SUFFICIENT CONDITIONS FOR UNIVALENCE AND QUASICONFORMAL EXTENSIONS IN SEVERAL COMPLEX VARIABLES

PAULA CURT

Abstract

The method of subordination chains is used to established an univalence criterion which contains as particular cases some univalence criteria for holomorphic mappings in the unit ball B of \mathbb{C}^{n}. We also obtain a sufficient condition for a normalized mapping $f \in \mathcal{H}(B)$ to be extended to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself.

1. Introduction and preliminaries

Pfaltzgraff [16] was the first who obtained an univalence criterion in the n-variable case. He [17] also initiated the study of quasiconformal extensions for quasiregular holomorphic mappings defined on the unit ball of \mathbb{C}^{n}.

The problems of univalence criteria and quasiconformal extensions for holomorphic mappings on the unit ball in \mathbb{C}^{n} have been studied by P. Curt [3], [4], [5], [7], H. Hamada and G. Kohr [14], [15], P. Curt and G. Kohr [9], [10], [11], D. Răducanu [18].

In this work we generalize the results due to J.A. Pfaltzgraff [16], [17], P. Curt [3], [5], [7], D. Răducanu [18].

Let \mathbb{C}^{n} denote the space of n-complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$ with the usual inner product $\langle z, w\rangle=\sum_{i=1}^{n} z_{i} \bar{w}_{i}$ and Euclidean norm $\|z\|=\langle z, z\rangle^{1 / 2}$. Let B denote the open unit ball in \mathbb{C}^{n}.

Let $\mathcal{H}(B)$ be the set of holomorphic mappings from B into \mathbb{C}^{n}. Also, let $\mathcal{L}\left(\mathbb{C}^{n}\right)$ be the space of continuous linear mappings from \mathbb{C}^{n} into \mathbb{C}^{n} with the standard operator norm

$$
\|A\|=\sup \{\|A z\|:\|z\|=1\}
$$

By I we denote the identity in $\mathcal{L}\left(\mathbb{C}^{n}\right)$. A mapping $f \in \mathcal{H}(B)$ is said to be normalized if $f(0)=0$ and $D f(0)=I$.

We say that a mapping $f \in \mathcal{H}(B)$ is K-quasiregular, $K \geq 1$, if

$$
\|D f(z)\|^{n} \leq K|\operatorname{det} D f(z)|, \quad z \in B
$$

A mapping $f \in \mathcal{H}(B)$ is called quasiregular if is K-quasiregular for some $K \geq 1$. Every quasiregular holomorphic mapping is locally biholomorphic.

Let G and G^{\prime} be domains in \mathbb{R}^{m}. A homeomorphism $f: G \rightarrow G^{\prime}$ is said to be K-quasiconformal if it is differentiable a.e., ACL (absolutely continuous on lines) and

$$
\|D f(x)\|^{m} \leq K|\operatorname{det} D f(x)| \text { a.e. }, x \in G
$$

where $D f(x)$ denotes the real Jacobian matrix of f and K is a constant.
If $f, g \in \mathcal{H}(B)$, we say that f is subordinate to g (and write $f \prec g$) if there exists a Schwarz mapping v (i.e. $v \in \mathcal{H}(B)$ and $\|v(z)\| \leq\|z\|, z \in B$) such that $f(z)=g(v(z)), z \in B$.

A mapping $L: B \times[0, \infty) \rightarrow \mathbb{C}^{n}$ is called a subordination chain if the following conditions hold:
(i) $L(0, t)=0$ and $L(\cdot, t) \in \mathcal{H}(B)$ for $t \geq 0$;
(ii) $L(\cdot, s) \prec L(\cdot, t)$ for $0 \leq s \leq t<\infty$.

An important role in our discussion is played by the n-dimensional version of the class of holomorphic functions on the unit disc with positive real part

$$
\begin{gathered}
\mathcal{N}=\{h \in \mathcal{H}(B): h(0)=0, \operatorname{Re}\langle h(z), z\rangle>0, z \in B \backslash\{0\}\} \\
\mathcal{M}=\{h \in \mathcal{N} ; D h(0)=I\}
\end{gathered}
$$

It is known that normalized univalent subordination chains satisfy the generalized Loewner differential equation ([12], [8]).

