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ON A DEGENERATE AND SINGULAR ELLIPTIC EQUATION
WITH CRITICAL EXPONENT AND NON-STANDARD GROWTH

CONDITIONS

MIHAI MIHĂILESCU AND DENISA STANCU-DUMITRU

Abstract. In this paper we study a class of degenerate and singular elliptic

equations involving critical exponents and non-standard growth conditions

in the whole space RN . We show the existence of at least one nontrivial

solution using as main argument Ekeland’s variational principle.

1. Introduction

In this paper we are concerned with the study of the following problem

−div(|x|α∇u) = λg(x)|u|q(x)−2u + |u|2
?
α−2u in RN (1.1)

where N ≥ 2, 0 < α < 2, 2?
α = 2N/(N − 2 + α) is the critical exponent, q : RN →

(1, 2?
α) is a function satisfying q ∈ L∞(RN ), g : RN → (0,∞) is a measurable function

satisfying certain properties that will be described later in the paper and λ > 0 is a
constant.

The main interest in studying problem (1.1) is due to the presence of the
degenerate and singular potential |x|α in the divergence operator. This potential
leads to a differential operator

div(|x|α∇u(x))

which is degenerate and singular in the sense that

lim
|x|→0

|x|α = 0 and lim
|x|→∞

|x|α = ∞,

provided that α ∈ (0, 2). Consequently, we will analyze equation (1.1) in the case
when the operator div(|x|α∇u(x)) is not strictly elliptic in the sense pointed out in
D. Gilbarg & N. S. Trudinger [6] (see, page 31 in [6] for the definition of strictly
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elliptic operators). It follows that some of the techniques that can be applied in
solving equations involving strictly elliptic operators fail in this new context. For
instance some concentration phenomena may occur in the degenerate and singular
case which lead to a lack of compactness. On the other hand, such kind of problems
are exacerbated by the presence of the critical exponent 2?

α in the right-hand side of
equation (1.1).

2. Preliminary results

In this paper the convenient (and natural) functional space where we are
seeking solutions for problem (1.1) is D1,2

α (RN ), which is defined as the completion of
C∞

0 (RN ) with respect to the inner product

〈u, v〉α :=
∫

RN

|x|α∇u∇vdx.

Recall that D1,2
α (RN ) is a Hilbert space with respect to the norm

‖u‖2α :=
∫

RN

|x|α|∇u|2dx

We say that u ∈ D1,2
α (RN ) is a weak solution of (1.1) if∫

RN

|x|α∇u∇vdx− λ

∫
RN

g(x)|u|q(x)−2uv dx−
∫

RN

|u|2
?
α−2uv dx = 0

for all v ∈ C∞
0 (RN ).

Remark 2.1. Actually, it can be proved that D1,2
α (RN ) = C∞

0 (RN\{0})
‖·‖α

(see [2]).

The starting point of the variational approach to problems of this type is
the following inequality which can be obtained essentially “interpolating” between
Sobolev’s and Hardy’s inequalities [1] (see also [3] and [4]).

Lemma 2.2. (Caffarelli-Kohn-Nirenberg) Let N ≥ 2, α ∈ (0, 2) and denote 2?
α =

2N
N−2+α . Then there exists Cα > 0 such that(∫

RN

|ϕ|2
?
αdx

)2/2?
α

≤ Cα

∫
RN

|x|α|∇ϕ|2dx (2.1)

for every ϕ ∈ C∞
0 (RN ).

Remark 2.3. By Lemma 2.2 we deduce that D1,2
α (RN ) is continuously embedded in

L2?
α(RN ).

On the other hand, in order to study problem (1.1), we will appeal to the
variable exponent Lebesgue spaces Lq(·)(RN ). We point out certain properties of
that spaces according to the papers of Kováčik and Rákosńık [7] and Mihăilescu and
Rădulescu [8, 9].
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For any function p : RN → (1,∞) with p ∈ L∞(RN ) define

p− := ess inf
x∈RN

p(x) and p+ := ess sup
x∈RN

p(x) .

