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COMBINED VARIATIONAL AND SUB-SUPERSOLUTION
APPROACH FOR MULTI-VALUED ELLIPTIC VARIATIONAL

INEQUALITIES

SIEGFRIED CARL

Abstract. This paper provides a variational approach for a class of multi-

valued elliptic variational inequalities governed by the p-Laplacian and

Clarke’s generalized gradient of some locally Lipschitz function including

a number of (multi-valued) elliptic boundary value problems as special

cases. Since only local growth conditions are imposed on the multi-valued

term, the problem under consideration is neither coercive nor of variational

structure beforehand meaning that it cannot be related to the derivative

of some associated (nonsmooth) potential. By combining a recently de-

veloped sub-supersolution method for multi-valued elliptic variational in-

equalities and a suitable modification of the given locally Lipschitz function

the main goal of this paper is to construct a (nonsmooth) functional whose

critical points turn out to be solutions of the problem under consideration

lying in an ordered interval of sub-supersolution.

1. Introduction

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω, and let
V = W 1,p(Ω) and V0 = W 1,p

0 (Ω), 1 < p < +∞, denote the usual Sobolev spaces with
their dual spaces V ∗ and V ∗

0 , respectively. Let K be a closed, convex subset of V ,
and let j : Ω × R → R be a function (x, s) 7→ j(x, s) that is only supposed to be
measurable in x ∈ Ω and locally Lipschitz continuous in s ∈ R. Let q denote the
Hölder conjugate to p, i.e., q satisfies 1/p+1/q = 1. In this paper we are dealing with
the following multi-valued variational inequality: Find u ∈ K, η ∈ Lq(Ω) such that

〈−∆pu, v − u〉+
∫

Ω

η (v − u) dx ≥ 0, ∀ v ∈ K, (1.1)

η(x) ∈ ∂j(x, u(x)) for a.a. x ∈ Ω, (1.2)
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where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, s 7→ ∂j(x, s) denotes Clarke’s gen-
eralized gradient of some locally Lipschitz function s 7→ j(x, s), and 〈·, ·〉 denotes the
duality pairing. The operator −∆p is defined by

〈−∆pu, ϕ〉 =
∫

Ω

|∇u|p−2∇u∇ϕ dx, ∀ ϕ ∈ V,

which implies that −∆p : V → V ∗ is continuous, bounded, monotone, and thus
pseudomonotone, see [1, Theorem 2.109, Lemma 2.111].

Only for the sake of simplifying our presentation and in order to emphasize
the key ideas we have confined our consideration to problem (1.1)-(1.2). Making use
of the arguments developed in this paper, more general multi-valued problems can be
considered as well such as, for example, the following one: Find u ∈ K, η ∈ Lq(Ω),
and ξ ∈ Lq(∂Ω) such that

η(x) ∈ ∂j1(x, u(x)), a.e. x ∈ Ω, ξ(x) ∈ ∂j2(x, γu(x)), a.e. x ∈ ∂Ω,

〈−∆pu− h, v − u〉+
∫

Ω

η (v − u) dx +
∫

∂Ω

ξ (γv − γu) dσ ≥ 0, ∀ v ∈ K,
(1.3)

where γ : V → Lp(∂Ω) denotes the trace operator, and h ∈ V ∗.
The main goal of this paper is to develop a variational approach to the

multi-valued variational inequality (1.1)-(1.2). Since only a local growth condition
is imposed on the multi-valued term, the problem under consideration is neither co-
ercive nor of variational structure beforehand meaning that it cannot be related to
the derivative of some associated (nonsmooth) potential. Therefore, the main diffi-
culty one is faced with is to associate to (1.1)-(1.2) a corresponding potential that
can be studied by (nonsmooth) variational methods. By combining a recently de-
veloped sub-supersolution method for elliptic variational inequalities (see [1]) with a
suitable modification of the given locally Lipschitz function, the aim of this paper is
to construct a (nonsmooth) functional whose critical points turn out to be solutions
of problem (1.1)-(1.2).

2. Special Cases

Let us consider a few special cases that are included in (1.1)-(1.2).

Example 2.1. Let f : Ω×R → R be a Carathéodory function. Consider its primitive
given by

j(x, s) :=
∫ s

0

f(x, t) dt.
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Then the function s 7→ j(x, s) is continuously differentiable, and thus Clarke’s gradient
reduces to a singleton, i.e.,

∂j(x, s) = {∂j(x, s)/∂s} = {f(x, s)}.

If K = V , then (1.1)-(1.2) becomes the following quasilinear elliptic boundary value
problem (BVP)

〈−∆pu, v〉+
∫

Ω

f(x, u) v dx = 0, ∀ v ∈ V, (2.1)

which is the formulation for the weak solution of the quasilinear Neumann BVP

−∆pu + f(x, u) = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω, (2.2)

where ∂/∂ν denotes the outward pointing conormal derivative associated with −∆p.