By using an elementary change of variable, it is not difficult to reformulate the mentioned result in the case of nonnormalized subordination chains $L(z, t)=$ $a(t) z+\ldots$, where $a:[0, \infty) \rightarrow \mathbb{C}, a(\cdot) \in C^{1}([0, \infty)), a(0)=1$ and $\lim _{t \rightarrow \infty}|a(t)|=\infty$.
Theorem 1.1. Let $L(z, t): B \times[0, \infty) \rightarrow \mathbb{C}^{n}$ be a Loewner chain such that $L(z, t)=$ $a(t) z+\ldots$, where $a \in C^{1}([0, \infty)), a(0)=1$, and $\lim _{t \rightarrow \infty}|a(t)|=\infty$. Then there exists a mapping $h=h(z, t): B \times[0, \infty) \rightarrow \mathbb{C}^{n}$ such that $h(\cdot, t) \in \mathcal{N}$ for $t \geq 0, h(z, \cdot)$ is measurable on $[0, \infty)$ for $z \in B$ and

$$
\begin{equation*}
\frac{\partial L}{\partial z}(z, t)=D L(z, t) h(z, t), \text { a.e. } t \geq 0, \forall z \in B \tag{1.1}
\end{equation*}
$$

We shall use the following theorem to prove our results [6]. We mention that this result is a simplified version of Theorem 3 [3] due to Theorem 1.2 [12].

SUFFICIENT CONDITIONS FOR UNIVALENCE AND QUASICONFORMAL EXTENSIONS

Theorem 1.2. Let $L(z, t)=a(t) z+\ldots$, be a function from $B \times[0, \infty)$ into \mathbb{C}^{n} such that
(i) $L(\cdot, t) \in \mathcal{H}(B)$, for each $t \geq 0$
(ii) $L(z, t)$ is absolutely continuous of t, locally uniformly with respect to B.

Let $h(z, t)$ be a function from $B \times[0, \infty)$ into \mathbb{C}^{n} such that
(iii) $h(\cdot, t) \in \mathcal{N}$ for each $t \geq 0$
(iv) $h(z, \cdot)$ is measurable on $[0, \infty)$ for each $z \in B$.

Suppose $h(z, t)$ satisfies:

$$
\frac{\partial L}{\partial t}(z, t)=D L(z, t) h(z, t) \text { a.e. } t \geq 0, \forall z \in B
$$

Further, suppose
(a) $a(0)=1, \lim _{t \rightarrow \infty}|a(t)|=\infty, a(\cdot) \in C^{1}([0, \infty))$.
(b) There is a sequence $\left\{t_{m}\right\}_{m}, t_{m}>0, t_{m} \rightarrow \infty$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{L(z, t)}{a\left(t_{m}\right)}=F(z) \tag{1.2}
\end{equation*}
$$

locally uniformly in B, where $F \in \mathcal{H}(B)$.
Then for each $t \geq 0, L(\cdot, t)$ is univalent on B.
Also, we shall use the following result that was recently proved by P. Curt and G. Kohr [11].
Theorem 1.3. Let $L(z, t): B \times[0, \infty) \rightarrow \mathbb{C}^{n}, L(z, t)=a(t) z+\ldots$, be a Loewner chain such that $a(\cdot) \in C^{1}[0, \infty), a(0)=1$ and $\lim _{t \rightarrow \infty}|a(t)|=\infty$. Assume that the following conditions hold:
(i) There exists $K>0$ such that $L(\cdot, t)$ is K-quasiregular for each $t \geq 0$.
(ii) There exist some constants $M>0$ and $\beta \in[0,1)$ such that

$$
\begin{equation*}
\|D L(z, t)\| \leq \frac{M|a(t)|}{(1-\|z\|)^{\beta}}, \quad z \in B, t \in[0, \infty) \tag{1.3}
\end{equation*}
$$