It is usually assumed that p+ < +∞, since this condition implies many useful prop-
erties for the associated variable exponent Lebesgue space Lp(·)(RN ). This function
space is defined by

Lp(·)(RN ) =

u : RN → R measurable :
∫

RN

|u(x)|p(x) dx < ∞

 .

Lp(·)(RN ) is a Banach space when endowed with the so-called Luxemburg norm, de-
fined by

|u|p(·) := inf

µ > 0 :
∫

RN

∣∣∣∣u(x)
µ

∣∣∣∣p(x)

dx ≤ 1

 .

The variable exponent Lebesgue space is a special case of an Orlicz-Musielak space.
For constant functions p the space Lp(·)(RN ) reduces to the classical Lebesgue space
Lp(RN ), endowed with the standard norm

‖u‖Lp(RN ) :=

 ∫
RN

|u(x)|pdx

1/p

.

We recall that if 1 < p− ≤ p+ < +∞ the variable exponent Lebesgue spaces
are separable and reflexive.

We denote by Lp
′
(·)(RN ) the conjugate space of Lp(·)(RN ), where 1/p(x) +

1/p
′
(x) = 1. For any u ∈ Lp(·)(RN ) and v ∈ Lp

′
(·)(RN ) the Hölder type inequality∣∣∣∣∣∣

∫
RN

uv dx

∣∣∣∣∣∣ ≤
(

1
p−

+
1

p′−

)
|u|p(·)|v|p′ (·) (2.2)

holds.
A key role in the theory of variable exponent Lebesgue and Sobolev (defined

below) spaces is played by the modular of the space Lp(·)(RN ), which is the mapping
ρp(·) : Lp(·)(RN ) → R defined by

ρp(·)(u) :=
∫

RN

|u(x)|p(x) dx.

If u ∈ Lp(·)(RN ) then the following relations hold:

|u|p(·) > 1 ⇒ |u|p
−

p(·) ≤ ρp(·)(u) ≤ |u|p
+

p(·); (2.3)
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|u|p(·) < 1 ⇒ |u|p
+

p(·) ≤ ρp(·)(u) ≤ |u|p
−

p(·); (2.4)

|u|p(·) = 1 ⇔ ρp(·)(u) = 1. (2.5)

3. The main result

In this paper we study the existence of nontrivial weak solutions for problem
(1.1) in the case when q : RN → (1, 2?

α), q ∈ L∞(RN ) satisfies the property that there
exists x0 ∈ Ω and s > 0 such that q is continuous on the ball centered in x0 of radius
s, that is Bs(x0), and

1 < q(x0) < 2 . (3.1)

Our main result is given by the following theorem.

Theorem 3.1. Assume q : RN → (1, 2?
α), q ∈ L∞(RN ) satisfies the property that

there exists x0 ∈ RN and s > 0 such that q is continuous in Bs(x0) and relation (3.1)
is fulfilled. Assume that g : RN → (0,∞) satisfies g ∈ L∞(RN ) ∩ Lr(·)(RN ), where
r(x) = 2?

α

2?
α−q(x) for each x ∈ RN . Then, there exists λ? > 0 such that problem (1.1)

has a nontrivial weak solution for any λ ∈ (0, λ?).

4. Proof of the main result

In order to prove Theorem 3.1 we define the functional J : D1,2
α (RN ) → R by

J(u) =
1
2

∫
RN

|x|α|∇u|2 dx− λ

∫
RN

g(x)
q(x)

|u|q(x) dx− 1
2?

α

∫
RN

|u|2
?
α dx .

Standard arguments show that J ∈ C1(D1,2
α (RN ), R) and

〈J ′(u), v〉 =
∫

RN

|x|α∇u∇vdx− λ

∫
RN

g(x)|u|q(x)−2uv dx−
∫

RN

|u|2
?
α−2uv dx ,

for all u, v ∈ D1,2
α (RN ). Thus, we remark that in order to find weak solutions of

equation (1.1) it is enough to find critical points for the functional J .

Lemma 4.1. There exists λ? > 0 such that for any λ ∈ (0, λ?) there exist ξ > 0 and
θ > 0 such that

J(u) ≥ θ, ∀ u ∈ D1,2
α (RN ) with ‖u‖α = ξ .

