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A NOTE ON THE EXISTENCE OF INFINITELY MANY SOLUTIONS
FOR THE ONE DIMENSIONAL PRESCRIBED CURVATURE

EQUATION

FRANCESCA FARACI

Abstract. In the present paper we deal with the one dimensional pre-

scribed curvature equation. We prove, under a suitable oscillatory be-

haviour at zero of the nonlinearity, the existence of infinitely many solu-

tions. Our approach combines variational techniques with classical regu-

larity results.

1. Introduction

In the present paper we deal with the one dimensional prescribed curvature
problem

(P )


−
(

u′√
1 + u′2

)′
= h(t)f(u) in ]0, 1[

u(0) = u(1) = 0

where h : [0, 1] → R is a positive bounded function with ess inf [0,1] h > 0, f : R → R
is a continuous function. The problem of existence and multiplicity results for such
problem is one of the most investigated issue in calculus of variations and differential
geometry. We focus here on the existence of infinitely many solutions in the same
spirit of some recent papers of Obersnel and Omari who studied the problem under
different sets of assumptions on the nonlinearity f .

A sequence of weak solutions (tending in the C1 norm to zero) has been
obtained in [3] in any space dimension N via the Lusternik-Schnirelmann theory,
provided the nonlinearity is odd and its primitive is subquadratic at zero. The same
thesis for the one dimensional autonomous equation has been achieved in [2] via
the analysis of some generalized Fuč́ık spectrum under different behaviour of the
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nonlinearity. Namely if f is superlinear or sublinear at zero and satisfies, with its
primitive, suitable conditions at +∞ and −∞, the authors proved the existence of
infinitely many solutions which are possibly discontinuous at the points where they
attain the value zero. Finally we mention the paper [4], where the method of sub and
super solutions guarantees, in any space dimension N , the existence of a sequence of
weak solutions tending in the C1 norm to zero.

We will prove the existence of infinitely many solutions for the one dimen-
sional prescribed curvature problem under suitable oscillatory assumptions at zero
on the nonlinearity f . We propose a new approach without requiring symmetry or
conditions at +∞.

Following the variational approach of [3], we will apply a variational principle
by Ricceri [5] to an elliptic regularized problem to obtain a sequence of pairwise
distinct critical points for the energy functional associated and subsequently, by the
means of classical regularity results, we will achieve the existence of infinitely many
solutions for the original problem.

Throughout the sequel by a solution of (P ) we mean a weak solution, that is
a function u ∈ W 1,2

0 (]0, 1[) such that∫ 1

0

u′(t)√
1 + u(t)′2

v′(t)dt−
∫ 1

0

h(t)f(u(t))v(t)dt = 0

for every v ∈ W 1,2
0 (]0, 1[).

Our main result is

Theorem 1.1. Assume that
i) there exist two sequences {ak} and {bk} in ]0,∞[ with bk+1 < ak < bk,

limk→∞ bk = 0 and lim
k→∞

ak

bk
= 0 such that f(s) ≤ 0 for every s ∈ [ak, bk];

ii) if F (s) =
∫ s

0

f(t)dt, then

−∞ < lim inf
s→0+

F (s)
s2

≤ lim sup
s→0+

F (s)
s2

= +∞;

iii) lim sup
k→∞

max[0,ak] F

b2
k

<
7
√

2
32

1
‖h‖L1(]0,1[)

.

Then, problem (P ) admits a sequence of non negative weak solutions {uk} ⊆ C1([0, 1])
which satisfy limk→∞ ‖uk‖C1([0,1]) = 0.

2. Proof of Theorem 1.1

2.1. Preliminaries. Our main tool is the following variational principle by Ricceri
which is a consequence of a more general result.
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Theorem 2.1. ([5], Theorem 2.5) Let X be a Hilbert space, Φ,Ψ : X → R two
sequentially weakly lower semicontinuous, continuously Gâteaux differentiable func-
tionals. Assume that Ψ is strongly continuous and coercive. For each ρ > infX Ψ,
set

ϕ(ρ) := inf
Ψ−1(]−∞,ρ[)

Φ(u)− inf
Ψ−1(]−∞,ρ[)

w Φ

ρ−Ψ(u)
, (2.1)

where Ψ−1(]−∞, ρ[) := {u ∈ X : Ψ(u) < ρ} and Ψ−1(]−∞, ρ[)
w

is its closure in the
weak topology of X. Furthermore, set

δ := lim inf
ρ→(infX Ψ)+

ϕ(ρ). (2.2)

If δ < +∞ then, for every λ > δ, either Φ + λΨ possesses a local minimum, which
is also a global minimum of Ψ, or there is a sequence {uk} of pairwise distinct crit-
ical points of Φ + λΨ, with limk→∞Ψ(uk) = infX Ψ, weakly converging to a global
minimum of Ψ.

