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A NOTE ON THE EXISTENCE OF INFINITELY MANY SOLUTIONS
FOR THE ONE DIMENSIONAL PRESCRIBED CURVATURE
EQUATION

FRANCESCA FARACI

Abstract. In the present paper we deal with the one dimensional pre-
scribed curvature equation. We prove, under a suitable oscillatory be-
haviour at zero of the nonlinearity, the existence of infinitely many solu-
tions. Our approach combines variational techniques with classical regu-
larity results.

1. Introduction

In the present paper we deal with the one dimensional prescribed curvature
problem

u’ !
(s ) =07 o]

u(0) =u(l) =0
where h : [0,1] — R is a positive bounded function with essinfjg;jh >0, f: R — R
is a continuous function. The problem of existence and multiplicity results for such
problem is one of the most investigated issue in calculus of variations and differential
geometry. We focus here on the existence of infinitely many solutions in the same
spirit of some recent papers of Obersnel and Omari who studied the problem under
different sets of assumptions on the nonlinearity f.

A sequence of weak solutions (tending in the C'! norm to zero) has been
obtained in [3] in any space dimension N via the Lusternik-Schnirelmann theory,
provided the nonlinearity is odd and its primitive is subquadratic at zero. The same
thesis for the one dimensional autonomous equation has been achieved in [2] via
the analysis of some generalized Fuc¢ik spectrum under different behaviour of the
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nonlinearity. Namely if f is superlinear or sublinear at zero and satisfies, with its
primitive, suitable conditions at 400 and —oo, the authors proved the existence of
infinitely many solutions which are possibly discontinuous at the points where they
attain the value zero. Finally we mention the paper [4], where the method of sub and
super solutions guarantees, in any space dimension N, the existence of a sequence of
weak solutions tending in the C'' norm to zero.

We will prove the existence of infinitely many solutions for the one dimen-
sional prescribed curvature problem under suitable oscillatory assumptions at zero
on the nonlinearity f. We propose a new approach without requiring symmetry or
conditions at +o0.

Following the variational approach of [3], we will apply a variational principle
by Ricceri [5] to an elliptic regularized problem to obtain a sequence of pairwise
distinct critical points for the energy functional associated and subsequently, by the
means of classical regularity results, we will achieve the existence of infinitely many
solutions for the original problem.

Throughout the sequel by a solution of (P) we mean a weak solution, that is
a function u € W,"(]0, 1[) such that

/ \/HT )d’f—/o h(t) f(u(t))v(t)dt = 0

for every v € Wy2(]0, 1]).

Our main result is
Theorem 1.1. Assume that

i) there exist two sequences {ar} and {by} in ]0,00[ with byt1 < ar < by,
limg_.oo b, = 0 and hm a— =0 such that f(s) <0 for every s € [a, bg;

k—oo k

1) if F(s /f t)dt, then

F F
—o0 < liminf @ < lim sup @ = 400;
s—0t S s—0+ S
i41) limsu maxo,a,] I < V2 1
b B 32 |[hllLigoap

Then, problem (P) admits a sequence of non negative weak solutions {uy} C C*([0,1])
which satisfy limg o [|ug|lc1(j0,17) = O-
2. Proof of Theorem 1.1

1. Preliminaries. Our main tool is the following variational principle by Ricceri

which is a consequence of a more general result.
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Theorem 2.1. ([5], Theorem 2.5) Let X be a Hilbert space, ®,¥ : X — R two
sequentially weakly lower semicontinuous, continuously Gateaux differentiable func-
tionals. Assume that ¥ is strongly continuous and coercive. For each p > infx W,
set

®(u) — infg= ®

. (—o0.0D"
= inf , 2.1
2 () T—1(]—o0,p) p—V(u) 21)

where U71(] —o00,p]) :={u e X : U(u) < p} and ¥~1(] — oqp[)w is its closure in the
weak topology of X. Furthermore, set

0 := liminf . 2.2

,Jiminf | o(p) (2:2)

If § < +o0 then, for every X\ > 6, either ® + AU possesses a local minimum, which

is also a global minimum of U, or there is a sequence {u} of pairwise distinct crit-

ical points of ® + AV, with limg_ ¥(ur) = infx ¥, weakly converging to a global
minimum of V.

2.2. Proof. In the present section we will give the proof of Theorem 1.1. Following
an idea of Obersnel and Omari in [3], we apply Theorem 2.1 to a modified problem
and then, by the means of a regularity result by Lieberman (see [1]) we prove that

the critical points of the energy are actually solutions of the original problem.

