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ON THE BEHAVIOR NEAR 0 AND NEAR ∞ OF FUNCTIONALS ON
W 1,p

0 (Ω) INVOLVING NONLINEAR OSCILLATING TERMS

GIOVANNI ANELLO

Abstract. The behavior near 0 and near ∞ of energy functionals on

W 1,p
0 (Ω) associated to boundary value problems for quasilinear elliptic

equations is studied. As a consequence, some results concerning the exis-

tence of infinitely many solutions for the Dirichlet problem are established.

1. Introduction

Let Ω ⊂ RN be a bounded open set with C1,1 boundary ∂Ω.
Let f : Ω×R → R be a Carathéodory function. In recent years, some authors

have investigated the problem of finding infinitely many solutions for the problem{
−∆pu = f(x, u) in Ω
B(u) = 0

(P )

in the case in which the nonlinearity f(x, ·) has an oscillatory behavior near 0 or near
∞. Here, ∆pu := div(|∇u|p−2∇u) is the p-laplacian operator, with p > 1, and B is a
given boundary operator. The reader is referred, for instance, to [1] [2], [6] and [11]
for problem (P ) with Neumann boundary condition, that is with Bu = ∂u

∂ν |∂Ω
, and

to [3], [4], [7], [9] and [10] for problem (P ) with Dirichlet boundary condition, that is
with Bu = u|∂Ω (see also reference of [9], [10] for a wider overview on the subject). In
all of these papers, the existence of infinitely many solutions is obtained by showing
that the energy functional associated to problem (P )

Ψ(u) =
1
p

∫
Ω

|∇u(x)|pdx−
∫

Ω

(∫ u(x)

0

f(x, t)dt

)
dx, (1.1)

defined on W 1,p(Ω) or W 1,p
0 (Ω) according to whether the Neumann or the Dirichlet

boundary condition is considered, possesses infinitely many critical points. Therefore,
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in particular, solutions are always understood in weak sense. In practice, the previous
circumstance is realized by showing that if f(x, ·) has a suitable oscillatory behavior
near ∞ or near 0 then there exists a sequence of local minima {un} for the functional
Ψ which is unbounded with respect to some norm or satisfying lim

n→+∞
Ψ(un) = 0 and

Ψ(un) < 0 for all n ∈ N. In order to find the local minima un, a direct variational
method is used in [1] where it is proved that the for a certain sequence on spheres {Sn}
of W 1,p(Ω), the infimum of Ψ on each Sn is strictly greater of the global minimum of Ψ
on the closed ball Bn having Sn as boundary; truncation methods are, instead, used in
[2], [3], [7], [9], [10] where it is proved that the global minima of certain truncations Ψn

of Ψ are, actually, local minima of this latter; finally in [4], [6], [11], taking advantage
of the compact embedding of W 1,p(Ω) in C0(Ω) when p > N , a variational result of
[12] on the multiplicity of critical points is applied. Once a sequence of local minima
is found out, the successive step, as said before, is to show that this sequence contains
infinitely many pairwise distinct elements. It is quite simple to realize this when the
Neumann problem is considered. Indeed, due to the fact that the constant functions
belong to W 1,p(Ω), it is suffice to require that there exists a sequence {ξn} of real
numbers such that

a) lim
n→+∞

ξn →

{
0,

±∞
;

b) lim sup
n→+∞

∫
Ω

∫ ξn

0

f(x, t)dt

|ξn|p
= +∞

(see, for instance, [2], [6], [11] where, however, a slight weaker condition is required).
The above question becomes more delicate when the Dirichlet problem is considered,
especially if f(x, ·) is sign-changing. In this case, the validity of a) and b) is no more
sufficient to realize that the sequence of local minima un contains infinitely many
pairwise distinct elements. To achieve this goal, more sophisticated conditions must
be imposed. In particular, in [3] it is showed that under the following assumptions:

there exist a nonempty open set D in Ω, a positive number σ > 0 and a sequence
{ξn} in ]0,+∞[ such that lim

n→+∞
ξn = 0 and

a1) lim sup
n→+∞

ess inf
x∈D

∫ ξn

0

f(x, t)dt

ξp
n

= +∞;

b1) ess inf
x∈D

inf
ξ∈[0,ξn]

∫ ξ

0

f(x, t)dt ≥ −σ ess inf
x∈D

∫ ξn

0

f(x, t)dt for all n ∈ N,

the sequence of local minima {un} can be chosen having the following property:
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Ψ(un) < 0 for all n ∈ N and lim
n→+∞

Ψ(un) = 0.

