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CRITICAL POINT METHODS IN DEGENERATE ANISOTROPIC
PROBLEMS WITH VARIABLE EXPONENT

MARIA-MAGDALENA BOUREANU

Abstract. We work on the anisotropic variable exponent Sobolev spaces

and we consider the problem: −
∑N

i=1 ∂xiai (x, ∂xiu) + b(x)|u|P
+
+−2u =

f(x, u) in Ω, u ≥ 0 in Ω and u = 0 on ∂Ω, where Ω ⊂ RN (N ≥ 3) is a

bounded domain with smooth boundary and
∑N

i=1 ∂xiai (x, ∂xiu) is a
→
p (·)

- Laplace type operator. Relying on the critical point theory and using

the mountain-pass theorem, we prove the existence of a unique nontrivial

weak solution for our problem.

1. Introduction

We are interested in discussing the problem:
−

N∑
i=1

∂xiai (x, ∂xiu) + b(x)|u|P
+
+−2u = f(x, u) in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, the operator∑N
i=1 ∂xi

ai (x, ∂xi
u) is a

→
p (·) - Laplace type operator,

→
p (x) = (p1(x), p2(x), ...pN (x)),

b ∈ L∞
(
Ω
)
, P+

+ = maxi∈{1,...,N} {supx∈Ω pi(x)} and ai, f : Ω × R → R are
Carathéodory functions fulfilling some adequate hypotheses. In order to detail the
conditions imposed on the functions involved in our problem we make the following
notation. We denote by Ai : Ω× R → R

Ai(x, s) =
∫ s

0

ai(x, t)dt for all i ∈ {1, ..., N},

and by F : Ω× R → R

F (x, s) =
∫ s

0

f(x, t)dt.
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We set C+(Ω) = {p ∈ C(Ω) : minx∈Ω p(x) > 1} and we denote, for any p ∈ C+(Ω),

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

For
→
p : Ω → RN ,

→
p (x) = (p1(x), p2(x), ...pN (x)) with pi ∈ C+(Ω), i ∈ {1, ..., N} we

denote by
→
P+,

→
P− ∈ RN the vectors

→
P+ = (p+

1 , ..., p+
N ),

→
P− = (p−1 , ..., p−N ),

and by P+
+ , P+

− , P−
− ∈ R+ the following:

P+
+ = max{p+

1 , ..., p+
N}, P+

− = max{p−1 , ..., p−N}, P−
− = min{p−1 , ..., p−N}.

We define P ?
− ∈ R+ and P−,∞ ∈ R+ by

P ?
− =

N∑N
i=1 1/p−i − 1

, P−,∞ = max{P+
− , P ?

−} .

Now we can state the conditions satisfied by the functions b, pi, Ai, ai, f , for
all i ∈ {1, ..., N}:

(b) there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ Ω;

(p) pi ∈ C+(Ω) is logarithmic Hölder continuous (that is, there exists M > 0 such that
|pi(x) − pi(y)| ≤ −M/log(|x− y|) for all x, y ∈ Ω with |x − y| ≤ 1/2), pi(x) < N

for all x ∈ Ω and
∑N

i=1 1/p−i > 1;

(A1) there exists a positive constant c1,i such that ai satisfies the growth condition

|ai(x, s)| ≤ c1,i(1 + |s|pi(x)−1),

for all x ∈ Ω and s ∈ R;

(A2) the following inequalities hold:

|s|pi(x) ≤ ai(x, s)s ≤ pi(x) Ai(x, s),

for all x ∈ Ω and s ∈ R;

(A3) ai is fulfilling

(ai(x, s)− ai(x, t))(s− t) > 0,

for all x ∈ Ω and s, t ∈ R with s 6= t;

(f1) there exist a positive constant c3 and q ∈ C(Ω) with 1 < P−
− < P+

+ < q− < q+ <

P ?
−, such that f satisfies the growth condition

|f(x, s)| ≤ c3|s|q(x)−1,

for all x ∈ Ω and s ∈ R;
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(f2) f verifies the Ambrosetti-Rabinowitz type condition: there exists a constant
µ > P+

+ such that for every x ∈ Ω

0 < µF (x, s) ≤ sf(x, s), ∀s > 0;

(f3) f is fulfilling

(f(x, s)− f(x, t))(s− t) < 0,

for all x ∈ Ω and s, t ∈ R with s 6= t.