(ii) There exists a sequence $\left\{t_{m}\right\}_{m \in \mathbb{N}}, t_{m}>0, \lim _{m \rightarrow \infty} t_{m}=\infty$, and a mapping $F \in \mathcal{H}(B)$ such that

$$
\lim _{m \rightarrow \infty} \frac{L\left(z, t_{m}\right)}{a\left(t_{m}\right)}=F(z) \text { locally uniformly on } B .
$$

Further, assume that the mapping $h(z, t)$ defined by Theorem 1.1 satisfies the following conditions
(iv) There exists a constant $C>0$ such that

$$
\begin{equation*}
C\|z\|^{2} \leq \operatorname{Re}\langle h(z, t), z\rangle, \quad z \in B, t \in[0, \infty) \tag{1.4}
\end{equation*}
$$

(v) There exists a constant $C_{1}>0$ such that

$$
\begin{equation*}
\|h(z, t)\| \leq C_{1}, \quad z \in B, t \in[0, \infty) \tag{1.5}
\end{equation*}
$$

Then the function $f=L(\cdot, 0)$ extends to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself.

2. Univalence criteria

In this section, by using the Loewner chains method, we obtain some univalence criteria involving the first and second derivative of an holomorphic mapping in the unit ball B.
Theorem 2.1. Let $f \in \mathcal{H}(B)$ be a normalized mapping (i.e. $f(0)=0$ and $D f(0)=$ I). Let $\beta \in \mathbb{R}, \beta \geq 2$ and α, c be complex numbers such that

$$
c \neq-1, \quad \alpha \neq 1 \quad \text { and } \quad\left|\frac{c+\alpha}{1-\alpha}\right| \leq 1 .
$$

If the function $f(z)-\alpha z, z \in B$ is locally biholomorphic on B and if the following conditions hold

$$
\begin{equation*}
\left\|(D f(z)-\alpha I)^{-1}(c D f(z)+\alpha I)-\left(\frac{\beta}{2}-1\right) I\right\|<\frac{\beta}{2}, \quad z \in B \tag{2.1}
\end{equation*}
$$

and

$$
\begin{gather*}
\left\|\|z\|^{\beta}(D f(z)-\alpha I)^{-1}(c D f(z)+\alpha I)\right. \tag{2.2}\\
+\left(1-\|z\|^{\beta}\right)(D f(z)-\alpha I)^{-1} D^{2} f(z)(z, \cdot)+\left(1-\frac{\beta}{2}\right) I \|<\frac{\beta}{2}, \quad z \in U
\end{gather*}
$$

then the function f is univalent on B.
Proof. we will show that the relations (2.1) and (2.2) allow us to embed f as the initial element $f(z)=L(z, 0)$ of an appropriate subordination chain.

We define

$$
\begin{equation*}
L(z, t)=f\left(e^{-t} z\right)+\frac{1}{1+c}\left(e^{\beta t}-1\right) e^{-t}\left[D f\left(e^{-t} z\right)-\alpha I\right](z), t \geq 0, z \in B \tag{2.3}
\end{equation*}
$$

Since

$$
a(t)=e^{(\beta-1) t} \frac{1-\alpha}{1+c}\left(1+e^{-t} \frac{c+\alpha}{1-\alpha}\right) \quad \text { and } \quad\left|\frac{c+\alpha}{1-\alpha}\right| \leq 1
$$

we deduce that $a(t) \neq 0, a(0)=1, \lim _{t \rightarrow \infty}|a(t)|=\infty$ and $a(\cdot) \in C^{1}([0, \infty))$.
It can be easily verified that:

$$
L(z, t)=a(t) z+(\text { holormohic term }) \quad \text { so } \quad \lim _{t \rightarrow \infty} \frac{L(z, t)}{a(t)}=z
$$

locally uniformly with respect to $z \in B$, and thus (1.2) holds with $F(z)=z$.
It is obvious that L satisfies the absolute continuity requirements of Theorem 1.2.
From (2.3) we obtain:

$$
\begin{equation*}
D L(z, t)=\frac{1}{1+c} \frac{\beta}{2} e^{(\beta-1) t}\left[D f\left(e^{-t} z\right)-\alpha I\right][I-I \tag{2.4}
\end{equation*}
$$