2.2. Proof. In the present section we will give the proof of Theorem 1.1. Following
an idea of Obersnel and Omari in [3], we apply Theorem 2.1 to a modified problem
and then, by the means of a regularity result by Lieberman (see [1]) we prove that
the critical points of the energy are actually solutions of the original problem.

We split the proof in several steps.
Step 1. A modified problem.

Notice first that assumptions i) and ii) imply that f(0) = 0. We truncate f as follows:

g(s) =


0 s < 0
f(s) 0 ≤ s < b1

f(b1) s ≥ b1

where b1 is from assumption (i). The function g is continuous and if G : R → R
denotes its primitive, that is G(s) =

∫ s

0
g(t)dt, g and G satisfy the assumptions

(i)− (iii) of Theorem 1.1. Define also a : [0,+∞[→]0,+∞[ by

a(s) =



1√
1 + s

0 ≤ s < 1
√

2
16

(s− 2)2 +
7
√

2
16

1 ≤ s < 2

7
√

2
16

s ≥ 2.
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The function a is of class C1,1([0,+∞[) and, for every s ≥ 0, satisfies 7
√

2
16 ≤ a(s) ≤ 1.

Denote by A its primitive, that is A(s) =
∫ s

0
a(t)dt, verifying then

7
√

2
16

s ≤ A(s) ≤ s. (2.3)

We introduce now the auxiliary problem

(P ′)


−
(
a(|u′|2)u′

)′
= h(t)g(u) in ]0, 1[

u(0) = u(1) = 0

Denote by X the space W 1,2
0 (]0, 1[), endowed with the norm ‖u‖ =

(∫ 1

0
|u′(t)|2dt

)1/2

.

It is well known that the space X is compactly embedded into C0([0, 1]) and ‖u‖∞ ≤
‖u‖ where ‖u‖∞ = maxt∈[0,1] |u(t)|. Let Ψ and Φ : X → R be the functionals defined
by

Ψ(u) =
1
2

∫ 1

0

A(|u′(t)|2)dt, Φ(u) = −
∫ 1

0

h(t)G(u(t))dt, u ∈ X.

Due to (2.3), Ψ is well defined on X, continuous and coercive. Moreover, by the con-
vexity of the function s → A(s2) in R, Ψ is convex and then sequentially weakly lower
semicontinuous. The functional Φ is well defined and sequentially weakly continuous.
Moreover Ψ and Φ are continuously Gâteaux differentiable with derivative given by

Ψ′(u)(v) =
∫ 1

0

a(|u′(t)|2)u′(t)v′(t)dt, Φ′(u)(v) = −
∫ 1

0

h(t)g(u(t))v(t)dt,

for every u, v ∈ X. With these assumptions, the function ϕ from (2.1) reads as
follows:

ϕ(ρ) = inf
Ψ−1(]−∞,ρ[)

Φ(u)− infΨ−1(]−∞,ρ]) Φ
ρ−Ψ(u)

,

where Ψ−1(]−∞, ρ]) = {u ∈ X : Ψ(u) ≤ ρ}.
Step 2. We claim that δ < 1.
Recall that δ := lim infρ→0+ ϕ(ρ) and clearly δ ≥ 0.
Notice that from G(s) = 0 for every s ≤ 0 and i) it follows that

max
[−bk,bk]

G = max
[0,bk]

G = max
[0,ak]

G.

Let s̄k ∈ [0, ak] such that G(s̄k) = max[−bk,bk] G and denote by sk =
7
√

2b2
k

32
.