Note that, as showed in [3], assumptions a1) and b1), when f is independent of x, are
weaker than the following ones assumed in [10]

a2) lim sup
ξ→0+

∫ ξ

0

f(t)dt

ξp
= +∞ ;

b2) lim inf
ξ→0+

∫ ξ

0

f(t)dt

ξp
= 0,

where similar conclusions are obtained. Finally, in [9] it is showed that the sequence of

local minima {un} satisfies the following property lim
n→+∞

un(x)
dist(x, ∂Ω)

= +∞ uniformly

in Ω assuming that a2), b2) hold with ξ → 0+ replaced by ξ → +∞. It is worth of
noticing the fact that in [9] the authors obtained, besides {un}, a sequence of saddle
points {vn} having the same property of {un}. Moreover, note that this property
proves that un and vn turn out to be positive in Ω rather than simply nonnegative
(as in [3] and [10]).

The aim of this paper is to give a new contribution on this topic. In particular,
we will establish the existence of a sequence of pairwise distinct local minima for the
functional Ψ keeping assumption a1) but replacing assumption b1) with the following
one

b̃1) there exists a positive number σ > 0 and a nonempty open set D in Ω
such that ∫ ξn

0

F+(ξ)dξ ≥ −σ

∫ ξn

0

F−(ξ)dξ

for all n ∈ N,

where F : R → R is a continuous function such that

F (ξ) ≤ ess inf
x∈D

∫ ξ

0

f(x, t)dt and

F+(t) = max{F (t), 0}, F−(ξ) = min{F (ξ), 0},

for all ξ ∈ R.

To motivate our main result, we promptly exhibit an example of function f

(for simplicity independent of x) which satisfy a1) and b̃1) but not b1):
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let α, β, η be three positive numbers such that 1 < β < α < p and β > α− η

and let g ∈ C1(]0,∞[) be a bounded nonnegative function such that∫ 1

0

g(t)
tη

< +∞ (1.2)

and satisfying

lim
n→+∞

g(tn) > 0 and g(sn) = 0 for every n ∈ N, (1.3)

where {tn} and {sn} are two decreasing sequences in ]0,+∞[ such that

sup
n∈N

tn
tn+1

< +∞ and lim
n→+∞

tn = lim
n→+∞

sn = 0.

Put

f(t) = tα−1 − tβ−1(β−1tg′(t) + g(t)) for t > 0 and f(t) = 0 otherwise.

Let us to show that f is the functions we are looking for. At first, note that

F (ξ) =
∫ ξ

0

f(t)dt =
1
α

ξα − 1
β

ξβg(ξ) for every ξ ≥ 0.

Now, fix any sequence {ξn} in ]0,+∞[ such that lim
n→+∞

ξn = 0 and ξn < t1 for ev-

ery n ∈ N and denote by kn the smallest integer such that tkn
≤ ξn. It follows

lim
n→+∞

tkn
= 0 and, for every n ∈ N,

inf
ξ∈[0,ξn]

F (ξ) ≤ F (tkn
) =

1
α

tαkn
− 1

β
tβkn

g(tnk
)

F (ξn) ≤ sup
ξ∈[0,ξn]

F (ξ) ≤ 1
α

tαkn−1.

Hence, for every σ > 0 and n ∈ N, one has

inf
ξ∈[0,ξn]

F (ξ) + σF (ξn) ≤ 1
α

tαkn
− 1

β
tβkn

g(tnk
) + σ

1
α

tαkn−1 =

1
α

tαkn

(
1 + σ

tαnk−1

tαkn

− α

β
tβ−α
kn

g(tkn
)

)
.