We split the proof in several steps.
Step 1. A modified problem.
Notice first that assumptions ¢) and #¢) imply that f(0) = 0. We truncate f as follows:

0 s<0
g(s) =< f(s) 0<s<b
f(b) 52> b

where by is from assumption (¢). The function g is continuous and if G : R — R
denotes its primitive, that is G(s) = [; g(t)dt, g and G satisfy the assumptions
(7) — (i13) of Theorem 1.1. Define also a : [0, +00[—]0, +o0] by

0<s<1
1+s
2 V2
a(s) = %(5—2)24—% 1<s<2
2
w2 5> 2.
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The function a is of class C11([0, +00]) and, for every s > 0, satisfies 71—‘? <a(s) <1
Denote by A its primitive, that is A(s) = [; a(t)dt, verifying then

V2
%s < A(s) < s. (2.3)

We introduce now the auxiliary problem

— (a(ju'P)u’)" = h(t)g(u)  in]0,1]
(P")

Denote by X the space W;?(]0, 1[), endowed with the norm |ju|| = (fol |u’(t)|2dt) 1/2.
It is well known that the space X is compactly embedded into C°([0, 1]) and ||ul|oc <
lul| where ||ul|cc = max;e(oq) [u(t)]. Let ¥ and ® : X — R be the functionals defined
by

1

\I/(u)=§/0 Al ()2 dt, @(u)z—/o B G(u(t))dt, ue X.

Due to (2.3), U is well defined on X, continuous and coercive. Moreover, by the con-
vexity of the function s — A(s?) in R, ¥ is convex and then sequentially weakly lower
semicontinuous. The functional ® is well defined and sequentially weakly continuous.

Moreover ¥ and ® are continuously Gateaux differentiable with derivative given by

vwwn=éamwwmwwmw, ¢mmw=—4fmmwmwmw

for every u,v € X. With these assumptions, the function ¢ from (2.1) reads as

follows:
o) = in O(u) — infy—1(_o0 ) (I)’
w1 (00,0 p—¥(u)
where U=1(] — 00, p]) ={ue X : ¥(u) <p}.
Step 2. We claim that § < 1.
Recall that ¢ := liminf,_ o+ ¢(p) and clearly § > 0.

Notice that from G(s) = 0 for every s < 0 and ) it follows that

max G =maxG = maxG.
[—bk,bi] [0,bx] [0,ak]

7V2b?
32

Let 5 € [0,ax] such that G(5;) = max|_s, 5,] G and denote by 55, =
We have that

(] =00, s1]) C{v € Xt [[vlloe < bi}
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Indeed, if v € X is such that ¥(v) < sg, then by (2.3) we have

V2
Dol < B0) < s,
and clearly
lvll3 < o,
which is our claim. Hence,
1
sup  (—=®(v)) < max G [ h(t)dt = G(5k)|hl L1 qo1p- (2.4)
W=1(]—o0,s51]) [=brs0e]  Jo
G(s)

By assumption (47), lim irlf —5— > —oo. It follows the existence of M > 0
s—0 S
and 7 €]0, b1 [ such that

G(s) > —Ms* for every s €]0,]. (2.5)
Choose now [ such that
. maxjg,q,] G 7f 1
lim sup <l<
k=00 b% 32 ||hllLrgoap

By i) and i), for k big enough,

max[g q,] G 64v/2
é“|wﬁmw+<ﬂmwm+uwpm1>w<mwﬁmm

which implies, as 5§, < ay

G(gk 64\[ 52
< M|hloo + 7lWlHL1(]0 1)) i <I||Pllzrgo,1p- (2.6)
Define
45,1, if 0<t<i
ws,, (t) = § 5k, it l<t<?3
45p(1—1), if 2 <t<1.
Clearly ws, € X and
1 _
U(ws,) < 5llws,[|* = 45} (2.7)

So, using the definition of ws, ,

1/4 3/4

1/4 3/4
Mllhlloo_ Mhls _
> 1 24 G( k) — 1 57
M| |h| oo
> —*”2” 5. (2.8)
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where hg = essinf|g 1) h.

Putting together (2.4), (2.8), (2.6) and (2.

7) we obtain

_ Moo _
wp (~0) ¢ D) < GEOIL o + g
W —1(]—00,s%])
16v/2 _
< 7 l||h||L1([071])(8k —48%)
1612
< - UAl z1 0,17 (8% — ¥(ws,,)).