Our main result is stated by the following theorem.

Theorem 1.1. Suppose that conditions (b), (p), (A1)-(A3), (f1)-(f3) are fulfilled,
where b ∈ L∞

(
Ω
)

and ai, f : Ω× R → R are Carathéodory functions. Then there is
a unique nontrivial weak solution to problem (1.1).

Notice that
∑N

i=1 ∂xiai (x, ∂xiu) is a
→
p (·) - Laplace type operator, since by

choosing ai(x, s) = |s|pi(x)−2s for all i ∈ {1, ..., N}, we have Ai(x, s) = 1
pi(x) |s|

pi(x) for
all i ∈ {1, ..., N}, and we arrive at the anisotropic variable exponent Laplace operator

∆→
p (x)

(u) =
N∑

i=1

∂xi

(
|∂xi

u|pi(x)−2
∂xi

u
)

. (1.2)

We bring to your attention that when choosing p1, ..., pN to be constant
functions and

→
p = (p1, ..., pN ), we obtain the anisotropic

→
p - Laplace operator

∆→
p
(u) =

N∑
i=1

∂xi

(
|∂xiu|

pi−2
∂xiu

)
,

while when choosing p1 = ... = pN = p in (1.2) we obtain an operator similar to the
variable exponent p(·) - Laplace operator

∆p(x)u = div(|∇u|p(x)−2∇u),

where p is a continuous function. Therefore it is not only a study of boundary value
problems, it is also a ”boundary” study, if we take into consideration the fact that
the theory of anisotropic variable exponent Lebesgue-Sobolev spaces is situated at
the boundary between the the anisotropic Sobolev spaces theory developed by [25,
27, 28, 30, 31] and the variable exponent Sobolev spaces theory developed by [5, 6,
7, 8, 9, 11, 12, 15, 22, 23, 24, 29]. In this newly formed direction of PDEs, various
articles appeared and continue to appear. For the proof of our main result we need
to explore techniques similar to those used by [2, 3, 4, 14, 20, 21]. In order to not
repeat the same arguments we import some of the results presented in these papers,
indicating the place where all the calculus details may be found. Generally speaking,
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we are relying on the critical point theory, that is, we associate to (1.1) a functional
energy whose critical points represent the weak solutions of the problem. Among the
previously enumerated papers, our work is more closely related to [2, 14, 19], where
are also used general

→
p (·) - Laplace type operators under conditions resembling to

(A1)-(A3). In [14] the authors prove that the functional energy is proper, weakly
lower semi-continuous and coercive, thus it has a minimizer which is a weak solution
to their problem. In [2, 19] the authors establish the multiplicity of the solution in
addition to its existence. The first paper utilize the symmetric mountain-pass theorem
of Ambrosetti and Rabinowitz, while the second one is combining the mountain-pass
theorem of Ambrosetti and Rabinowitz with the Ekeland’s variational principle. For
more variational methods that could prove useful we send the reader to [10, 17, 18].

An interesting remark is that operators fulfilling conditions like (A1)-(A3)
were not just considered when working on anisotropic variable exponent Lebesgue-
Sobolev spaces. To give some examples, we refer to [16, 22], where it was discussed
the following type of problem{

−div(a(x,∇u)) = f(x, u) for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary. The preference
for conditions (A1)-(A3) comes from the fact that, as said before, the anisotropic
variable exponent Laplace operator satisfies them. But the association with the

→
p (·)

- Laplace is not the only reason, since there are other well known operators that
satisfy these conditions. Indeed, when choosing ai(x, s) = (1 + |s|2)(pi(x)−2)/2s for all
i ∈ {1, ..., N}, we have Ai(x, s) = 1

pi(x) [(1 + |s|2)pi(x)/2 − 1] for all i ∈ {1, ..., N}, and
we obtain the anisotropic variable mean curvature operator

N∑
i=1

∂xi

[(
1 + |∂xi

u|2
)(pi(x)−2)/2

∂xi
u

]
.