Consequently, in view of (1.3), one has

inf
ξ∈[0,ξn]

F (ξ) + σF (ξn) < 0 for every n ∈ N, with n large enough.

This means that condition b1) does not hold.
Now, note that for every ξ ∈]0, 1[ with

ξ <

(
β

2α

∫ 1

0

g(τ)
τη

dτ

) 1
β+η−α
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one has:∫
F+

ξ

F (τ)dτ ≥
∫ ξ

0

F (τ)dτ =
ξα

α
− 1

β

∫ ξ

0

τβdτ ≥ ξα

α
− ξβ+η

β

∫ 1

0

g(τ)
τη

dτ and

∫
F−ξ

F (τ)dτ ≥ − 1
β

∫ ξ

0

τβdτ ≥ −ξβ+η

β

∫ 1

0

g(τ)
τη

dτ.

Therefore, ∫
F+

ξ

F (τ)dτ +
∫

F−ξ

F (τ)dτ ≥ ξα

α
− 2

ξβ+η

β

∫ 1

0

g(τ)
τη

dτ > 0.

Thus, in view of (1.2), condition b̃1) holds with σ = 1. Finally, note that, thanks to
the properties of the sequence {sn}, condition a1) holds as well.

To exhibit a concrete example of function g satisfying (1.2) and (1.3), an easy
calculation shows that it is enough to take

g(t) = e−t−ρ cos2(t−1) sin2(t−1) with ρ > 2(η − 1) if η ≥ 1

g(t) = sin2(t−1) if η < 1.

2. The results

In what follows, the following notations will be used:

- for every ξ ∈ R and every nonempty open set D in Ω, the set {u ∈
W 1,p

0 (Ω) : 0 ≤ u(x) ≤ ξ a.e. in D} is denoted by Xξ,D;
- given a nonempty set A in R and a positive number ε, the symbol (A)ε

denotes the (closed) ε-dilatation of A, that is the set {t ∈ R : infτ∈A |t−
τ | ≤ ε}. Moreover, we will use the notation int(A) to denote the interior
of A;

- given a positive real number τ and a function h : [0, τ ] → R, the symbols
h+

τ and h−τ denote, respectively, the sets {t ∈ [0, τ ] : h(t) > 0} and
{t ∈ [0, τ ] : h(t) ≤ 0};

- for any Lebesgue measurable set A in RN , the symbol |A| denotes its
Lebesgue measure.

Moreover, we equip the space W 1,p
0 (Ω) with its standard norm

‖ · ‖ =
(∫

Ω

|∇(·)|pdx

) 1
p

and for every continuous function F : R → R we put

ΨF (u) =
1
p
‖u‖p −

∫
Ω

F (u(x))dx
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for all u ∈ W 1,p
0 (Ω) such that F (u(·)) ∈ L1(Ω). Our main result is Theorem 2.1

below. It allow us to determinate an upper estimate of the number infXξ
ΨF in terms

of constants which depend, besides Ω, only on the ratio of the areas of the regions
delimited by the x-axis and the graphs of F+ and F− in [0, ξ].

Theorem 2.1. Let F : R → R be a continuous function. Assume that there exist two
positive numbers σ, ξ such that

i) F (ξ) > 0;

ii) the set ΛF
def
=
{

τ ∈ [0, ξ] :
∫

F+
τ

F (t)dt > −σ

∫
F−τ

F (t)dt

}
is nonempty

and
supΛF = ξ.

Then, for every nonempty open set D in Ω, there exist two positive constants C1, C2

depending only on D and σ such that

inf
Xξ,D

ΨF ≤ C1ξ
p − C2F (ξ) + |D| sup

t∈[0,inf ΛF ]

|F (t)| (2.1)

Proof. We consider the case in which inf
[0,ξ]

F < 0 as, otherwise, the proof is similar and

simpler. Moreover, note that, without loss of generality, the number σ can be chosen
in ]0, 1[. Choose x0 ∈ D and fix r, R > 0, with R > r, such that B(x0, R) ⊂ D. From
i) one has int(F+

ξ ) 6= ∅. Now, let ε ∈]0, 1[. Note that the connected components of
the compact set (F−

ξ )ε are intervals of length at least 2ε. Therefore, (F−
ξ )ε is union

of a finite number of pairwise disjoint compact intervals Il with l = 1, ..,m, namely

(F−
ξ )ε = ∪m

l=1Il.