SUFFICIENT CONDITIONS FOR UNIVALENCE AND QUASICONFORMAL EXTENSIONS

$$
\begin{aligned}
& \frac{2}{\beta} e^{-\beta t}(c+1)\left(D f\left(e^{-t} z\right)-\alpha I\right)^{-1} D f\left(e^{-t} z\right)+\frac{2}{\beta}\left(1-e^{-\beta t}\right) I \\
& \left.\quad+\frac{2}{\beta}\left(1-e^{-\beta t}\right)\left(D f\left(e^{-t} z\right)-\alpha I\right)^{-1} D^{2} f\left(e^{-t} z\right)\left(e^{-t} z, \cdot\right)\right]
\end{aligned}
$$

By using the obvious equality:

$$
(c+1)\left[D f\left(e^{-t} z\right)-\alpha I\right]^{-1} D f\left(e^{-t} z\right)=D f\left(e^{-t} z\right)-\alpha I
$$

the relation (2.4) becomes

$$
\begin{gather*}
D L(z, t)=\frac{1}{1+c} \frac{\beta}{2} e^{(\beta-1) t}\left[D f\left(e^{-t} z\right)-\alpha I\right]\left\{I+\left(\frac{2}{\beta}-1\right) I\right. \tag{2.5}\\
+\frac{2}{\beta} e^{-\beta t}\left[D f\left(e^{-t} z\right)-\alpha I\right]^{-1}\left[c D f\left(e^{-t} z\right)+\alpha I\right] \\
\left.+\frac{2}{\beta}\left(1-e^{-\beta t}\right)\left[D f\left(e^{-t} z\right)-\alpha I\right]^{-1} D^{2} f\left(e^{-t} z\right)\left(e^{-t} z, \cdot\right)\right\} .
\end{gather*}
$$

If we denote, for each fixed $(z, t) \in B \times[0, \infty)$, by $E(z, t)$ the linear operator

$$
\begin{gather*}
E(z, t)=-\frac{2}{\beta} e^{-\beta t}\left(D f\left(e^{-t} z\right)-\alpha I\right)^{-1}\left(c D f\left(e^{-t} z\right)+\alpha I\right) \tag{2.6}\\
-\frac{2}{\beta}\left(1-e^{-\beta t}\right)\left(D f\left(e^{-t} z\right)-\alpha I\right)^{-1} D^{2} f\left(e^{-t} z\right)\left(e^{-t} z, \cdot\right)+\left(1-\frac{2}{\beta}\right) I,
\end{gather*}
$$

then (2.5) becomes:

$$
\begin{equation*}
D L(z, t)=\frac{1}{1+c} \frac{\beta}{2} e^{(\beta-1) t}\left[D f\left(e^{-t} z\right)-\alpha I\right][I-E(z, t)] . \tag{2.7}
\end{equation*}
$$

We will prove next that for each $z \in B$ and $t \in[0, \infty), I-E(z, t)$ is an invertible operator.

For $t=0$,

$$
E(z, 0)=-\frac{2}{\beta}\left[(D f(z)-\alpha I)^{-1}(c D f(z)+\alpha I)-\frac{\beta}{2} I+I\right] .
$$

By using the condition (2.1) we obtain that $\|E(z, 0)\|<1$ and in consequence $I-E(z, 0)$ is an invertible operator.

For $t>0$ since $E(, t): \bar{B} \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$ is holomorphic, by using the weak maximum modulus theorem we obtain that $\|E(z, t)\|$ can have no maximum in B unless $\|E(z, t)\|$ is of constant value throughout \bar{B}.