Example 2.2. If K = V0, and j as in Example 2.1, then (1.1)-(1.2) is equivalent to

u ∈ V0 : 〈−∆pu, v〉+
∫

Ω

f(x, u) v dx = 0, ∀ v ∈ V0, (2.3)

which is nothing but the weak formulation of the homogeneous Dirichlet problem

−∆pu + f(x, u) = 0 in Ω, u = 0 on ∂Ω. (2.4)

Example 2.3. If K = V0 or K = V , then (1.1)-(1.2) reduces to elliptic inclusion
problems, which for K = V0 yields the following multi-valued Dirichlet problem

−∆pu + ∂j1(x, u) 3 0 in Ω, u = 0 on ∂Ω, (2.5)

and for K = V the multi-valued Neumann BVP

−∆pu + ∂j(x, u) 3 0 in Ω,
∂u

∂ν
= 0 on ∂Ω. (2.6)

Example 2.4. Let Γ1 and Γ2 be relatively open subsets of ∂Ω satisfying Γ1∪Γ2 = ∂Ω
and Γ1 ∩ Γ2 = ∅. If K ⊆ V is the closed subspace given by

K = {v ∈ V : γv = 0 on Γ1},

then we obtain the following special case of (1.1)-(1.2):

−∆pu + ∂j(x, u) 3 0 in Ω,
∂u

∂ν
= 0 on Γ2, u = 0 on Γ1. (2.7)

Example 2.5. If K ⊆ V , and j = 0, then (1.1)-(1.2) is equivalent to the usual
variational inequality of the form

u ∈ K : 〈−∆pu, v − u〉 ≥ 0, ∀ v ∈ K.
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3. Definitions, Assumptions and Preliminaries

Based on comparison principles for nonsmooth variational problems devel-
oped in [1] we first provide a natural extension of the notion of sub-supersolution
to the multi-valued variational problem (1.1)-(1.2). To this end we introduce the
following notations for functions w, z and sets W and Z of functions defined on
Ω: w ∧ z = min{w, z}, w ∨ z = max{w, z}, W ∧ Z = {w ∧ z : w ∈ W, z ∈ Z},
W ∨ Z = {w ∨ z : w ∈ W, z ∈ Z}, and w ∧ Z = {w} ∧ Z, w ∨ Z = {w} ∨ Z.

Definition 3.1. A function u ∈ V is called a subsolution of (1.1)-(1.2) if there is
an η ∈ Lq(Ω) satisfying

(i) u ∨K ⊆ K,

(ii) η(x) ∈ ∂j(x, u(x)), for a.e. x ∈ Ω,

(iii) 〈−∆pu, v − u〉+
∫

Ω

η (v − u) dx ≥ 0, for all v ∈ u ∧K.

Definition 3.2. A function u ∈ V is called a supersolution of (1.1)-(1.2) if there
is an η ∈ Lq(Ω) satisfying

(i) u ∧K ⊆ K,

(ii) η(x) ∈ ∂j(x, u(x)), for a.e. x ∈ Ω,

(iii) 〈−∆pu, v − u〉+
∫

Ω

η (v − u) dx ≥ 0, for all v ∈ u ∨K.

Remark 3.3. Note that the notions for sub- and supersolution defined in Definition
3.1 and Definition 3.2 have a symmetric structure, i.e., one obtains the definition for
the supersolution u from the definition of the subsolution by replacing u in Definition
3.1 by u, and interchanging ∨ by ∧.

To see that Definitions 3.1 and 3.2 are in fact natural extensions of the usual
notions of sub-supersolutions for elliptic BVP let us consider the following special
cases.

Example 3.4. Consider Example 2.1, i.e., K = V , f : Ω×R → R is a Carathéodory
function, and j is the primitive of f as given above. Then Clarke’s generalized gradient
∂j reduces to a singleton, i.e.,

∂j(x, s) = {f(x, s)},

and (1.1)-(1.2) becomes the quasilinear elliptic BVP (2.1). If u ∈ V is a subsolution
according to Definition 3.1, then the first condition (i) is trivially satisfied. The second
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condition (ii) of Definition 3.1 means that

η(x) = f(x, u(x)), for a.e. x ∈ Ω.

Since K = V , any v ∈ u ∧ V has the form v = u ∧ ϕ = u − (u − ϕ)+ with ϕ ∈ V ,
where w+ = max{w, 0}, condition (iii) becomes

〈−∆pu,−(u− ϕ)+〉+
∫

Ω

f(·, u) (−(u− ϕ)+) dx ≥ 0, ∀ ϕ ∈ V. (3.1)

Since u ∈ V , we have

M = {(u− ϕ)+ : ϕ ∈ V } = V ∩ Lp
+(Ω),

where Lp
+(Ω) is the positive cone of Lp(Ω), and thus we obtain from inequality (3.1)

〈−∆pu, χ〉+
∫

Ω

f(x, u) χdx ≤ 0, ∀ χ ∈ V ∩ Lp
+(Ω, (3.2)

which is nothing but the usual notion of a (weak) subsolution for the BVP (2.1).
Similarly, one verifies that u ∈ V which is a supersolution according to Definition 3.2
is equivalent with the usual supersolution of the BVP (2.1).

Example 3.5. In case that K = V0, and j as in Example 3.4, then (1.1)-(1.2) is
equivalent to the BVP (2.3) (resp. (2.4)). Let us consider the notion of subsolution
in this case given via Definition 3.1. For u ∈ V condition (i) means u∨V0 ⊆ V0. This
last condition is satisfied if and only if

γu ≤ 0 i.e., u ≤ 0 on ∂Ω, (3.3)

and condition (ii) means, as above,

η(x) = f(x, u(x)), a.e. x ∈ Ω.