Now that we have examples of appropriate operators we can pass to shortly
describing the structure of the rest of the paper. In the second section we recall the
definition and some important properties of the variable exponent spaces, anisotropic
spaces and anisotropic variable exponent spaces. In the third section we define the
notion of weak solution to problem (1.1) and we introduce the functional energy
associated to this problem. Then we present several auxiliary results and we use
them to prove the main theorem.
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2. Abstract framework

In what follows we consider p, pi ∈ C+(Ω), i ∈ {1, . . . , N} to be logarithmic
Hölder continuous. We define the variable exponent Lebesgue space by

Lp(·)(Ω)={u : u is a measurable real–valued function such that
∫

Ω

|u(x)|p(x)dx<∞}

endowed with the so-called Luxemburg norm

|u|p(·) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣p(x)

dx ≤ 1

}
.

We mention that for p constant this norm becomes the norm of the classical Lebesgue
space Lp, that is,

|u|p =
(∫

Ω

|u|p
)1/p

.

The space
(
Lp(·)(Ω), | · |p(·)

)
has some important properties. It is a separable

and reflexive Banach space ([15, Theorem 2.5, Corollary 2.7]). The inclusion between
spaces generalizes naturally: if 0 < |Ω| < ∞ and p1, p2 are variable exponents
in C+(Ω) such that p1 ≤ p2 in Ω, then the embedding Lp2(·)(Ω) ↪→ Lp1(·)(Ω) is
continuous ([15, Theorem 2.8]). The following Hölder-type inequality∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ≤ ( 1
p−

+
1

p′−

)
|u|p(·)|v|p′(·) ≤ 2|u|p(·)|v|p′(·) (2.1)

holds true for any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) ([15, Theorem 2.1]), where we
denoted by Lp′(·)(Ω) the conjugate space of Lp(·)(Ω), obtained by conjugating the
exponent pointwise i.e. 1/p(x) + 1/p′(x) = 1 ([15, Corollary 2.7]).
The p(·)-modular of the Lp(·)(Ω) space, that is, the function ρp(·) : Lp(·)(Ω) → R,

ρp(·)(u) =
∫

Ω

|u|p(x) dx,

plays a key role in handling this space. We remind some of its properties (see again
[15]): if u ∈ Lp(·)(Ω), (un) ⊂ Lp(·)(Ω) and p+ < ∞, then,

|u|p(·) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1)

|u|p(·) > 1 ⇒ |u|p
−

p(·) ≤ ρp(·)(u) ≤ |u|p
+

p(·)

|u|p(·) < 1 ⇒ |u|p
+

p(·) ≤ ρp(·)(u) ≤ |u|p
−

p(·)

|u|p(·) → 0 (→∞) ⇔ ρp(·)(u) → 0 (→∞) (2.2)

lim
n→∞

|un − u|p(·) = 0 ⇔ lim
n→∞

ρp(·)(un − u) = 0.
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We define the variable exponent Sobolev space W 1,p(·)(Ω),

W 1,p(·)(Ω) =
{

u ∈ Lp(·)(Ω) : ∂xiu ∈ Lp(·)(Ω), i ∈ {1, 2, ...N}
}

endowed with the norm
‖u‖ = |u|p(·) + |∇u|p(·). (2.3)

The space
(
W 1,p(·)(Ω), ‖ · ‖

)
is a separable and reflexive Banach space. In what

concerns the Sobolev space with zero boundary values, we denote it by W
1,p(·)
0 (Ω)

and we define it as the closure of C∞
0 (Ω) with respect to the norm ‖ · ‖. We consider

the norms
‖u‖1,p(·) = |∇u|p(·),

and

‖u‖p(·) =
N∑

i=1

|∂xi
u|p(·)

which are equivalent to (2.3) on W
1,p(·)
0 (Ω). The space W

1,p(·)
0 (Ω) is also a separable

and reflexive Banach space. Furthermore, if s ∈ C+(Ω) and s(x) < p?(x) for all
x ∈ Ω, where p?(x) = Np(x)/[N − p(x)] if p(x) < N and p?(x) = ∞ if p(x) ≥ N ,
then the embedding W

1,p(·)
0 (Ω) ↪→ Ls(·)(Ω) is compact and continuous.