If $z=0$ and $t>0$, since $\beta \geq 2$, we have

$$
\begin{equation*}
\|E(0, t)\|=\frac{2}{\beta}\left|1+\frac{c+\alpha}{1-\alpha} e^{-\beta t}-\frac{\beta}{2}\right|<1 . \tag{2.8}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\|E(z, t)\| \leq \max _{\|w\|=1}\|E(w, t)\| . \tag{2.9}
\end{equation*}
$$

If we let now $u=e^{-t} w$, where $\|w\|=1$, then $\|u\|=e^{-t}$ and so

$$
\begin{gathered}
E(w, t)=-\frac{2}{\beta}\|u\|^{\beta}[D f(u)-\alpha I]^{-1}(c D f(u)+\alpha I) \\
-\frac{2}{\beta}\left(1-\|u\|^{\beta}\right)(D f(u)-\alpha I)^{-1} D^{2} f(u)(u, \cdot)-\frac{2}{\beta}\left(1-\frac{\beta}{2}\right) I .
\end{gathered}
$$

By using (2.2), (2.8) and the previous equality we obtain

$$
\|E(z, t)\|<1, \quad t>0
$$

Hence for $t>0, I-E(z, t)$ is an invertible operator, too.
Further computations show that:

$$
\begin{gathered}
\frac{\partial L}{\partial t}(z, t)=\frac{1}{1+c} e^{(\beta-1) t} \frac{\beta}{2}\left[D f\left(e^{-t}-z\right)-\alpha I\right]\left[I+\left(1-\frac{2}{\beta}\right) I\right. \\
-\frac{2}{\beta} e^{-\beta t}\left(D f\left(e^{-t} z\right)-\alpha I\right)^{-1}\left(c D f\left(e^{-t} z\right)+\alpha I\right) \\
\left.-\frac{2}{\beta}\left(1-e^{-\beta t}\right)\left[D f\left(e^{-t} z\right)-\alpha I\right]^{-1} D^{2} f\left(e^{-t} z\right)\left(e^{-t} z, \cdot\right)\right](z)
\end{gathered}
$$

and

$$
\begin{equation*}
\frac{\partial L}{\partial z}(z, t)=\frac{1}{c} e^{(\beta-1) t} \frac{\beta}{2}\left[D f\left(e^{-t} z\right)-\alpha I\right][I+E(z, t)](z) . \tag{2.10}
\end{equation*}
$$

In conclusion, by using (2.7) and (2.10) we obtain

$$
\frac{\partial L}{\partial t}(z, t)=D L(z, t)[I-E(z, t)]^{-1}[I+E(z, t)](z), \quad z \in B
$$

Hence $L(z, t)$ satisfies the differential equation (1.1) for all $z \in B$ and $t \geq 0$ where

$$
\begin{equation*}
h(z, t)=[I-E(z, t)]^{-1}[I+E(z, t)](z), \quad z \in B . \tag{2.11}
\end{equation*}
$$

It remains to show that the function defined by (2.11) satisfies the conditions of Theorem 1.2. Clearly $h(z, t)$ satisfies the holomorphy and measurability requirements and $h(0, t)=0$.

Furthermore, the inequality:

$$
\|g(z, t)-z\|=\|E(z, t)(h(z, t)+z)\| \leq\|E(z, t)\| \cdot\|h(z, t)+z\|<\|h(z, t)+z\|
$$

implies that $\operatorname{Re}\langle h(z, t), z\rangle>0, \forall z \in B \backslash\{0\}, t \geq 0$.
Since all the assumptions of Theorem 1.2 are satisfied, it follows that the functions $L(\cdot, t)(t \geq 0)$ are univalent in B.

In particular $f=L(\cdot, 0)$ is univalent in B.
Remark 2.2. If $\beta=2, \alpha=0$ and $c=0$, then Theorem 2.1 becomes the n-dimensional version of Becker's univalence criterion [17].

If $\beta=2, f=g$, then Theorem 2.1 becomes the n-dimensional version of Ahlfors and Becker's univalence criterion [3].

If $c=0$ then Theorem 2.1 becomes Theorem 2 [4].
If $\alpha=0$ and $c=0$ then Theorem 2.1 becomes Theorem 2 [5].
If $\beta=2$ then Theorem 2.1 becomes Theorem 2.1 [18].