Proof. By Lemma 2.2 and Remark 2.3 it follows taht

|u|2?
α
≤ C1/2

α ‖u‖α, ∀ u ∈ D1,2
α (RN ) . (4.1)

Consider ξ ∈ (0, 1) with ξ < 1/
√

Cα. Then the above relation implies

|u|2?
α

< 1, ∀ u ∈ D1,2
α (RN ), with ‖u‖α = ξ . (4.2)
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On the other hand, by relation (2.4) we have

| |u|q(·) |2
?
α/q−

2?
α

q(·)

≤ |u|2
?
α

2?
α
, ∀ u ∈ D1,2

α (RN ), with ‖u‖α = ξ . (4.3)

Since g ∈ Lr(·)(RN ), with r(x) = 2?
α

2?
α−q(x) we deduce by Hölder’s inequality that there

exists a constant c1 > 0 such that∫
RN

g(x)|u|q(x) dx ≤ c1|g|r(·)| |u|q(·) | 2?
α

q(·)
, ∀ u ∈ D1,2

α (RN ) (4.4)

Relations (4.1), (4.2), (4.3) and (4.4) imply that∫
RN

g(x)|u|q(x) dx ≤ c1|g|r(·)Cq−/2
α ‖u‖q−

α , ∀ u ∈ D1,2
α (RN ), with ‖u‖α = ξ . (4.5)

Relations (2.1) and (4.5) yield that for any u ∈ D1,2
α (RN ) with ‖u‖α = ξ the following

inequalities hold true

J(u) =
1
2
‖u‖2α − λ

∫
RN

g(x)
q(x)

|u|q(x) dx− 1
2?

α

· |u|2
?
α

2?
α

≥ 1
2
‖u‖2α − λ

∫
RN

g(x)
q(x)

|u|q(x) dx− C
2?

α/2
α

2?
α

· ‖u‖2
?
α

α

≥ 1
2‖u‖

2
α − λ

q− · cq−

2 ‖u‖q−

α − c3‖u‖
2?

α
α ,

(4.6)

where c2 and c3 are two positive constants. In other words, for any u ∈ D1,2
α (RN )

with ‖u‖α = ξ we have

J(u) ≥ ‖u‖q−

α ·
[
1
2
‖u‖2−q−

α − λ

q−
cq−

2 − c3‖u‖
2?

α−q−

α

]
.

Define Q : [0,∞) → R by

Q(t) =
1
2

t2−q− − c3 t2
?
α−q− .

Since relation (3.1) holds true we deduce that q− < 2 < 2?
α and thus, it is clear that

there exists β > 0 such that max
t≥0

Q(t) = Q(β) > 0. We take λ? = q−

cq−
2

Q(β) and we

remark that there exists θ > 0 such that for any λ ∈ (0, λ?) we have

J(u) ≥ θ, ∀ u ∈ D1,2
α (RN ) with ‖u‖α = ξ .

Lemma 4.1 is verified. �

Lemma 4.2. There exists φ ∈ D1,2
α (RN ) such that φ ≥ 0, ϕ 6= 0 and J(tφ) < 0, for

t > 0 small enough.

Proof. Since there exists x0 ∈ RN and s > 0 such that q is continuous in Bs(x0) and
relation (3.1) is satisfied we deduce that there exists θ ∈ (1, 2) such that the open set
Ω0 := {x ∈ Ω; q(x) < θ} is nonempty and bounded.

95
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Let φ ∈ C∞
0 (RN ) be such that supp(φ) ⊃ Ω0, φ(x) = 1 for all x ∈ Ω0 and

0 ≤ φ ≤ 1 in RN . For any t ∈ (0, 1) we have

J(tφ) =
t2

2

∫
RN

|x|α|∇φ|2 dx− λ

∫
RN

tq(x)g(x)
q(x)

|φ|q(x) dx− t2
?
α

2?
α

∫
RN

|φ|2
?
α dx

≤ t2

2

∫
RN

|x|α|∇φ|2 dx− λ

q+

∫
Ω0

g(x)tq(x)|φ|q(x) dx

≤ t2

2

∫
RN

|x|α|∇φ|2 dx− λ · tθ

q+

∫
Ω0

g(x)|φ|q(x) dx .