We define now the anisotropic variable exponent Sobolev space W
1,
→
p (·)

0 (Ω)
as the closure of C∞

0 (Ω) under the norm

‖u‖→
p (·) =

N∑
i=1

|∂xi
u|pi(·) .

The space W
1,
→
p (·)

0 (Ω) can be considered a natural generalization of both the
variable exponent Sobolev space W

1,p(·)
0 (Ω) and the classical anisotropic Sobolev space

W 1,
→
p

0 (Ω), where
→
p is the constant vector (p1, ..., pN ). The space W 1,

→
p

0 (Ω) endowed
with the norm

‖u‖
1,
→
p

=
N∑

i=1

|∂xi
u|pi

is a reflexive Banach space for all
→
p ∈ RN with pi > 1, i ∈ {1, ..., N}. This result

can be easily extended to W
1,
→
p (·)

0 (Ω), see [21]. Another extension can be made in

what concerns the embedding between W
1,
→
p (·)

0 (Ω) and Lq(·)(Ω) [21, Theorem 1]: if
Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, the components of

→
p

verify (p) and q ∈ C(Ω) verifies 1 < q(x) < P−,∞ for all x ∈ Ω, then the embedding

W
1,
→
p (·)

0 (Ω) ↪→ Lq(·)(Ω)

is continuous and compact.
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3. Proof of the main result

Working under the hypotheses of Theorem 1.1, we denote W
1,
→
p (·)

0 (Ω) by E

and we start by giving the definition of the weak solution for problem (1.1).

Definition 3.1. By a weak solution to problem (1.1) we understand a function u ∈ E

such that ∫
Ω

[
N∑

i=1

ai (x, ∂xi
u) ∂xi

ϕ + b(x)|u|P
+
+−2uϕ− f(x, u)ϕ

]
dx = 0, (3.1)

for all ϕ ∈ E.

As said in the introductory section, we base our proof on the critical point
theory, thus we associate to problem (1.1) the energy functional I : E → R defined
by

I(u) =
∫

Ω

N∑
i=1

Ai (x, ∂xi
u) dx +

1
P+

+

∫
Ω

b(x)|u|P
+
+ dx−

∫
Ω

F (x, u+) dx,

where u+(x) = max{u(x), 0}.
For all i ∈ {1, 2, ...N}, we denote by Ji, K : E → R the functionals

Ji(u) =
∫

Ω

Ai (x, ∂xi
u) dx and K(u) =

∫
Ω

N∑
i=1

Ai (x, ∂xi
u) dx−

∫
Ω

F (x, u+) dx.

In what follows we present several results concerning the functionals Ji, K

or other terms of I.

Lemma 3.2. ([14, Lemma 3.4]) For i ∈ {1, 2, ...N},

(i) the functional Ji is well-defined on E;
(ii) the functional Ji is of class C1(E, R) and

〈J ′i(u), ϕ〉 =
∫

Ω

ai(x, ∂xi
u)∂xi

ϕ dx,

for all u, ϕ ∈ E.

Lemma 3.3. ([2, Section 4, Claim 2]) There exist ρ, r > 0 such that K(u) ≥ r > 0,
for any u ∈ E with ‖u‖→

p (·) = ρ.

Remark 3.4. In the proof of [2, Section 4, Claim 2] appeared the fact that f was
considered odd in its second variable, thus F was even in its second variable. In our
case, this hypothesis is not necessary, since we are interested in F (x, u+), which has
its second variable nonnegative.

Lemma 3.5. (see [2, Section 4, Claim 1])
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(i) For all u ∈ E,

N∑
i=1

∫
Ω

[
Ai(x, ∂xi

u)− 1
µ

ai(x, ∂xi
u)∂xi

u

]
dx ≥

(
1

P+
+

− 1
µ

)‖u‖P−−
→
p (·)

NP−−−1
−N

 ,

where µ is the constant from (f2).
(ii) For any sequence (un)n ⊂ E weakly convergent to u ∈ E,

lim
n→∞

∫
Ω

f(x, un)(un − u)dx = 0.

Lemma 3.6. ([2, Section 3, Lemma 2]) Let (un)n ⊂ E be a sequence which is weakly
convergent to u ∈ E and

lim sup
n→∞

∫
Ω

N∑
i=1

ai(x, ∂xi
un)(∂xi

un − ∂xi
u)dx ≤ 0.