3. Quasiconformal extensions

In this section we present a sufficient condition for a normalized holomorphic mapping on B to be extended to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself. Theorem 3.1. Let $f \in \mathcal{H}(B)$ be a normalized mapping (i.e. $f(0)=0, D f(0)=I$) such that the mapping $f(z)-\alpha z, z \in B$, is quasiregular. Also let $\beta \geq 2$, and α, c be complex numbers such that

$$
c \neq-1, \quad \alpha \neq 1 \quad \text { and } \quad\left|\frac{c+\alpha}{1-\alpha}\right| \leq 1
$$

If there is $q \in[0,1)$ such that $1-\frac{2}{\beta} \leq q<\frac{2}{\beta}$,

$$
\begin{equation*}
\frac{2}{\beta}\left\|(D f(z)-\alpha I)^{-1}(c D f(z)+\alpha I)-\left(\frac{\beta}{2}-1\right) I\right\| \leq q<1, z \in B \tag{3.1}
\end{equation*}
$$

and

$$
\begin{gather*}
\frac{2}{q}\left\|\|z\|^{\beta}(D f(z)-\alpha I)^{-1}(c D f(z)+\alpha I)\right. \tag{3.2}\\
+\left(1-\|z\|^{\beta}\right)(D f(z)-\alpha I)^{-1} D^{2} f(z)(z, \cdot)+\left(1-\frac{\beta}{2}\right) I \| \leq q<1, \quad z \in B
\end{gather*}
$$

then f extends to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself.
Proof. The conditions (3.1) and (3.2) enable us to embed f as the initial element $f(z)=L(z, 0)$ of the subordination chain defined by (2.3). In Theorem 2.1 we proved that L (defined by (2.3)) is a subordination chain which satisfies the generalized Loewner equation (1.1) where the mapping h is defined by (2.11) and the mapping $E: B \times[0, \infty) \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$ is defined by (2.6).

Next, we will show that $\|E(z, t)\| \leq q$ for all $(z, t) \in B \times[0, \infty)$. We have

$$
\|E(z, 0)\|=\frac{2}{\beta}\left\|(D f(z)-\alpha I)^{-1}(c D f(z)+\alpha I)-\left(\frac{\beta}{2}-1\right) I\right\| \leq q<1
$$

$z \in B$, according to condition (3.1). Next, let $t \in(0, \infty)$.
In view of the maximum principle for holomorphic mappings into complex Banach spaces, by using the condition (3.2), we obtain:

$$
\begin{gathered}
\|E(z, t)\| \leq \max _{\|w\|=1}\|E(z, t)\| \\
=\frac{2}{\beta} \max _{\|w\|=1}\| \| w e^{-t} \|^{\beta}\left[D f\left(w e^{-t}\right)-\alpha I\right]^{-1}\left[c D f\left(w e^{-t}\right)+\alpha I\right]
\end{gathered}
$$

$$
+\left(1-\left\|w e^{-t}\right\|\right)^{\beta}\left[D f\left(w e^{-t}\right)-\alpha I\right]^{-1}\left[D^{2} f\left(w e^{-t}\right)\left(w e^{-t}, \cdot\right)+I\left(1-\frac{\beta}{2}\right) \| \leq q<1\right.
$$

$z \in B$.
Therefore $\|E(z, t)\| \leq q<1, z \in B, t \in[0, \infty)$.
From now on, for the simplicity of the notations, we will denote by g the function defined by $g(z)=f(z)-\alpha z, z \in B$. By taking into account the conditions (3.1) and (3.2) from the hypothesis, we deduce that