Since any v ∈ u ∧ V0 can be represented in the form v = u − (u − ϕ)+ with ϕ ∈ V0,
from (iii) of Definition 3.1 we obtain

〈−∆pu,−(u− ϕ)+〉+
∫

Ω

f(·, u) (−(u− ϕ)+) dx ≥ 0, ∀ ϕ ∈ V0. (3.4)

Set χ = (u− ϕ)+, then (3.4) results in

〈−∆pu, χ〉+
∫

Ω

f(·, u) χdx ≤ 0, ∀ χ ∈ M0, (3.5)

where M0 := {χ ∈ V : χ = (u−ϕ)+, ϕ ∈ V0} ⊆ V0∩Lp
+(Ω). In [1] it has been proved

that the set M0 is a dense subset of V0∩Lp
+(Ω), which shows that (3.5) together with

(3.3) is nothing but the weak formulation for the subsolution of the Dirichlet problem
(2.3). Similarly, u ∈ V given by Definition 3.6 is shown to be a supersolution of the
Dirichlet problem (2.3).
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Assumption on j.

(H1) The function j : Ω×R → R satisfies: x 7→ j(x, s) is measurable in Ω for all
s ∈ R, and s 7→ j(x, s) is locally Lipschitz continuous in R for a.e. x ∈ Ω.

We next introduce a certain local Lq-boundedness condition for Clarke’s generalized
gradient s 7→ ∂j(x, s).

Definition 3.6. Let [v, w] ⊂ Lp(Ω) be an ordered interval. Clarke’s gradient ∂j :
Ω × R → 2R is called Lq-bounded with respect to the ordered interval [v,w]
provided that there exists kΩ ∈ Lq

+(Ω) such that for a.e. x ∈ Ω and for all s ∈
[v(x), w(x)] the inequality

|η| ≤ kΩ(x), ∀ η ∈ ∂j(x, s),

is fulfilled.

Remark 3.7. (i) We note that ∂j : Ω×R → 2R is trivially Lq-bounded with respect
to any ordered interval [v, w] ⊂ Lp(Ω) if we suppose the following natural growth
condition on ∂j: There exist c > 0, kΩ ∈ Lq

+(Ω) such that

|η| ≤ kΩ(x) + c|s|p−1, ∀ η ∈ ∂j(x, s),

for a.a. x ∈ Ω and for all s ∈ R.
(ii) If ∂j is a singleton, i.e., ∂j(x, s) = {f(x, s)} then accordingly we call the

function (x, s) 7→ f(x, s) Lq-bounded with respect to the ordered interval [v, w] ⊂
Lp(Ω) provided that there exists kΩ ∈ Lq

+(Ω) such that for a.e. x ∈ Ω and for all
s ∈ [v(x), w(x)] the inequalty

|f(x, s)| ≤ kΩ(x)

is fulfilled.

The construction of an appropriate functional related to (1.1)-(1.2) relies
amongst others on a suitable modification of the function j outside the interval [u, u]
formed by a given pair of sub- and supersolutions. Let (u, η) ∈ V ×Lq(Ω) and (u, η) ∈
V ×Lq(Ω) satisfy the conditions of Definition 3.1 and Definition 3.2, respectively, with
u ≤ u. Then we define the following modification j̃ of the given j:

j̃(x, s) =


j(x, u(x)) + η(x)(s− u(x)) if s < u(x),
j(x, s) if u(x) ≤ s ≤ u(x),
j(x, u(x)) + η(x)(s− u(x)) if s > u(x).

(3.6)

Assumption on j.
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(H2) Let u and u be sub-and supersolution of (1.1)-(1.2) such that u ≤ u. We
assume that ∂j : Ω × R → 2R is Lq-bounded with respect to the ordered
interval [u, u].

Lemma 3.8. Let hypotheses (H1)–(H2) be satisfied. Then the function j̃ : Ω×R → R
has the following properties:

(i) x 7→ j̃(x, s) is measurable in Ω for all s ∈ R, and s 7→ j̃(x, s) is Lipschitz
continuous in R for a.e. x ∈ Ω.

(ii) Let ∂j̃ denote Clarke’s generalized gradient of s 7→ j̃(x, s), then for a.e.
x ∈ Ω and for all s ∈ R the growth

|η| ≤ kΩ(x), ∀ η ∈ ∂j̃(x, s)

is fulfilled.
(iii) Clarke’s generalized gradient of s 7→ j̃(x, s) is given by

∂j̃(x, s) =



η(x) if s < u(x),
∂j̃(x, u(x)) if s = u(x),
∂j(x, s) if u(x) < s < u(x),
∂j̃(x, u(x)) if s = u(x),
η(x) if s > u(x),

(3.7)

and the inclusions ∂j̃(x, u(x)) ⊆ ∂j(x, u(x)) and ∂j̃(x, u(x)) ⊆ ∂j(x, u(x))
hold true.