It is clear that
J(tφ) < 0 ,

providing that

0 < t < min

{
1,

λ · 2
q+

·
∫
Ω0

g(x)|φ|q(x) dx∫
RN |x|α|∇φ|2 dx

}
.

Lemma 4.2 is verified. �

Proof of Theorem 3.1. By inequality (4.6) we obtain that J is bounded from below on
Bξ(0). Thus, usinging Ekeland’s variational principle (see [5] or [10]) to the functional
J : Bξ(0) → R, it follows that there exists uε ∈ Bξ(0) such that

J(uε) < inf
Bξ(0)

J + ε

J(uε) < J(u) + ε · ‖u− uε‖α, u 6= uε.

Using Lemmas 4.1 and 4.2 we find

inf
∂Bξ(0)

J ≥ θ > 0 and inf
Bξ(0)

J < 0 .

We choose ε > 0 such that

0 < ε ≤ inf
∂Bξ(0)

J − inf
Bξ(0)

J .

Therefore, J(uε) < inf
∂Bξ(0)

J and thus, uε ∈ Bξ(0).

We define I : Bξ(0) → R by I(u) = J(u) + ε · ‖u− uε‖α. It is clear that uε is
a minimum point of I and thus

I(uε + δ · v)− I(uε)
δ

≥ 0

for small δ > 0 and any v ∈ B1(0). The above relation yields

J(uε + δ · v)− J(uε)
δ

+ ε · ‖v‖α ≥ 0.

Letting δ → 0 it follows that 〈J ′
(uε), v〉+ ε · ‖v‖α > 0 and we infer that ‖J ′

(uε)‖ ≤ ε.
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We deduce that there exists a sequence {un} ⊂ Bξ(0) such that

J(un) → c = inf
Bξ(0)

J < 0 and J
′
(un) → 0. (4.7)

It is clear that {un} is bounded in D1,2
α (RN ). Thus, there exists w ∈ D1,2

α (RN ) such
that, up to a subsequence, {un} converges weakly to u in D1,2

α (RN ). Then Lemma
2.2 (actually, Remark 2.3) implies that {un} converges weakly to u in L2?

α(Ω). Using
these information and the fact that g ∈ L2?

α/q(·)(RN ), we get that

lim
n→∞

∫
RN

g(x)|un|q(x)−2unv dx =
∫

RN

g(x)|u|q(x)−2uv dx ,

and
lim

n→∞

∫
RN

|un|2
?
α−2unv dx =

∫
RN

|u|2
?
α−2uv dx ,

for any v ∈ C∞
0 (RN ).

On the other hand, relation (4.7) implies

lim
n→∞

〈J ′(un), v〉 = 0 ,

for all v ∈ C∞
0 (RN ) and actually, (by density) for all v ∈ D1,2

α (RN ).
The above information implies

J ′(u) = 0 ,

and thus, u is a weak solution of equation (1.1).
We prove now that u 6= 0. Assume by contradiction that u ≡ 0 and

lim
n→∞

∫
RN

|x|α|∇un|2 dx = l ≥ 0 .

Since by relation (4.7) we have lim
n→∞

〈J ′(un), un〉 = 0 and {un} converges weakly to 0

in L2?
α(RN ) and g ∈ L2?

α/q(·)(RN ) we obtain

lim
n→∞

∫
RN

g(x)|un|q(x) dx = 0 ,

or ∫
RN

|x|α|∇un|2 dx−
∫

RN

|un|2
?
α dx = o(1)

or
lim

n→∞

∫
RN

|un|2
?
α dx = l .

Using again (4.7) we deduce

0 > c + o(1) =
1
2

∫
RN

|x|α|∇un|2 dx− λ

∫
RN

g(x)
q(x)

|un|q(x) dx− 1
2?

α

∫
RN

|un|2
?
α dx

→
(

1
2
− 1

2?
α

)
l ≥ 0
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and that is a contradiction. We conclude that u 6= 0.
Thus, Theorem 3.1 is proved. �
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