Then (un)n converges strongly to u in E.

By Lemma 3.2 and by a standard calculus, I is well-defined on E and I ∈
C1(E, R) with the derivative given by

〈I ′(u), ϕ〉 =
∫

Ω

N∑
i=1

ai(x, ∂xiu)∂xiϕ dx +
∫

Ω

b(x)|u|P
+
+−2uϕ dx−

∫
Ω

f(x, u)ϕ dx,

for all u, ϕ ∈ E, therefore the critical points of I are weak solutions to (1.1). Being
concerned with the existence of critical points, we search for help in the mini-max
principles theory (see for example [1, 13, 26]) and we find it in the mountain-pass
theorem of Ambrosetti and Rabinowitz without the Palais-Smale condition. Following
the steps described by the statement of this theorem, we first prove two auxiliary
results.

Lemma 3.7. There exist ρ, r > 0 such that I(u) ≥ r > 0, for any u ∈ E with
‖u‖→

p (·) = ρ.

Proof. By hypothesis (b),

1
P+

+

∫
Ω

b(x)|u|P
+
+ dx ≥ b0

P+
+

|u|P
+
+

P+
+
≥ 0,

for all u ∈ E. Hence

I(u) ≥
∫

Ω

N∑
i=1

Ai (x, ∂xi
u) dx−

∫
Ω

F (x, u+) dx,

for all u ∈ E. Using Lemma 3.3, we deduce that we can find ρ, r > 0 such that
I(u) ≥ r > 0, for all u ∈ E with ‖u‖→

p (·) = ρ. �
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Lemma 3.8. There exists e ∈ E with ‖e‖→
p (·) > ρ (ρ given by Lemma 3.7) such that

I(e) < 0.

Proof. Since for all i ∈ {1, ..., N}, Ai(x, s) =
∫ s

0
ai(x, t) dt, by a simple change of

variables and by condition (A1) we get

Ai(x, s) ≤ c1,i

∫ 1

0

|ai(x, ts)s| dt ≤ c1,i

(
|s|+ |s|pi(x)

pi(x)

)
for all x ∈ Ω, s ∈ R.

Setting C1 = max{c1,i : i ∈ {1, 2, ...N}}, by the above relation we obtain that∫
Ω

N∑
i=1

Ai (x, ∂xi
(tu)) dx ≤ C1

∫
Ω

N∑
i=1

|∂xi
(tu)| dx +

C1

P−
−

∫
Ω

N∑
i=1

|∂xi
(tu)|pi(x) dx

for all u ∈ E.

On the other hand, by rewriting condition (f2), we deduce that there exists
a positive constant c4 such that

F (x, s) ≥ c4 |s|µ, ∀x ∈ Ω, ∀s ≥ 0,

therefore

I(tu) ≤ C1 t

∫
Ω

N∑
i=1

|∂xiu| dx +
C1 tP

+
+

P−
−

N∑
i=1

∫
Ω

|∂xiu|
pi(x)

dx

+
tP

+
+

P+
+

∫
Ω

b(x)|u|P
+
+ dx− c4 tµ

∫
Ω

|u|µ dx,

for all u ∈ E and t > 1. Then, due to the fact that µ > P+
+ > 1, for u 6≡ 0 we have

I(tu) → −∞ when t →∞ and we can choose t large enough and e = tu ∈ E with
‖e‖→

p (·) > ρ such that

I(e) < 0.

�

Proof of Theorem 1.1. Proof of existence. By Lemma 3.7, Lemma 3.8 and the
mountain-pass theorem of Ambrosetti and Rabinowitz, there exist a sequence (un)n ⊂
E such that

I(un) → α > 0 and I ′(un) → 0 as n →∞. (3.2)

Notice that from the definition of the functional I we can consider (un)n to
be a sequence of nonnegative functions. We will prove that (un)n is bounded in E

by arguing by contradiction, more exactly by assuming that, passing eventually to a
subsequence still denoted by (un)n,

‖un‖→p (·) →∞ when n →∞. (3.3)
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Combining relations (3.2) and(3.3) we infer