$$
\begin{gathered}
\left(1-\|z\|^{\beta}\right)\left\|[D g(z)]^{-1} D^{2} g(z)(z, \cdot)\right\| \\
=\left(1-\|z\|^{\beta}\right)\left\|[D f(z)-\alpha I]^{-1} D^{2} f(z)(z, \cdot)\right\| \\
\leq q \frac{\beta}{2}+\| \| z\left\|^{\beta}(D f(z)-\alpha I)^{-1}(c D f(z)-\alpha I)+\left(1-\frac{\beta}{2}\right) I\right\| \\
\leq q \frac{\beta}{2}\| \| z \|^{\beta}\left\{(D f(z)-\alpha I)^{-1}(c D f(z)-\alpha I)-\left(\frac{\beta}{2}-1\right) I\right\} \\
+\left(1-\frac{\beta}{2}\right)\left(1-\|z\|^{\beta}\right) I \| \\
\leq q \frac{\beta}{2}+\|z\|^{\beta} \cdot \frac{\beta}{2} \cdot q+\left(\frac{\beta}{2}-1\right)\left(1-\|z\|^{\beta}\right) \\
=\|z\|^{\beta}\left(q \frac{\beta}{2}-\frac{\beta}{2}+1\right)+q \frac{\beta}{2}+\frac{\beta}{2}-1 \\
\leq \max _{x \in[0,1]}\left\{x\left(q \frac{\beta}{2}-\frac{\beta}{2}+1\right)+q \frac{\beta}{2}+\frac{\beta}{2}-1\right\} \\
=\max \left\{q \frac{\beta}{q}+\frac{\beta}{2}-1, q \beta\right\}=q \beta=2 \gamma
\end{gathered}
$$

where $\gamma=\frac{q \beta}{2}<1$.
Since $\beta \geq 2$, we deduce from the above relation that:

$$
\begin{equation*}
\left(1-\|z\|^{2}\right)\left\|[D g(z)]^{-1} D^{2} g(z)(z, \cdot)\right\| \leq 2 \gamma, \quad z \in U \tag{3.3}
\end{equation*}
$$

From the previous inequality, by using a similar argument with that used in the proof of Theorem 2.1 [17] we obtain that there exists $M>0$ such that

$$
\begin{equation*}
|\operatorname{det} D g(z)| \leq \frac{M}{(1-\|z\|)^{n \gamma}}, \quad z \in B \tag{3.4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\|D g(z)\| \leq \frac{L}{(1-\|z\|)^{\gamma}} \quad \text { where } \quad L=\sqrt[n]{M K} \tag{3.5}
\end{equation*}
$$

We prove now that the mappings $L(\cdot, t)$ are quasiregular. Since g is a quasiregular holomorphic mapping and the following inequality holds

$$
1-q \leq\|I-E(z, t)\| \leq 1+q, \quad z \in B, t \geq 0
$$

by using (2.7) we easily obtain

$$
\begin{align*}
& \|D L(z, t)\| \leq \frac{\beta}{2} e^{(\beta-1) t} \frac{1}{|1+c|}\left\|D g\left(z e^{-t}\right)\right\|\|I-E(z, t)\| \tag{3.6}\\
& \quad \leq|a(t)| \cdot \frac{1+q}{1-q} \cdot \frac{1}{|1-\alpha|} \cdot \frac{L}{(1-\|z\|)^{\gamma}}=\frac{|a(t)| L^{*}}{(1-\|z\|)^{\gamma}}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
& \|D L(z, t)\|^{n} \leq\left(\frac{\beta}{2}\right)^{n} e^{n(\beta-1) t} \frac{1}{|1+c|^{n}}\left\|D g\left(z e^{-t}\right)\right\|^{n}(1+q)^{n} \tag{3.7}\\
& \quad \leq\left(\frac{\beta}{2}\right)^{n} e^{n(\beta-1) t} \frac{1}{|1+c|^{n}}\left|\operatorname{det} D g\left(z e^{-t}\right)\right|\left(1+q^{n}\right) \\
& \quad \leq\left(\frac{1+q}{1-q}\right)^{n} K|\operatorname{det} D L(z, t)|, \quad z \in B, t \geq 0
\end{align*}
$$

By using Remark 2.2 from [9] we have that the function $h(z, t)$ satisfies the conditions (iv) and (v) of Theorem 1.3.