As a consequence, one has

int(F+
ξ ) ⊃]0, ξ[\ ∪m

l=1 Il = ∪L
α=0]a2α+1, a2α[= int(F+

ξ ) \ (F−
ξ )ε (2.2)

where aα is a finite decreasing sequence of positive real numbers. This sequence, of
course, depends on ε. However, for brevity reasons, we do not explicitly indicate this
dependence. Now, observe that a2L+1 is nonincreasing with respect to ε and so we
can consider the following limit

lim
ε→0+

a2L+1
def
= ρ.

Let us to show that,

ρ ≤ inf ΛF . (2.3)

Indeed, arguing by contradiction, assume that

ρ > inf ΛF .
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Then, it should exist τ ∈ ΛF such that τ ≤ ρ . In particular F (t) ≤ 0 for all t ∈ [0, τ ]

and, consequently,
∫

F+
τ

F (t)dt = 0 which is absurd if τ ∈ ΛF . Thus, if we fix any

η > 0, we can choose ε small enough in order that

a2L+1 < inf ΛF + η. (2.4)

Moreover, since

lim
ε→0+

∫
(F−ξ )ε∩F+

ξ

F (t)dt = 0,

we can also assume, choosing ε smaller if necessary, that∫
int(F+

ξ )\(F−ξ )ε∫
(F−ξ )ε∩F+

ξ
F (t)dt

> 1, (2.5)

and, thanks to condition i),

ξ /∈ (F−
ξ )ε. (2.6)

In particular, from (2.6) we have ξ = a0. Moreover, from (2.2) and (2.5) one has∑L
α=0

∫ a2α

a2α+1
F (t)dt∫

(F−ξ )ε∩F+
ξ

F (t)dt
> 1. (2.7)

Let us put

η1 =
R− r

a0
and η2 =

η1

4
·min

{( r

R

)N−1

,
rN−1σ

RN−1 − σrN−1

}
. (2.8)

Define the following function

uξ(x) =



a0 if x ∈ B(x0, r)

aα − aα+1

Rα+1 −Rα
(Rα+1 − |x− x0|) + aα+1 if x ∈ B(x0, Rα+1) \B(x0, Rα)

and α = 0, .., 2L

a2L+1

R−R2L+1
(R− |x− x0|) if a2L+1 6= 0 and

x ∈ B(x0, R) \B(x0, R2L+1)

0 otherwise

where

R2α+1 = R2α + η1(a2α − a2α+1) for all α = 0, .., L and

R2α = R2α−1 + η2(a2α−1 − a2α) for all α = 1, .., L
(2.9)
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with R0 = r. Note that uξ is a Lipschitz function in Ω with uξ |∂Ω = 0, hence

uξ ∈ W 1,p
0 (Ω). Moreover, if we put µ = 0 if a2L+1 = 0 and

µ = ωN

(
a2L+1

R−R2L+1

)p

(RN −RN
2L+1)

if a2L+1 6= 0, taking in mind that η2 ≤ η1 and in view of (2.8), one has

∫
Ω

|∇uξ|pdx =
2L∑

α=0

ωN

(
aα − aα+1

Rα+1 −Rα

)p

(RN
α+1 −RN

α ) + µ

=
ωN

ηp−1
2

2L∑
α=0

(aα − aα+1)
N−1∑
i=0

RN−1−i
α+1 Ri

α + µ

≤ NωNRN−1

 4

min
{(

r
R

)N−1
, rN−1σ
RN−1−σrN−1

}
p−1

ap−1
0

(R− r)p−1
(a0 − a2L+1) + µ. (2.10)

Since from (2.9) it follows R2L+1 ≤ R0 + η1(a0− a2L+1), the following estimate holds