Since s — 0 as k — 0o, we get

@ 5 —infg -1 0.8 d
6 < limin (ws,) — infy—1(j—0,5,)) P(v)

16v/2

s — U(ws,)

<

2
- Uhll L1 o, < 1.

Step 8. 0 is not a local minimum of ¥+ .

We will construct a sequence of functions in X tending in norm to zero where

the energy attains negative value. By assumption (i), lim sup

M > 0 is such that
M
ho

8 + [[ofloc M
> R L —

G(s)

5 = too and so if
s

s—0t

: (2.9)

(where M is as in Step 2), there exists a sequence {3} CJ0, 7] converging to zero such

that
G(gk) > Mgi

Let ws, defined as

455t, if
Ws,, (t) = §k7 if
45, (1 —t), if

(2.10)

I[N )
IN A IA
~+~ ~ <
IN A A
e

It is clear that ||ws, || — 0 as k — oo. Let us prove that U(w;, )+ ®(ws,,) < 0. Indeed,

by (2.5) and (2.10) we have

1/4 3/4 1
U(ws, ) + (ws,) < 457 — /0 h(t)G(ws, )dt /1/4 h(t)G(8)dt /3/4 h(t)G(ws, )dt
M||h||so - Mhy _ M|k oo -
ity MUty ooy D0
M||h Mh

<0=10(0) + ®(0).

Our claim is achieved.

Step 4. Existence of a sequence of critical points for ¥ + .

88
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We apply Theorem 2.1 to the functionals ¥ and ® with A = 1. One has that
0 is the global minimum of ¥ and by Step 3 is not a local minimum of ¥ 4 &, hence
there exists a sequence {uy} of pairwise distinct critical points of the energy such that

limg— 0o ¥(ug) = 0. In particular,
klim lug|loo = 0. (2.11)

Let us prove that the critical points of the energy are non negative. Assume that u
is a critical point of ¥ + ® and that the set C' = {t € [0,1] : u(¢) < 0} is non empty,
i.e. has a positive measure. Then, the function v = min{0, v} still belongs to X and

0 = V@) + W) = [ a0 @0 [ nosu)a
= [ alwopwora

which implies v = 0, a contradiction. Hence, by using (2.11), for k& big enough,
0 < ug(t) < by for every t € [0, 1].

Step 5. Proof concluded.

If uy is a critical point of ¥ + &, then it is a weak solution of the auxiliary
problem (P’), it is non negative and bounded from above by b1, as proven in Step 4.

We are going to prove now that for k big enough, [lu} |lec < 1.

From [1], there exists o €]0, 1] and ¢ > 0 such that u, € C**([0,1]) and

lukllcr.e o) < c for every k € N. (2.12)
Let us prove now that
kh—>Holo ‘|uk‘lcl([()71]) =0.

Indeed assume by contradiction that there exists a sequence {ug,} such that

limp, oo [[Ug,, lo1(f0,1) > 0. Then, since limg oo [Jug oo = 0 it must be

hllngo [tk [0 > 0. (2.13)

From Ascoli Arzela’ Theorem, there exists a subsequence still denoted by {ug, } such
that {uy, } is uniformly convergent to zero, in contradiction with (2.13).

In particular, for k big enough, we have that [|ux||c1(jo,1) < 1 and this implies
at once that uy is a weak solution of the original problem.

Remark 2.2. It is still an open question whether Theorem 1.1 is valid without
assumption (7).
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Remark 2.3. We point out that our method works when the space dimension N is
equal to 1. Indeed in our application of Theorem 2.1 it is crucial to embed the space
X in C°([0,1]). Notice however that the variational principle by Ricceri is valid for
every space dimension, but it is still an open question how to apply it when there is
no embedding into the space of continuous functions.

We conclude this note with an example of application of Theorem 1.1.

Example 2.4. Let a; = 77 and by = 7. Choose a constant [ €]0, 73—‘25[
Define f : R — R as follows

(5 —bry1) . TS
4l(b%—b%+1)m, if by < s < eFDetL
= (ak — S) : ar+brit
f(s) 4l(b%—bi+1)m, if wtbin < 5 < gy
0, otherwise

The function f is continuous and satisfies all the assumptions of Theorem 1.1. In

F(s)

52

particular, lim inf =[. Then, problem
s—0

_ (VliW) — () o1

u(0) =u(l) =0

admits a sequence of non-negative weak solutions tending to zero in the C'! norm.
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