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SUBCLASSES OF HARMONIC FUNCTIONS BASED
ON GENERALIZED DERIVATIVE OPERATOR

KALIYAPAN VIJAYA AND KALIYAPAN UMA

Abstract. Making use of Salagean and Ruscheweyh derivative operator

we introduced a new class of complex-valued harmonic functions which

are orientation preserving, univalent and starlike functions. We investigate

the coefficient bounds, distortion inequalities, extreme points and inclusion

results for the generalized class of functions.

1. Introduction

A continuous function f = u+ iv is a complex-valued harmonic function in a
complex domain Ω if both u and v are real and harmonic in Ω. In any simply connected
domain D ⊂ Ω we can write f = h+ g where h and g are analytic in D. We call h the
analytic part and g the co-analytic part of f. A necessary and sufficient condition for
f to be locally univalent and orientation preserving in D is that |h′(z)| > |g′(z)| in D
(see [1]).

Denote by H the family of functions

f = h+ g (1.1)

which are harmonic univalent and orientation preserving in the open unit disc U =
{z : |z| < 1} so that f is normalized by f(0) = h(0) = fz(0) − 1 = 0. Thus,
for f = h + g ∈ H, we may express the analytic functions h and g in the forms

h(z) = z +
∞∑

n=2
anz

n and g(z) =
∞∑

n=1
bnz

n, (0 ≤ b1 < 1). Then

f(z) = z +
∞∑

n=2

anz
n +

∞∑
n=1

bnzn, |b1| < 1. (1.2)

We note that the family H of orientation preserving, normalized harmonic
univalent functions reduces to the well known class S of normalized univalent functions
if the co-analytic part of f = h+ g is identically zero that is g ≡ 0. Due to Silverman
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[6] we denote H the subclass of H consisting of functions of the form f = h+ g given
by

f(z) = z −
∞∑

n=2

anz
n +

∞∑
n=1

bnz
n, |b1| < 1, an, bn ≥ 0. (1.3)

In 1999 Jahangiri [2] introduced a subclass of H called the class of harmonic starlike
functions of order α denoted by SH(α) which consist of functions of the form (1.1)
and satisfying the inequality:

∂

∂θ
(arg(f(z)) > α (1.4)

Equivalently

Re

{
zh′(z)− zg′(z)
h(z) + g(z)

}
≥ α (1.5)

where z ∈ U .
Given two functions φ(z) = z +

∞∑
n=2

φnz
n and ψ(z) = z +

∞∑
n=2

ψnz
n in S

their Hadamard product or convolution is defined by (φ ∗ ψ)(z) = φ(z) ∗ ψ(z) =

z +
∞∑

n=2
φnψnz

n. Using the convolution, Ruscheweyh [5] introduced the derivative

operator

Dmφ(z) :=
z

(1− z)m−1
= z +

∞∑
n=2

(
m+ n− 1
n− 1

)
φnz

n, (z ∈ U, m > −1). (1.6)

Recently in [4] Jahangiri and etal. defined the Ruscheweyh derivative for harmonic
functions, as given below

Dmf(z) := z +
∞∑

n=2

(
m+ n− 1
n− 1

)
anz

n +
∞∑

n=1

(
m+ n− 1
n− 1

)
bnzn, (1.7)

which was initially studied for the class of harmonic starlike functions SH(α) in [4].
Further motivated by the works of Jahangiri et. al. [3] we define a new generalized
derivative operator on harmonic function f = h+ g in H as

Dm
k f(z) = Dm

k h(z) + (−1)kDm
k g(z), m > −1, and k ≥ 0 (1.8)

where

Dm
k h(z) = z +

∞∑
n=2

nkC(n,m)anz
n, Dm

k g(z) =
∞∑

n=1

nkC(n,m)bnzn,

and

C(n,m) =

(
n+m− 1
n− 1

)
.
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For 0 ≤ α < 1, we let HRm
k (λ, α) a subclass of H of the form f = h+ g given

by (1.2) and satisfying the analytic criteria

Re
{

z(Dm
k f(z))′

(1− λ)Dm
k f(z) + λz(Dm

k f(z))′

}
≥ α (1.9)

where 0 ≤ λ < 1, Dm
k f is given by (1.8) and z ∈ U. We also let HRm

k (λ, α) =
HRm

k (λ, α) ∩H.
We investigate the coefficient bounds,distortion inequalities, extreme points

and inclusion results for the generalized class HRm

k (λ, α)

The Class HRm
k (λ, α)

In our first theorem, we obtain a sufficient coefficient condition for harmonic
functions in HRm

k (λ, α).

Theorem 1.1. Let f = h+ g be given by (1.2). If
∞∑

n=1

nkC(n,m) [(n− α− αλ(n− 1))|an|+ (n+ α− αλ(n+ 1))|bn|] ≤ 2(1− α),

(1.10)
where a1 = 1 and 0 ≤ α < 1, then f ∈ HRm

k (λ, α).

