
conjectured in [24] and settled in [25], that

2π∫
0

∣∣f(reiθ)
∣∣η dθ ≤

2π∫
0

∣∣f2(reiθ)
∣∣η dθ,

for all f ∈ T, η > 0 and 0 < r < 1. In [25], he also proved his conjecture for the
subclasses T ∗(γ) and C(γ) of T.

Applying Lemma 4.1, Theorem 2.2 and Theorem 2.4, we obtain the following
integral means inequalities for the functions in the family T J µ

b (γ, k).

Theorem 4.2. Suppose f ∈ T J µ
b (γ, k), η > 0, 0 ≤ γ < 1, k ≥ 0 and f2(z) is defined

by

f2(z) = z − 1− γ

(2 + k − γ)C2
z2,
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where C2 is given by (3.4). Then for z = reiθ, 0 < r < 1, we have

2π∫
0

|f(z)|η dθ ≤
2π∫
0

|f2(z)|η dθ. (4.2)

Proof. For f(z) = z −
∞∑

n=2
|an|zn, (4.2) is equivalent to proving that

2π∫
0

∣∣∣∣∣1−
∞∑

n=2

|an|zn−1

∣∣∣∣∣
η

dθ ≤
2π∫
0

∣∣∣∣1− (1− γ)
(2 + k − γ)C2

z

∣∣∣∣η dθ.

By Lemma 4.1, it suffices to show that

1−
∞∑

n=2

|an|zn−1 ≺ 1− 1− γ

(2 + k − γ)C2
z.

Setting

1−
∞∑

n=2

|an|zn−1 = 1− 1− γ

(2 + k − γ)C2
w(z), (4.3)

and using (2.2), we obtain

|w(z)| =

∣∣∣∣∣
∞∑

n=2

[n(1 + k)− (γ + k)]Cn(b, µ)
1− γ

|an|zn−1

∣∣∣∣∣
≤ |z|

∞∑
n=2

[n(1 + k)− (γ + k)]Cn(b, µ)
1− γ

|an|

≤ |z|,

where Cn(b, µ) is given by (1.7). This completes the proof by Theorem 2.2. �

In view of the Examples 1 and 2 in Section 1 and Theorem 4.2, we can state
the following corollaries without proof for the classes defined in those examples.

Corollary 4.3. If f ∈ TS(γ, k), 0 ≤ γ < 1, k ≥ 0 and η > 0, then the assertion (4.2)
holds true where

f2(z) = z − 1− γ

[2 + k − γ)]
z2.

Remark 4.4. Fixing k = 0, Corollary 4.3 lead the integral means inequality for the
class T ∗(γ) obtained in [25].

Corollary 4.5. If f ∈ TBν(γ, k), ν > −1, 0 ≤ γ < 1, k ≥ 0 and η > 0, then the
assertion (4.2) holds true where

f2(z) = z − (1− γ)(ν + 2)
(ν + 1)[2 + k − γ]

z2 .
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Concluding Remarks. The various results presented in this paper would provide
interesting extensions and generalizations of those considered earlier for simpler ana-
lytic function classes. The details involved in the derivations of such specializations
of the results presented in this paper are fairly straight- forward.
Acknowledgements. The author express his sincerest thanks to the referee for
useful comments.
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