1 + α + ‖un‖→p (·) ≥ I(un)− 1
µ
〈I ′(un), un〉

≥
N∑

i=1

∫
Ω

[
Ai(x, ∂xi

un)− 1
µ

ai(x, ∂xi
un)∂xi

un

]
dx +

+

(
1

P+
+

− 1
µ

)∫
Ω

b(x)|u|P
+
+ dx−

−
∫

Ω

[
F (x, un)− 1

µ
unf(x, un)

]
dx

≥
N∑

i=1

∫
Ω

[
Ai(x, ∂xi

un)− 1
µ

ai(x, ∂xi
un)∂xi

un

]
dx,

for sufficiently large n, since µ is the constant from (f2). By Lemma 3.5(i) we come
to

1 + α + ‖un‖→p (·) ≥

(
1

P+
+

− 1
µ

)‖un‖
P−−
→
p (·)

NP−−−1
−N

 ,

hence by dividing by ‖un‖
P−−
→
p (·)

and passing to the limit as n → ∞ we obtain the

desired contradiction and we conclude that (un)n is bounded in E. We know that
the space E is reflexive, thus there is u0 ∈ E such that, up to a subsequence, (un)n

converges weakly to u0 in E. We need to show that (un)n converges strongly to u0

in E.
The fact that P+

+ < P−,∞ implies that the embedding E ↪→ LP+
+ (Ω) is com-

pact. Thus (un)n converges strongly to u0 in LP+
+ (Ω). By the Hölder-type inequality

(2.1),∣∣∣∣∫
Ω

b(x)|un|P
+
+−2un(un − u0)dx

∣∣∣∣ ≤ 2‖b‖L∞(Ω)

∣∣∣|un|P
+
+−2un

∣∣∣ P
+
+

P
+
+−1

|un − u0|P+
+

.

Using the strong convergence of (un)n to u0 in LP+
+ (Ω), the above relation and (2.2)

we come to
lim

n→∞

∫
Ω

b(x)|un|P
+
+−2un(un − u0)dx = 0. (3.4)

Let us consider the relations

< I ′(un), un−u0 >=
∫

Ω

[ N∑
i=1

ai(x, ∂xi
un)(∂xi

un− ∂xi
u0) + b(x)|un|P

+
+−2un(un−u0)

−f(x, un)(un − u0)
]
dx

36



ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT

and, from (3.2),

lim
n→∞

< I ′(un), un − u0 >= 0.

Combining these relations with (3.4) and Lemma 3.5(ii) we obtain

lim
n→∞

∫
Ω

N∑
i=1

ai(x, ∂xi
un)(∂xi

un − ∂xi
u0)dx = 0.

Using Lemma 3.6 we deduce that (un)n converges strongly to u0 in E. By (3.2) u0

is a critical point to I and I(u0) = α > 0. Since I(0) = 0 it follows that u0 is a
nontrivial weak solution to (1.1). �

Proof of uniqueness. Let us assume that there exist two nontrivial solutions to problem
(1.1), that is, u1 and u2. We replace the solution u by u1 in (3.1) and we choose
ϕ = u1 − u2. We obtain∫

Ω

[ N∑
i=1

ai (x, ∂xi
u1) ∂xi

(u1 − u2) + b(x)|u1|P
+
+−2u1(u1 − u2)

−f(x, u1)(u1 − u2)
]
dx = 0. (3.5)

Next, we replace the solution u by u2 in (3.1) and we choose ϕ = u2 − u1. We infer∫
Ω

[ N∑
i=1

ai (x, ∂xiu2) ∂xi(u2 − u1) + b(x)|u2|P
+
+−2u2(u2 − u1)

−f(x, u2)(u2 − u1)
]
dx = 0. (3.6)

Putting together (3.5) and (3.6) we arrive at∫
Ω

{
N∑

i=1

[ai (x, ∂xi
u1)− ai (x, ∂xi

u2)] (∂xi
u1 − ∂xi

u2)

}
dx +

+
∫

Ω

b(x)
[
|u1|P

+
+−2u1 − |u2|P

+
+−2u2

]
(u1 − u2) dx−

−
∫

Ω

[f(x, u1)− f(x, u2)] (u1 − u2) dx = 0.

By hypotheses (A3) and (f3), all the terms in the above equality are positive
unless u1 = u2, and this yields the uniqueness of the solution. �
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