Proof. We first show that if (1.10) holds for the coefficients of f = h+g, the required
condition (1.9) is satisfied. From (1.9) we can write

Re

{
z(Dm

k h(z))
′ − z(Dm

k g(z))′

(1− λ)(Dm
k h(z) +Dm

k g(z)) + λ(z(Dm
k h(z))′ − z(Dm

k g(z))′)

}
≥ α

= Re
A(z)
B(z)

≥ α,

where

A(z) = z(Dm
k h(z))

′ − z(Dm
k g(z))′

= z +
∞∑

n=2

nkC(n,m)anz
n −

∞∑
n=1

nkC(n,m)bnzn

and B(z) = (1− λ)(Dm
k h(z) +Dm

k g(z)) + λ(z(Dm
k h(z))

′ − z(Dm
k g(z))′ )

= z +
∞∑

n=2

nkC(n,m)(1− λ+ nλ)anz
n +

∞∑
n=1

nkC(n,m)(1− λ− nλ)bnzn.

Using the fact that Re {w} ≥ α if and only if |1− α+w| ≥ |1 + α−w|, it suffices to
show that

|A(z) + (1− α)B(z)| − |A(z)− (1 + α)B(z)| ≥ 0. (1.11)
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Substituting for A(z) and B(z) in (1.11), we get

|A(z) + (1− α)B(z)| − |A(z)− (1 + α)B(z)|

=| (2− α)z +
∞∑

n=2

nkC(n,m)[(n+ 1− α)(1− λ+ nλ)]anz
n

−
∞∑

n=1

nkC(n,m)[n− (1− α)(1− λ+ nλ)]bn zn |

− | −αz +
∞∑

n=2

nkC(n,m)[n− (1 + α)(1− λ+ nλ)anz
n

−
∞∑

n=1

nkC(n,m)[n+ (1 + α)(1− λ+ nλ)]bnzn |

≥ (2− α)|z| −
∞∑

n=2

nkC(n,m)[n+ (1− α)(1− λ+ nλ)|an||z|n

−
∞∑

n=1

nkC(n,m)[n− (1− α)(1− λ− nλ)]|bn| |z|n

−α|z| −
∞∑

n=2

nkC(n,m)[n− (1 + α)(1− λ+ nλ)]|an| |z|n

−
∞∑

n=1

nkC(n,m)[n+ (1 + α)(1− λ− nλ)]|bn| |z|n

≥ 2(1− α)|z|

{
2−

∞∑
n=1

nkC(n,m)
[
n− α− αλ(n− 1)

1− α
|an|

+
n+ α− αλ(n+ 1)

1− α
|bn|
]
|z|n−1

}

≥ 2(1− α)

{
2−

∞∑
n=1

nkC(n,m)
[
n− α− αλ(n− 1)

1− α
|an|+

n+ α− αλ(n+ 1)
1− α

|bn|
]}

.

The above expression is non negative by (1.10), and so f(z) ∈ HRm
k (λ, α). �

Corollary 1.2. Let f = h+ g be of the form (1.2) and satisfy the condition (1.10).
Then each Di(z), −1 < i ≤ m, is orientation preserving, harmonic univalent and
starlike of order α in U.
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Proof. Observe that nkC(n,m) is an increasing function of n. Therefore, by (1.10)
for each i, −1 < i ≤ m, we can write

∞∑
n=1

[(n− α− αλ(n− 1)]|an|+
∞∑

n=1

[n+ α− αλ(n+ 1)]|bn|ht]

≤
∞∑

n=1

C(n, i)[n− α− αλ(n− 1)]|an|+
∞∑

n=1

[n+ α− αλ(n+ 1)]|bn|

≤
∞∑

n=1

nkC(n,m)[n− α− αλ(n− 1)]|an|+ [n+ α− αλ(n+ 1)]|bn|

≤ 2(1− α).

Thus, by (1.10) each Di(z), −1 < i ≤ m, is orientation preserving, harmonic univalent
and starlike of order α in U.
The harmonic function

f(z) = z +
∞∑

n=2

1− α

nkC(n,m)[n− α− αλ(n− 1)]
xnz

n

+
∞∑

n=1

1− α

nkC(n,m)[n+ α− αλ(n+ 1)]
yn(z)n (1.7)

where
∞∑

n=2
|xn|+

∞∑
n=1

|yn| = 1 shows that the coefficient bound given by (1.10) is sharp.

The functions of the form (1.7) are in HRm
k (λ, α) because

∞∑
n=1

(
nkC(n,m)[n− α− αλ(n− 1)]

1− α
|an|+

nkC(n,m)[n+ α− αλ(n+ 1)]
1− α

|bn|
)

=1 +
∞∑

n=2

|xn|+
∞∑

n=1

|yn| = 2.

�

Next theorem establishes that such coefficient bounds cannot be improved
further.