Proof. The proof follows immediately from the definition (3.6) of j̃, and using the
assumptions (H1)–(H2) on j as well as from the fact that Clarke’s generalized gradient
∂j1(x, s) is a convex set. �

Using j̃ we define an integral functional J̃ on Lp(Ω) given by

J̃(u) =
∫

Ω

j̃(x, u(x)) dx, u ∈ Lp(Ω). (3.8)

Due to (ii) of Lemma 3.8, and applying Lebourg’s mean value theorem (see [1, Theo-
rem 2.177]) the functional J̃ : Lp(Ω) → R is well-defined and Lipschitz continuous, so
that Clarke’s generalized gradients ∂J̃ : Lp(Ω) → 2(Lp(Ω))∗ is well-defined too. More-
over, Aubin–Clarke theorem (cf. [8, p. 83]) provides the following characterization of
the generalized gradient. For u ∈ Lp(Ω) we have

η̃ ∈ ∂J̃(u) =⇒ η̃ ∈ Lq(Ω) with η̃(x) ∈ ∂j̃(x, u(x)) for a.e. x ∈ Ω. (3.9)

Lemma 3.9. Let i : V ↪→ Lp(Ω) denote the embedding operator and let i∗ : Lq(Ω) ↪→
V ∗ be its adjoint operator. Then Clarke’s generalized gradient of J̃ at u ∈ V is given
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by

∂J̃(u) = ∂(J̃ ◦ i)(u) = (i∗ ◦ ∂J̃ ◦ i)(u) = i∗∂J̃(u), ∀ u ∈ V.

Proof. Apply the chain rule, cf. [1, Corollary 2.180]. �

Finally, let b be the cut-off function related to an ordered pair (u, u) of sub-
supersolution and defined as follows:

b(x, s) =


(s− u(x))p−1 if s > u(x)
0 if u(x) ≤ s ≤ u(x)
−(u(x)− s)p−1 if s < u(x).

Apparently, b : Ω×R → R is a Carathéodory function satisfying the growth condition

|b(x, s)| ≤ k(x) + c1|s|p−1 (3.10)

for a.e. x ∈ Ω and for all s ∈ R, where c1 > 0 is a constant and k ∈ Lq
+(Ω). Moreover,

one has the following estimate∫
Ω

b(x, u(x))u(x) dx ≥ c2‖u‖p
Lp(Ω) − c3, ∀u ∈ Lp(Ω), (3.11)

for some constants c2 > 0 and c3 > 0. Due to (3.10) the functional B given by

B(u) =
∫

Ω

∫ u(x)

0

b(x, s) dsdx, ∀ u ∈ Lp(Ω) (3.12)

is well defined, and B ∈ C1(V, R) with

〈B′(u), ϕ〉 =
∫

Ω

b(x, u(x))ϕ(x) dx, ∀u ∈ V. (3.13)

Lemma 3.10. There exist constants c4 > 0, c5 > 0 such that

B(u) ≥ c4‖u‖p
Lp(Ω) − c5, ∀u ∈ Lp(Ω). (3.14)

Proof. From the definition of the cut-off function b we readily see that β given by

β(x, s) =


1
p (s− u(x))p if s > u(x)
0 if u(x) ≤ s ≤ u(x)
1
p (u(x)− s)p if s < u(x).

(3.15)

is a primitive of s 7→ b(x, s), i.e., ∂β(x, s)/∂s = b(x, s), which yields∫ u(x)

0

b(x, s) ds = β(x, u(x))− β(x, 0). (3.16)

By using (3.15) we get the estimate

|β(x, 0)| ≤ 1
p
(|u|p + |u|p). (3.17)
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For functions v, w ∈ Lp(Ω) we denote

{v < (≤)w} = {x ∈ Ω : v(x) < (≤)w(x)}.

We next estimate the first term on the right-hand side of (3.16). To this end we make
use of the following inequality:

|u(x)|p ≤ c
(
|u(x)− u(x)|p + |u(x)p

)
for some generic positive constant c, which yields

1
p
|u(x)− u(x)|p ≥ 1

pc
|u(x)|p − 1

p
|u(x)|p, (3.18)

and similarly
1
p
|u(x)− u(x)|p ≥ 1

pc
|u(x)|p − 1

p
|u(x)|p. (3.19)

With the help of (3.15) and (3.18)–(3.19) we obtain∫
Ω

β(x, u(x)) dx =
∫
{u>u}

β(x, u(x)) dx +
∫
{u<u}

β(x, u(x)) dx

≥ 1
pc

∫
Ω

|u(x)|p dx− 1
pc

∫
{u≤u≤u}

|u(x)|p dx

−1
p

∫
Ω

(
|u(x)|p + |u(x)|p

)
dx

≥ 1
pc
‖u‖p

Lp(Ω) −
2
p

(
‖u‖p

Lp(Ω) + ‖u‖p
Lp(Ω)

)
. (3.20)

Finally, (3.16), (3.17) and (3.20) imply the assertion of the lemma, i.e.,

B(u) ≥ 1
pc
‖u‖p

Lp(Ω) −
3
p

(
‖u‖p

Lp(Ω) + ‖u‖p
Lp(Ω)

)
with

c4 =
1
pc

, c5 =
3
p

(
‖u‖p

Lp(Ω) + ‖u‖p
Lp(Ω)

)
.

�

4. Combined Variational and Sub-Supersolution Approach

In this section we formulate and prove our main result. A crucial role in our
approach plays the following functional

Φ(u) =
1
p

∫
Ω

|∇u|p dx + B(u) + J̃(u), u ∈ V, (4.1)

where B and J̃(u) are defined by (3.8) and (3.12), respectively.
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Lemma 4.1. Let hypotheses (H1) and (H2) be satisfied. Then the functional Φ :
V → R is locally Lipschitz continuous, bounded below, coercive, and weakly lower
semicontinuous.