Since all the conditions of Theorem 1.3 are satisfied, it results that the function f admits a quasiconformal extension of $\mathbb{R}^{2 n}$ onto itself.
Remark 3.2. If $\beta=2, c=0$ and $\alpha=0$ in Theorem 3.1, we obtain the n-dimensional version of the quasiconformal extension result due to Becker [17].

If $\beta=2$ and $\alpha=0$ in Theorem 3.1 we obtain the n-dimensional version of the quasiconformal extension result due to Ahlfors and Becker [3].
Acknowledgement. This work is supported by UEFISCSU - CNCSIS, Grant PN II-ID-524/2007.

References

[1] Becker, J., Löewnersche Differentialgleichung und quasikonform fortsetzbare schlichte Functionen, J. Reine Angew. Math., 255 (1972), 23-43.
[2] Brodksii, A. A., Quasiconformal extension of biholomorphic mappings, In: Theory of Mappings and Approximation of Functions, 3-34, Naukova Durka, Kiew, 1983.
[3] Curt, P., A generalization in n-dimensional complex space of Ahlfors and Becker's criterion for univalence, Studia Univ. Babeş-Bolyai, Mathematica, 39 (1994), no. 1, 31-38.
[4] Curt, P., A univalence criterion for holomorphic mappings in \mathbb{C}^{n}, Mathematica (Cluj), 37(60) (1995), no. 1-2, 67-71.
[5] Curt, P., A sufficient condition for univalence of holomorphic mappings in \mathbb{C}^{n}, Mem. Sect. Stiint. Iasi, seria IV, XIX, 1996, 49-53.
[6] Curt, P., Special Chapters of Geometric Function Theory of Several Complex Variables, Editura Albastră, Cluj-Napoca, 2001 (in Romanian).
[7] Curt, P., Quasiconformal extensions of holomorphic maps in \mathbb{C}^{n}, Mathematica, 46(69) (2004), no. 1, 55-60.

PAULA CURT

[8] Curt, P., Kohr, G., Subordination chains and Loewner differential equations in several complex variables, Ann. Univ. M. Curie-Sklodowska, Sect. A, 57(2003), 35-43.
[9] Curt, P., Kohr, G., Quasiconformal extensions and q-subordination chains in \mathbb{C}^{n}, Mathematica (Cluj), 49(72)(2007), 149-159.
[10] Curt, P., Kohr, G., The asymptotical case of certain quasiconformal extensions results for holomorphic mappings in \mathbb{C}^{n}, Bull. Belgian Math. Soc. Simon Stevin, 14(2007), 653-667.
[11] Curt, P., Kohr, G., Some remarks concerning quasiconformal extensions in several complex variables, J. Inequalities Appl., 2008, 16 pages, Article ID690932.
[12] Graham, I., Hamada, H., Kohr, G., Parametric representation of univalent mappings in several complex variables, Canadian Journal of Mathematics, 54 (2002), no. 2, 324-351.
[13] Graham, I., Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc., New York, 2003.
[14] Hamada, H., Kohr, G., Loewner chains and quasiconformal extension of holomorphic mappings, Ann. Polon. Math., 81 (2003), 85-100.
[15] Hamada, H., Kohr, G., Quasiconformal extension of biholomorphic mappings in several complex variables, J. Anal. Math., 96(2005), 269-282.
[16] Pfaltzgraff, J. A., Subordination chains and univalence of holomorphic mappings in \mathbb{C}^{n}, Math. Ann., 210 (1974), 55-68.
[17] Pfaltzgraff, J. A., Subordination chains and quasiconformal extension of holomorphic maps in \mathbb{C}^{n}, Ann. Acad. Sci. Fenn. Ser. A, Math., 1(1975), 13-25.
[18] Răducanu, D., Sufficient conditions for univalence in \mathbb{C}^{n}, IJMMS, 32:12(2002), 701706.

Faculty of Economics and Business Administration
Babeş-Bolyai University
58-60 Teodor Mihali Str.
400591 Cluj-Napoca, Romania
E-mail address: paula.curt@econ.ubbcluj.ro