µ ≤ NωNRN−1 a2L+1

(R− r)p−1
ap−1
0 . (2.11)

Therefore, from (2.10) and (2.11), there exists a constant C depending only
on Ω and ρ such that (recall that a0 = ξ)∫

Ω

|∇uξ|pdx ≤ Cξp (2.12)

Moreover, since 0 ≤ uξ(x) ≤ ξ for all x ∈ D, we finally infer uξ ∈ Xξ,D.
Put, for simplicity,

Dα = B(x0, Rα+1) \B(x0, Rα)

for all α = 0, .., 2L, as well as

γα(t) =
aα − aα+1

Rα+1 −Rα
(Rα+1 − t) + aα+1

for all α = 0, .., 2L and t ∈ R. Finally, put δ = 0 if a2L+1 = 0 and

δ =
∫

B(x0,R)\B(x0,R2L+1)

F

(
a2L+1

R−R2L+1
(R− |x− x0|)

)
dx

if a2L+1 > 0.

10
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An upper estimate for |δ| in the case a2L+1 > 0 can be obtained noticing
that, by (2.4), one gets

|δ| ≤ ωN

∫ a2L+1

0

(
R− R−R2L+1

a2L+1

)N−1
R−R2L+1

a2L+1
|F (t)|dt

≤ ωNRN

a2L+1

∫ a2L+1

0

|F (t)|dt ≤ |D| sup
t∈[0,inf ΛF +η]

|F (t)|. (2.13)

Now, observe that (2.2) and (2.6) imply

L⋃
α=1

]a2α, a2α−1[=
(
(F−

ξ )ε ∩ F+
ξ

)
∪ F−

ξ (2.14)

and

{a0} ∪ ((F−
ξ )ε ∩ F+

ξ ) ∪
L⋃

α=0

]a2α+1, a2α[= F+
ξ . (2.15)

Thus, if we put

I1 =
L∑

α=0

∫ a2α

a2α+1

F (t)dt, I2 =
∫

(F−ξ )ε∩F+
ξ

F (t)dt

and

I+ =
∫

F+
ξ

F (t)dt, I− =
∫

F−ξ

F (t)dt

we have

I+ = I1 + I2.

Moreover, by assumption ii), we also have

I− > − 1
σ

I+.
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With this in mind and in view of (2.12), (2.14), (2.15), we get

ΨF (uξ) ≤

C

p
ξp −

∫
Ω

F (uξ) =
C

p
ξp −

2L∑
α=0

∫
Dα

F (γα(|x− x0|))dx−
∫

B(x0,r)

F (ξ)dx− δ

=
C

p
ξp − ωNrNF (ξ)− δ −

ωN

2L∑
α=0

∫ aα

aα+1

[
Rα+1 −

Rα+1 −Rα

aα − aα+1
(t− aα+1)

]N−1
Rα+1 −Rα

aα − aα+1
F (t)dt =

C

p
ξp − ωNrNF (ξ)− δ − ωN

L∑
α=0

∫ a2α

a2α+1

[R2α+1 − η1(t− a2α+1)]N−1η1F (t)dt +

L∑
α=1

∫ a2α−1

a2α

[R2α − η2(t− a2α)]N−1η2F (t)dt ≤

C

p
ξp − ωNrNF (ξ) + |δ| − ωN

(
η1r

N−1I1 + η2r
N−1I2 + η2R

N−1I−
)
≤

C

p
ξp − ωNrNF (ξ) + |δ| − ωN

(
η1r

N−1I1 + η2r
N−1I2 − η2

RN−1

σ
(I1 + I2)

)
=

C

p
ξp − ωNrNF (ξ) + |δ| −

ωN

((
η1r

N−1 − η2
RN−1

σ

)
I1 − η2

(
rN−1 − RN−1

σ

)
I2

)
At this point, thanks to the choice of η2 (see (2.8)) and inequality (2.7), one can easily
check that (

η1r
N−1 − η2

RN−1

σ

)
I1 − η2

(
rN−1 − RN−1

σ

)
I2 > 0.