Proof. By the definition of J̃ and due to Lemma 3.8 (ii) we readily see that J̃ :
Lp(Ω) → R is Lipschitz continuous, which in view of the compact embedding V ↪→
Lp(Ω) shows that J̃ : V → R is weakly lower semicontinuous. The functionals

u 7→ P (u) :=
1
p

∫
Ω

|∇u|p dx and u 7→ B(u)

are C1(V, R), and thus, in particular, locally Lipschitz continuous as well. The deriv-
ative P ′ + B′ : V → V ∗ results in

〈P ′(u)+B′(u), ϕ〉 = 〈−∆pu+B′(u), ϕ〉 =
∫

Ω

(
|∇u|p−2∇u∇ϕ+b(·, u)ϕ

)
dx, ∀ ϕ ∈ V.

Taking into account (3.10) and applying [1, Theorem 2.109, Lemma 2.111] we see
that the operator P ′ + B′ : V → V ∗ is bounded, and pseudomonotone, which in
view of [10, Proposition 41.8] implies that the functional P + B : V → R is weakly
lower semicontinuous. Due to Lemma 3.8 (ii), (iii) the functional J̃ : Lp(Ω) → R is
(globally) Lipschitz continuous with Lipschitz constant L. Thus by means of Lemma
3.10 we obtain the following estimate (for some constant c6 > 0)

Φ(u) = P (u) + B(u) + J̃(u) ≥ 1
p
‖∇u‖p

Lp(Ω) + c4‖u‖p
Lp(Ω) − L‖u‖Lp(Ω) − c6, (4.2)

which shows that Φ : V → R is bounded below and coercive. �

Let IK : V → R∪{+∞} be the indicator function related to the given closed
convex set K 6= ∅, i.e.,

IK(u) =

{
0 if u ∈ K,

+∞ if u /∈ K,

which is known to be proper, convex, and lower semicontinuous, and thus weakly
lower semicontinuous as well (cf. [10, Proposition 38.7]). The following functional
E : V → R ∪ {+∞} will allow us to study the multi-valued variational inequality
(1.1)–(1.2) via variational methods for nonsmooth and nonconvex functionals:

E(u) = Φ(u) + IK(u), u ∈ V, (4.3)

i.e., E is the sum of a locally Lipschitz functional and a convex, proper and lower
semicontinuous functional. This type of functional has been studied, e.g., in [9].
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Definition 4.2. The function u ∈ V is called a critical point of E : V → R∪{+∞}
if the following holds:

Φo(u; v − u) + IK(v)− IK(u) ≥ 0, ∀ v ∈ V,

where Φo(u; v) denotes Clarke’s generalized directional derivative of Φ at u in the
direction v.

The following definition is equivalent to Definition 4.2, see [9, p.46].

Definition 4.3. The function u ∈ V is called a critical point of E : V → R∪{+∞}
if and only if

0 ∈ ∂Φ(u) + ∂IK(u),

where ∂Φ(u) denotes Clarke’s generalized gradient of Φ at u, and ∂IK(u) is the
subdifferential of IK at u in the sense of convex analysis.

Our main result is given by the following theorem.

Theorem 4.4. Let hypotheses (H1)–(H2) be satisfied. Then the functional E =
Φ + IK : V → R ∪ {+∞} possesses critical points. Moreover, any critical point u of
E is a solution of the multi-valued variational inequality (1.1)–(1.2) which belongs to
the ordered interval [u, u] formed by the given ordered sub- and supersolution.

Proof. (a) Existence of critical points

By Lemma 4.1 in conjunction with the properties of the indicator function IK , the
functional E : V → R ∪ {+∞} defined in (4.3) is weakly lower semicontinuous,
bounded below and coercive. Applying the basic minimization principle (cf. e.g. [10,
Proposition 38.15]) there exists a global minimizer u of E which necessarily is a critical
point of E (see [9]), i.e., u ∈ K and 0 ∈ ∂Φ(u) + ∂IK(u).

(b) Critical points are solutions of (1.1)–(1.2) in [u, u]

Let u ∈ K be a critical point of E, which implies the existence of an ξ ∈ ∂Φ(u)
satisfying −ξ ∈ ∂IK(u). The latter is equivalent to

〈ξ, v − u〉 ≥ 0, ∀ v ∈ K. (4.4)

Since Φ is the sum of a differentiable functional and Lipschitz continuous functional,
we have

∂Φ(u) = P ′(u) + B′(u) + ∂J̃(u),

and ξ ∈ ∂Φ(u) leads to
ξ = P ′(u) + B′(u) + i∗η̃, (4.5)

where η̃ ∈ ∂J̃(u), which in turn implies (see (3.9)) that η̃ ∈ Lq(Ω) ↪→ V ∗ and
η̃(x) ∈ ∂j̃(x, u(x)). Hence by (4.4), (4.5) it follows that to any critical point u of
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E there is an η̃ ∈ Lq(Ω) such that the following multi-valued variational inequality
holds:

u ∈ K, η̃(x) ∈ ∂j̃(x, u(x)) : 〈−∆pu + B′(u) + i∗η̃, v − u〉 ≥ 0, ∀ v ∈ K. (4.6)

By comparison we are going to prove next that any solution of (4.6) belongs to the
interval [u, u]. We first note that (4.6) is equivalent to

u ∈ K, η̃(x) ∈ ∂j̃(x, u(x)) : 〈−∆pu, v− u〉+
∫

Ω

(
b(·, u) + η̃

)
(v− u) dx ≥ 0, ∀ v ∈ K.