We have that

Ψ−1(]−∞, sk]) ⊆ {v ∈ X : ‖v‖∞ ≤ bk} .
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Indeed, if v ∈ X is such that Ψ(v) ≤ sk, then by (2.3) we have

7
√

2
32

‖v‖2 ≤ Ψ(v) ≤ sk,

and clearly
‖v‖2∞ ≤ b2

k,

which is our claim. Hence,

sup
Ψ−1(]−∞,sk])

(−Φ(v)) ≤ max
[−bk,bk]

G

∫ 1

0

h(t)dt = G(s̄k)‖h‖L1(]0,1[). (2.4)

By assumption (ii), lim inf
s→0+

G(s)
s2

> −∞. It follows the existence of M > 0

and τ ∈]0, b1[ such that

G(s) > −Ms2 for every s ∈]0, τ [. (2.5)

Choose now l such that

lim sup
k→∞

max[0,ak] G

b2
k

< l <
7
√

2
32

1
‖h‖L1(]0,1[)

.

By i) and iii), for k big enough,

max[0,ak] G

b2
k

‖h‖L1(]0,1[) +

(
1
2
M‖h‖∞ +

64
√

2
7

l‖h‖L1(]0,1[)

)
a2

k

b2
k

< l‖h‖L1(]0,1[)

which implies, as s̄k ≤ ak

G(s̄k)
sk

‖h‖L1(]0,1[) +

(
1
2
M‖h‖∞ +

64
√

2
7

l‖h‖L1(]0,1[)

)
s̄2

k

sk
< l‖h‖L1(]0,1[). (2.6)

Define

ws̄k
(t) =


4s̄kt, if 0 ≤ t < 1

4

s̄k, if 1
4 ≤ t < 3

4

4s̄k(1− t), if 3
4 ≤ t ≤ 1.

Clearly ws̄k
∈ X and

Ψ(ws̄k
) ≤ 1

2
‖ws̄k

‖2 = 4s̄2
k. (2.7)

So, using the definition of ws̄k
,

−Φ(ws̄k
) =

∫ 1/4

0

h(t)G(ws̄k
)dt +

∫ 3/4

1/4

h(t)G(s̄k)dt +
∫ 1

3/4

h(t)G(ws̄k
)dt

> −M‖h‖∞
4

s̄2
k +

h0

2
G(s̄k)− M‖h‖∞

4
s̄2

k

> −M‖h‖∞
2

s̄2
k. (2.8)
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where h0 = ess inf [0,1] h.
Putting together (2.4), (2.8), (2.6) and (2.7) we obtain

sup
Ψ−1(]−∞,sk])

(−Φ(v)) + Φ(ws̄k
) ≤ G(s̄k)‖h‖L1([0,1]) +

M‖h‖∞
2

s̄2
k

<
16
√

2
7

l‖h‖L1([0,1])(sk − 4s̄2
k)

≤ 16
√

2
7

l‖h‖L1([0,1])(sk −Ψ(ws̄k
)).

Since sk → 0 as k →∞, we get

δ ≤ lim inf
k

Φ(ws̄k
)− infΨ−1(]−∞,sk]) Φ(v)

sk −Ψ(ws̄k
)

≤ 16
√

2
7

l‖h‖L1([0,1]) < 1.

Step 3. 0 is not a local minimum of Ψ + Φ.
We will construct a sequence of functions in X tending in norm to zero where

the energy attains negative value. By assumption (ii), lim sup
s→0+

G(s)
s2

= +∞ and so if

M > 0 is such that

M >
8 + ‖h‖∞M

h0
, (2.9)

(where M is as in Step 2), there exists a sequence {s̃k} ⊂]0, τ [ converging to zero such
that

G(s̃k) > Ms̃2
k. (2.10)

Let ws̃k
defined as

ws̃k
(t) =


4s̃kt, if 0 ≤ t < 1

4

s̃k, if 1
4 ≤ t < 3

4

4s̃k(1− t), if 3
4 ≤ t ≤ 1.