Therefore, by the previous inequalities and (2.13), it follows

ΨF (uξ) ≤
C

p
ξp − ωNrN

2
F (ξ) + |D| sup

t∈[0,inf ΛF +η]

|F (t)|

Then, since uξ ∈ Xξ, by the arbitrariness of η conclusion follows. �

Theorem 2.1 can now be applied to study the behavior of ΨF near 0 and near
∞. To this end, we have the following two Corollaries
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Corollary 2.2. Let F : R → R be a continuous function with F (0) = 0. Assume
that there exists a sequence {ξn} in ]0,+∞[ with lim

n→+∞
ξn = 0 and a positive number

σ such that

j) lim sup
n→+∞

F (ξn)
ξp
n

= +∞;

jj)
∫

F+
ξn

F (t)dt ≥ −σ

∫
F−ξn

F (t)dt for all n ∈ N.

Then, for every nonempty open set D in Ω, up to subsequence of {ξn}, one has

infXξn,D
ΨF < 0 for all n ∈ N and lim

n→+∞
infXξn,D

ΨF = 0.

Proof. By assumption j), up to a subsequence, we can suppose F (ξn) > 0 for all
n ∈ N. From this, replacing σ with σ

2 if necessary, by assumption jj) we have that,
for all n ∈ N, the sets

Λn
F =

{
τ ∈ [0, ξn] :

∫
F+

τ

F (t)dt > −σ

∫
F−τ

F (t)dt

}
are nonempty with supΛn

F = ξn. This fact jointly to limn→+∞ ξn = 0 imply inf Λn
F =

0 for all n ∈ N. Therefore, thanks to Theorem 2.1, there exist two positive constants
C1, C2 depending only on σ and D such that

inf
Xξn,D

ΨF ≤ C1ξ
p
n − C2F (ξn)

for all n ∈ N. Then, in view of j), conclusion follows. �

Corollary 2.3. Let F : R → R be a continuous function with F (0) = 0. Assume that
there exists a sequence {ξn} in ]0,+∞[ with lim

n→+∞
ξn = +∞ and a positive number

σ such that

k) lim sup
n→+∞

F (ξn)
ξp
n

= +∞;

kk)
∫

F+
ξn

F (t)dt ≥ −σ

∫
F−ξn

F (t)dt for all n ∈ N.

Then, for every nonempty open set D in Ω, up to subsequence of {ξn}, one has

lim
n→+∞

infXξn,D
ΨF = −∞.

Proof. As in Corollary 2.2 we are able to apply Theorem 2.1. In this case, there exist
positive constants C1, C2 depending only on σ and D such that, up to a subsequence
of {ξn}, one has

inf
Xξn,D

ΨF ≤ C1ξ
p
n − C2F (ξn) + |D| sup

t∈[0,inf Λn
F ]

|F (t)|.

for all n ∈ N. Since the sequence {inf Λn
F } is bounded, conclusion follows by assump-

tion k). �
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We are now in position to state and prove two results concerning the existence
of infinitely many weak solutions for some elliptic boundary value problems. The first
one is a variant of Theorem 2.1 of [2].

Theorem 2.4. Let f : Ω× R → R be a Carathéodory function such that f(x, 0) = 0
for a.e. x ∈ Ω and let D be a nonempty open bounded set in Ω. Let F : R → R be a
continuous function such that F (0) = 0 and

F (ξ) ≤ ess inf
x∈D

∫ ξ

0

f(x, t)dt for every ξ ∈ R.

Assume that there exist a nonempty open set D in Ω, two positive numbers σ, s and
two sequences {ξn}, {tn} in ]0,+∞[ with lim

n→+∞
ξn = lim

n→+∞
tn = 0 such that

a) sup
t∈[0,s]

|f(·, s)| ∈ Lm(Ω) where m ≥ 1 with m > Np
Np−N+p if p ≤ N ;

b) f(x, tn) ≤ 0 for all n ∈ N and for almost all x ∈ Ω;

c) lim sup
n→+∞

F (ξn)
ξp
n

= +∞;

d)
∫

F+
ξn

F (t)dt ≥ −σ

∫
F−ξn

F (t)dt for all n ∈ N;

Then, the following Dirichlet problem{
−∆pu = f(x, u) in Ω
u|Ω = 0

(Pf )

admits a sequence of pairwise distinct nonnegative weak solutions {un} in W 1,p
0 (Ω)∩

C1(Ω) satisfying
lim

n→+∞
‖un‖ = lim

n→+∞
max
x∈Ω

|un(x)| = 0.