(4.7)
Let us show first that for any solution u of (4.7) the inequality u ≤ u holds, where
u is the given supersolution of (1.1)–(1.2). To this end we recall the definition of u

according to Definition 3.2: u ∈ V satisfies

(i) u ∧K ⊆ K,

(ii) η(x) ∈ ∂j(x, u(x)), for a.e. x ∈ Ω,

(iii) 〈−∆pu, v − u〉+
∫

Ω

η (v − u) dx ≥ 0, for all v ∈ u ∨K.

We apply the special test function v = u ∨ u = u + (u− u)+ in (iii), and v = u ∧ u =
u−(u−u)+ ∈ K in (4.7), and get by adding the resulting inequalities (with A := −∆p

for short)

〈Au−Au, (u− u)+〉 −
∫

Ω

b(·, u) (u− u)+ dx +
∫

Ω

(η − η̃) (u− u)+ dx ≥ 0. (4.8)

Applying Lemma 3.8 (iii) we have∫
Ω

(η − η̃) (u− u)+ dx =
∫
{u>u}

(η − η̃) (u− u) dx = 0, (4.9)

because η̃(x) = η(x) for x ∈ {u > u}. Taking the definition of the cut-off function b

into account we get ∫
Ω

b(·, u) (u− u)+ dx =
∫

Ω

(
(u− u)+

)p

dx. (4.10)

The first trem on the left-hand side of (4.8)yields the estimate

〈Au−Au, (u− u)+〉 = −〈Au−Au, (u− u)+〉 ≤ 0. (4.11)

Applying the results (4.9)–(4.11) to (4.8) we finally obtain∫
Ω

(
(u− u)+

)p

dx = 0,

which implies (u − u)+ = 0, and thus u ≤ u. The proof for u ≤ u can be done in a
similar way.
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So far we have shown that any solution u of the multi-valued variational
inequality (4.7) belongs to the interval [u, u], and thus satisfies: u ∈ K, b(x, u(x)) = 0,
η̃ ∈ Lq(Ω) and

η̃(x) ∈ ∂j̃(x, u(x)), a.e. x ∈ Ω, (4.12)

〈Au, v − u〉+
∫

Ω

η̃ (v − u) dx ≥ 0, ∀ v ∈ K. (4.13)

From Lemma 3.8 (iii) we see that ∂j̃(x, u(x)) ⊆ ∂j(x, u(x)) for any u ∈ [u, u], and
therefore we also have

η̃(x) ∈ ∂j(x, u(x)), a.e. x ∈ Ω,

which shows that the solution u ∈ [u, u] of the problem (4.7) is in fact a solution of the
original multi-valued variational inequality (1.1)–(1.2). This completes the proof. �

Remark 4.5. (i) Theorem 4.4 yields the desired variational tool in form of the
nonsmooth functional E given by (4.1) and (4.3), which not only allows to get existence
results for the multi-valued variational inequality (1.1)–(1.2), but also to localize the
critical points of E, i.e., any critical point of E belongs automatically to the ordered
interval [u, u]. Under the assumptions (H1)–(H2) we were able to verify the existence
of critical points by showing that E has a global minimizer. Under more specific
assumptions on j other types of critical points may occur which allows the study of
multiple solutions for (1.1)–(1.2).

(ii) By inspection of the notion of sub- and supersolution according to Defini-
tion 3.1 and Definition 3.2, respectively, one readily observes that any solution of the
multi-valued variational inequality (1.1)–(1.2) is both a subsolution and supersolution
provided the closed, convex set K ⊆ V satisfies the following lattice condition:

K ∧K ⊆ K, K ∨K ⊆ K.

(iii) In specific cases for K the general potential E may be replaced by a more
simpler potential having the same critical points which according to Theorem 4.4 are
solutions of (1.1)–(1.2) within the order interval [u, u] of sub-supersolution. In regard
with the latter two examples will be considered in the next section.

5. Applications

In this section we apply Theorem 4.4 to the special cases given in Example
2.1 and Example 2.2. In particular, the corresponding functional E is studied in more
detail. In the result we may replace E by functionals Ê and Ê0 that are simpler to
handle and that have the same critical points as E.
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Example 5.1. Let f : Ω × R → R be a Carathéodory function, and let j be its
primitive given by

j(x, s) :=
∫ s

0

f(x, t) dt. (5.1)

Then the function s 7→ j(x, s) is continuously differentiable, and thus Clarke’s gradient
reduces to a singleton, i.e.,

∂j(x, s) = {∂j(x, s)/∂s} = {f(x, s)}.

If K = V , then (1.1)-(1.2) reduces to the following quasilinear elliptic BVP

〈−∆pu, v〉+
∫

Ω

f(x, u) v dx = 0, ∀ v ∈ V, (5.2)

which is Example 2.1 and which is equivalent to a homogeneous Neumann problem.
Let u and u be sub- and supersolution with u ≤ u. The hypothesis (H1) on j given
by (5.1) is trivially satisfied. To fulfill hypothesis (H2) we need to impose an Lq-
boundedness with respect to [u, u] on f , i.e., for some kΩ ∈ Lq

+(Ω) the following
inequality is assumed to be satisfied:

|f(x, s)| ≤ kΩ(x), for a.e. x ∈ Ω, ∀ s ∈ [u(x), u(x)]. (5.3)

The associated potential E whose critical points are solutions of (5.2) within [u, u] is
now given by (note that IV = 0)

E(u) =
1
p

∫
Ω

|∇u|p dx + B(u) + J̃(u),

where B and J̃ are given by (3.12) and (3.8), respectively. Our aim is to replace the
functional J̃ by a functional Ĵ that can easier be handled and that satisfies

J̃(u)− Ĵ(u) = C, ∀ u ∈ V,

where C is a constant (not depending on u). Let Ê be defined by

Ê(u) :=
1
p

∫
Ω

|∇u|p dx + B(u) + Ĵ(u), u ∈ V. (5.4)

Since E and Ê differ only by some constant C, we have that u is a critical point of
E if and only if u is a critical point of Ê. Therefore, Theorem 4.4 holds true if E is
replaced by Ê.