It is clear that ‖ws̃k
‖ → 0 as k →∞. Let us prove that Ψ(ws̃k

)+Φ(ws̃k
) < 0. Indeed,

by (2.5) and (2.10) we have

Ψ(ws̃k
) + Φ(ws̃k

) ≤ 4s̃2
k −

∫ 1/4

0

h(t)G(ws̃k
)dt−

∫ 3/4

1/4

h(t)G(s̃k)dt−
∫ 1

3/4

h(t)G(ws̃k
)dt

≤ 4s̃2
k +

M‖h‖∞
4

s̃2
k −

Mh0

2
s̃2

k +
M‖h‖∞

4
s̃2

k

= s̃2
k

(
4 +

M‖h‖∞
2

− Mh0

2

)
< 0 = Ψ(0) + Φ(0).

Our claim is achieved.
Step 4. Existence of a sequence of critical points for Ψ + Φ.
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We apply Theorem 2.1 to the functionals Ψ and Φ with λ = 1. One has that
0 is the global minimum of Ψ and by Step 3 is not a local minimum of Ψ + Φ, hence
there exists a sequence {uk} of pairwise distinct critical points of the energy such that
limk→∞Ψ(uk) = 0. In particular,

lim
k→∞

‖uk‖∞ = 0. (2.11)

Let us prove that the critical points of the energy are non negative. Assume that u

is a critical point of Ψ + Φ and that the set C = {t ∈ [0, 1] : u(t) < 0} is non empty,
i.e. has a positive measure. Then, the function v = min{0, u} still belongs to X and

0 = Ψ′(u)(v) + Φ′(u)(v) =
∫ 1

0

a(|u′(t)|2)u′(t)v′(t)dt−
∫ 1

0

h(t)g(u(t))v(t)dt

=
∫ 1

0

a(|u′(t)|2)u′(t)2dt

which implies u = 0, a contradiction. Hence, by using (2.11), for k big enough,
0 ≤ uk(t) ≤ b1 for every t ∈ [0, 1].

Step 5. Proof concluded.
If uk is a critical point of Ψ + Φ, then it is a weak solution of the auxiliary

problem (P ′), it is non negative and bounded from above by b1, as proven in Step 4.
We are going to prove now that for k big enough, ‖u′k‖∞ ≤ 1.
From [1], there exists α ∈]0, 1] and c > 0 such that uk ∈ C1,α([0, 1]) and

‖uk‖C1,α([0,1]) ≤ c for every k ∈ N. (2.12)

Let us prove now that

lim
k→∞

‖uk‖C1([0,1]) = 0.

Indeed assume by contradiction that there exists a sequence {ukh
} such that

limh→∞ ‖ukh
‖C1([0,1]) > 0. Then, since limk→∞ ‖uk‖∞ = 0 it must be

lim
h→∞

‖u′kh
‖∞ > 0. (2.13)

From Ascoli Arzela’ Theorem, there exists a subsequence still denoted by {ukh
} such

that {u′kh
} is uniformly convergent to zero, in contradiction with (2.13).

In particular, for k big enough, we have that ‖uk‖C1([0,1]) ≤ 1 and this implies
at once that uk is a weak solution of the original problem.

Remark 2.2. It is still an open question whether Theorem 1.1 is valid without
assumption (iii).
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Remark 2.3. We point out that our method works when the space dimension N is
equal to 1. Indeed in our application of Theorem 2.1 it is crucial to embed the space
X in C0([0, 1]). Notice however that the variational principle by Ricceri is valid for
every space dimension, but it is still an open question how to apply it when there is
no embedding into the space of continuous functions.

We conclude this note with an example of application of Theorem 1.1.

Example 2.4. Let ak = 1
k!k and bk = 1

k! . Choose a constant l ∈]0, 7
√

2
32 [.

Define f : R → R as follows

f(s) =


4l(b2

k − b2
k+1)

(s− bk+1)
(ak − bk+1)2

, if bk+1 ≤ s ≤ ak+bk+1
2

4l(b2
k − b2

k+1)
(ak − s)

(ak − bk+1)2
, if ak+bk+1

2 ≤ s ≤ ak

0, otherwise

The function f is continuous and satisfies all the assumptions of Theorem 1.1. In

particular, lim inf
s→0+

F (s)
s2

= l. Then, problem
−
(

u′√
1 + u′2

)′
= f(u) in ]0, 1[

u(0) = u(1) = 0

admits a sequence of non-negative weak solutions tending to zero in the C1 norm.
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