Proof. Up to subsequences, we can suppose tn, ξn ∈]0, s] and ξn ≤ tn for all n ∈ N.
After that, fix n ∈ N and put

Ψn(u) =
1
p
‖u‖p −

∫
Ω

(∫ u(x)

0

fn(x, t)dt

)
dx

for all u ∈ W 1,p
0 (Ω), where

fn(x, t) =


f(x, t) if (x, t) ∈ Ω× [0, tn]
f(x, tn) if (x, t) ∈ Ω×]tn,+∞[
0 if (x, t) ∈ Ω×]−∞, 0[

.

By standard results, condition a) implies that functional Ψn is sequentially weakly
lower semicontinuous and Gateâux differentiable in W 1,p

0 (Ω). Moreover, one has

lim
‖u‖→+∞

Ψn(u) = +∞.

14
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Therefore, Ψn achieves its global minimum at a point un ∈ W 1,p
0 (Ω). Thus, un is a

weak solution of the problem{
−∆pu = fn(x, u) in Ω
u|∂Ω = 0

.

By regularity results ([5]), one has u ∈ C1(Ω). Moreover, by the Maximum Principle
we easily infer that 0 ≤ un(x) ≤ tn (see for instance Lemma 4.1 of [8]). Consequently,
un is actually a weak solution of problem (Pf ). Finally, note that

Ψn(un) = inf
W 1,p

0 (Ω)
Ψn ≤ inf

Xξn,D

Ψn ≤ inf
Xξn,D

ΨF (2.16)

where

ΨF (u) =
1
p
‖u‖p −

∫
Ω

F (u(x))dx, u ∈ W 1,p
0 (Ω).

At this point, assumptions c), d) allows us to apply Corollary 2.2 and this yields,
thanks to (2.16),

Ψn(un) < 0 for all n ∈ N and lim
n→+∞

Ψn(un) = 0.

Then, conclusion easily follows. �

Our second application is a result analogous to Theorem 2.4 which states
the existence of a norm-unbounded sequence of pairwise distinct weak solutions for
problem (Pf ). The proof is practically the same of Theorem 2.4 and so it is omitted.

Theorem 2.5. Let f : Ω× R → R be a Carathéodory function such that f(x, 0) = 0
for a.e. x ∈ Ω and let D be a nonempty open bounded set in Ω. Let F : R → R be a
continuous function such that F (0) = 0 and

F (ξ) ≤ ess inf
x∈D

∫ ξ

0

f(x, t)dt for every ξ ∈ R.

Assume that there exist a nonempty open set D in Ω, a positive number σ and two
sequences {ξn}, {tn} in ]0,+∞[ with lim

n→+∞
ξn = lim

n→+∞
tn = +∞ such that

a) sup
t∈[0,s]

|f(·, s)| ∈ Lm(Ω) for every s > 0, where m ≥ 1 with m > Np
Np−N+p

if p ≤ N ;
b) f(x, tn) ≤ 0 for all n ∈ N and for almost all x ∈ Ω;

c) lim sup
n→+∞

F (ξn)
ξp
n

= +∞;

d)
∫

F+
ξn

F (t)dt ≥ −σ

∫
F−ξn

F (t)dt for all n ∈ N;

15
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Then, the following Dirichlet problem{
−∆pu = f(x, u) in Ω
u|Ω = 0

(Pf )

admits a sequence of pairwise distinct nonnegative weak solutions {un} in W 1,p
0 (Ω)∩

C1(Ω) satisfying
lim

n→+∞
‖un‖ = +∞.
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