For the construction of the new functional Ĵ let us first recall j̃ where j is
given by (5.1):

j̃(x, s) =


j(x, u(x)) + f(x, u(x))(s− u(x)) if s < u(x),
j(x, s) if u(x) ≤ s ≤ u(x),
j(x, u(x)) + f(x, u(x))(s− u(x)) if s > u(x).

(5.5)
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Since s 7→ j̃(x, s) given by (5.5) is differentiable, Clarke’s gradient ∂j̃(x, s) is single-
valued, i.e., ∂j̃(x, s) = { ∂

∂s j̃(x, s) } which apparently is given by

∂

∂s
j̃(x, s) =


f(x, u(x)) if s < u(x),
f(x, s) if u(x) ≤ s ≤ u(x),
f(x, u(x) if s > u(x).

(5.6)

By means of the truncation τ related to the given sub- and supersolution and defined
by

τ(x, s) =


u(x) if s < u(x),
s if u(x) ≤ s ≤ u(x),
u(x) if s > u(x),

(5.7)

we may rewrite (5.6) in the following compact form

∂

∂s
j̃(x, s) = (f ◦ τ)(x, s) := f(x, τ(x, s)).

Define the function (x, s) 7→ ĵ(x, s) by

ĵ(x, s) :=
∫ s

0

(f ◦ τ)(x, t) dt. (5.8)

Then we have
∂

∂s
j̃(x, s) =

∂

∂s
ĵ(x, s),

and thus

ĵ(x, s) = j̃(x, s)− j̃(x, 0),

which yields

J̃(u)− Ĵ(u) = J̃(0) =: C ∀ u ∈ V,

where

Ĵ(u) :=
∫

Ω

ĵ(x, u(x)) dx =
∫

Ω

∫ u(x)

0

(f ◦ τ)(x, t) dt dx, ∀ u ∈ V. (5.9)

Applying Theorem 4.4 to the elliptic problem (5.2) we get the following result.

Corollary 5.2. Let u, u be sub-and supersolution of (5.2) with u ≤ u, and assume
the local Lq-boundedness with respect to [u, u] for f . Then the (smooth) functional

Ê(u) :=
1
p

∫
Ω

|∇u|p dx + B(u) + Ĵ(u), u ∈ V,

with Ĵ given by (5.9) possesses critical points. Any critical point u of Ê is a solution
of the elliptic problem (5.2) which belongs to the interval [u, u].
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Example 5.3. Let j and f satisfy the same condition as in Example 2.1, and assume
K = V0. Then (1.1)–(1.2) is equivalent to the homogeneous Dirichlet boundary value
problem (2.3) which is:

u ∈ V0 : 〈−∆pu, v〉+
∫

Ω

f(x, u) v dx = 0, ∀ v ∈ V0. (5.10)

Similarly as in the previous subsection the potential E : V → R ∪ {+∞} provided
by Theorem 4.4 and whose critical points are the solutions of (5.10)in [u, u] may be
replaced first by the following simpler functional Ê : V0 → R (note V0 is a closed
subspace of V ):

Ê(u) :=
1
p

∫
Ω

|∇u|p dx + B(u) +
∫

Ω

∫ u(x)

0

(f ◦ τ)(x, t) dt dx, u ∈ V0. (5.11)

The specific properties of problem (5.10) allow even further to simplify the associated
potential Ê in that the term B(u) which is required in the general situation and in
the previous subsection may now be dropped, i.e., we have the following result.

Corollary 5.4. Let Ê0 : V0 → R be defined by

Ê0(u) :=
1
p

∫
Ω

|∇u|p dx +
∫

Ω

∫ u(x)

0

(f ◦ τ)(x, t) dt dx, u ∈ V0.

Then Ê0 ∈ C1(V0, R) possesses critical points in V0, and any critical point u ∈ V0 of
Ê0 is a solution of (5.10) satisfying u ≤ u ≤ u. Moreover, Ê and Ê0 have the same
critical points.

Proof. As ‖u‖p
V0

:=
∫
Ω
|∇u|p dx defines an equivalent norm in V0, and since∣∣∣ ∫

Ω

∫ u(x)

0

(f ◦ τ)(x, t) dt dx
∣∣∣ ≤ ‖kΩ‖Lq(Ω) ‖u‖Lp(Ω),

we readily see that Ê0 : V0 → R is bounded below, coercive, and weakly lower
semicontinous. Thus there is a global minimizer u ∈ V0 of Ê0 which is a critical point,
i.e, we have

0 = 〈Ê′0(u), ϕ〉 =
∫

Ω

(
|∇u|p−2∇u∇ϕ + (f ◦ τ)(·, u) ϕ

)
dx, ∀ ϕ ∈ V0. (5.12)

The supersolution u ∈ V of (5.10) satisfies: u|∂Ω ≥ 0 and the inequality∫
Ω

(
|∇u|p−2∇u∇ϕ + f(·, u) ϕ

)
dx ≥ 0, ∀ ϕ ∈ V0 ∩ Lp

+(Ω). (5.13)

Subtracting (5.13) from (5.12) and using ϕ = (u− u)+ ∈ V0 we get∫
Ω

(
|∇u|p−2∇u−|∇u|p−2∇u

)
∇(u−u)+ dx+

∫
Ω

(
(f ◦τ)(·, u)−f(·, u)) (u−u)+ dx ≤ 0.

(5.14)
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Applying the definition of τ we readily see that∫
Ω

(
(f ◦ τ)(·, u)− f(·, u)) (u− u)+ dx = 0,

which by means of (5.14) implies

0 ≥
∫

Ω

(
|∇u|p−2∇u− |∇u|p−2∇u

)
∇(u− u)+ dx

=
∫
{u>u}

(
|∇u|p−2∇u− |∇u|p−2∇u

)
∇(u− u) dx ≥ 0.

Hence it follows that ∇(u−u) = 0 a.e. in {u > u}, which means ∇(u−u)+ = 0 a.e. in
Ω, and thus ‖(u− u)+‖V0 = 0, i.e., (u− u)+ = 0 a.e. in Ω, that is u ≤ u. In a similar
way one shows that u ≤ u holds true which proves that any critical point u of Ê0 is
a solution of (5.10) because u ≤ u ≤ u and therefore (f ◦ τ)(x, u(x)) = f(x, u(x)). So
far we know that critical points of both Ê and Ê0 are necessarily solutions of (5.10)
in [u, u]. By (3.12) and (3.16) we see that B(u) = c for u ∈ [u, u], and therefore

Ê(u) = Ê0 + c, ∀ u ∈ [u, u],

which shows that Ê and Ê0 have the same critical points. This completes the proof. �

Example 5.5. For illustration let us consider the Dirichlet problem depending on a
parameter λ ∈ R:

−∆pu = λ |u|p−2u− g(u), in V ∗
0 , (5.15)

where we assume the following assumptions on g:

(g1) g : R → R is continuous;
(g2) lim|s|→∞

g(s)
|s|p−2s = +∞;

(g3) lims→0
g(s)

|s|p−2s = 0.

The following specific g which is of exponential growth satisfies (g1)–(g3):

g(s) =


|s|p−2se−s−1 if s < −1

|s|p
2 ((s− 1) cos(s + 1) + s + 1) if − 1 ≤ s ≤ 1

(1 + (s− 1))sp−1es−1 if s > 1,

see [4]. By means of (g2) one readily verifies that u = M > 0 with M sufficiently
large is a supersolution of (5.15), and u = −M with M > 0 sufficiently large is a
subsolution of (5.15). Since s 7→ λ |s|p−2s− g(s) is continuous, and thus bounded in
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[u, u] = [−M,M ] we may apply Corollary 5.4 with τ given by

τ(s) =


−M if s < −M,

s if −M ≤ s ≤ M,

M if s > M,

and Ê0 : V0 → R given by

Ê0(u) =
1
p
‖∇u‖p

p −
∫

Ω

∫ u(x)

0

(λ|τ(s)|p−2τ(s)− g(τ(s))) ds dx.

According to Corollary 5.4 the functional Ê0 has critical points, and any critical
point u ∈ V0 is a solution of (5.15) satisfying −M ≤ u ≤ M for M > 0 sufficiently
large. Due to (g3) problem (5.15) always has the trivial solution. How to decide
the existence of nontrivial, and moreover, multiple nontrivial solutions? In a first
step we can show that the global minimizer of Ê0 is a nontrivial solution of (5.15) in
[−M,M ] provided λ > λ1, where λ1 is the first eigenvalue of (−∆p, V0). Let ϕ1 be
the (normalized, positive) eigenfunction corresponding to λ1 ( ‖ϕ1‖p = 1), then it is
known that ϕ1 ∈ int (C1

0 (Ω)+). By using (g3) we have for ε > 0 small the estimate:

Ê0(εϕ1) =
λ1

p
εp −

∫
Ω

∫ εϕ1(x)

0

(λsp−1 − g(s)) ds dx

=
λ1 − λ

p
εp +

∫
Ω

∫ εϕ1(x)

0

g(s) ds dx

(g3) =⇒ |g(s)|
|s|p−1

< λ− λ1, ∀ s : |s| < δλ

≤ λ1 − λ

p
εp +

∫
Ω

∫ εϕ1(x)

0

|g(s)|
sp−1

sp−1 ds dx

choose ε : ε‖ϕ1‖∞ < δλ

<
λ1 − λ

p
εp +

λ− λ1

p
εp = 0.

Therefore, the global minimizer u of Ê0 satisfies Ê0(u) ≤ Ê0(εϕ1) < 0, and thus u 6= 0
is a nontrivial solution.

Remark 5.6. Multiple solution results for (1.1)–(1.2) in case that K = V0 which
refers to the Dirichlet problem for elliptic equations with smooth or nonsmooth func-
tions j have been obtained by the author jointly with D. Motreanu and K. Perera
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in [2, 3, 4, 5, 6, 7]. In particular, in [4] multiple solutions have been obtained for
(5.15) by applying a combined approach of variational and comparison principles in
the smooth case. The approach developed in this paper allows to extend the study of
multiple solutions to a wide range of (nonsmooth) multi-valued variational inequality
in the form (1.1)–(1.2) or, more general, in the form (1.3).
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