Theorem 1.3. For a1 = 1 and 0 ≤ α < 1, f = h+ g ∈ HRm
k (λ, α) if and only if

∞∑
n=1

nkC(n,m) {[n− α− αλ(n− 1)]|an|+ [n+ α− αλ(n+ 1)]|bn|} ≤ 2(1−α). (1.8)

Proof. Since HRm

k (λ, α) ⊂ HRm
k (λ, α), we only need to prove the ”only if” part

of the theorem. To this end, for functions f of the form (1.3), we notice that the
condition

Re
{

z(Dm
k f(z))′

(1− λ)Dm
k f(z) + λz(Dm

k f(z))′

}
≥ α.
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Equivalently,

Re

 (1−α)z−
∞∑

n=2
[n−α−αλ(n−1)]nkC(n,m)anzn−

∞∑
n=1

[n+α−αλ(n+1)]nkC(n,m)bnzn

z−
∞∑

n=2
nkC(n,m)(1−λ+nλ)anzn+

∞∑
n=1

nkC(n,m)(1−λ−nλ)bnzn

 ≥ 0.

The above required condition must hold for all values of z in U. Upon choosing
the values of z on the positive real axis where 0 ≤ z = r < 1, we must have

(1−α)−
∞∑

n=2
[n−α−αλ(n−1)]nkC(n,m)anrn−1−

∞∑
n=1

[n+α−αλ(n+1)]nkC(n,m)bnrn−1

1−
∞∑

n=2
nkC(n,m)(1−λ+nλ)anrn−1+

∞∑
n=1

nkC(n,m)(1−λ−nλ)bnrn−1
≥ 0. (1.9)

If the condition (1.8) does not hold, then the numerator in (1.9) is negative
for r sufficiently close to 1. Hence, there exists z0 = r0 in (0,1) for which the quotient
of (1.9) is negative. This contradicts the required condition for f(z) ∈ HRm

k (λ, α).
This completes the proof of the theorem. �

Corollary 1.4. Let f = h + g be given by (1.3). Then Dif(z), −1 < i ≤ m is
orientation preserving, harmonic and starlike of order α, 0 ≤ α < 1, if and only if
the coefficient condition (1.8) holds.

Next we determine the extreme points of closed convex hulls of HRm
k (λ, α)

denoted by clcoHRm
k (λ, α).

Theorem 1.5. A function f(z) ∈ HRm
k (λ, α) if and only if

f(z) =
∞∑

n=1

(Xnhn(z) + Yngn(z)) ,

where

h1(z) = z, hn(z) = z − 1− α

nkC(n,m)[n− α− αλ(n− 1)]
zn; (n ≥ 2),

gn(z) = z +
1− α

nkC(n,m)[+α− αλ(n+ 1)]
zn; (n ≥ 2),

∞∑
n=1

(Xn + Yn) = 1, Xn ≥ 0 and Yn ≥ 0.

In particular, the extreme points of HRm
k (λ, α) are {hn} and {gn}.

Proof. First, we note that for f as in the theorem above, we may write

f(z) =
∞∑

n=1

(Xnhn(z) + Yngn(z))

=
∞∑

n=1

(Xn + Yn)z −
∞∑

n=2

1− α

nkC(n,m)[n− α− αλ(n− 1)]
Xnz

n

218



SUBCLASSES OF HARMONIC FUNCTIONS BASED ON GENERALIZED DERIVATIVE OPERATOR

+
∞∑

n=1

1− α

nkC(n,m)[n+ α− αλ(n+ 1)]
Ynz

n = z −
∞∑

n=2

Anz
n +

∞∑
n=1

Bnz
n,

where

An =
1− α

nkC(n,m)[n− α− αλ(n− 1)])
Xn,

and

Bn =
1− α

nkC(n,m)[n+ α− αλ(n+ 1)]
Yn.

Therefore
∞∑

n=2

nkC(n,m)[n− α− αλ(n− 1)]
1− α

An +
∞∑

n=1

nkC(n,m)[n+ α− αλ(n+ 1)]
1− α

Bn

=
∞∑

n=2

Xn +
∞∑

n=1

Yn = 1−X1 ≤ 1,

and hence f(z) ∈ clcoHRm
k (λ, α).

Conversely, suppose that f(z) ∈ clcoHRm
k (λ, α). Setting

Xn =
nkC(n,m)[n− α− αλ(n− 1)]

1− α
An, (n ≥ 2)

and

Yn =
nkC(n,m)[n+ α− αλ(n− 1)]

1− α
Bn, (n ≥ 1)

where
∞∑

n=1
(Xn + Yn) = 1. Then

f(z) = z −
∞∑

n=2

anz
n +

∞∑
n=1

bnz
n, an, bn ≥ 0.

= z −
∞∑

n=2

1− α

nkC(n,m)[n− α− αλ(n− 1)]
Xnz

n

+
∞∑

n=1

1− α

nkC(n,m)[n+ α− αλ(n− 1)]
Ynz

n

= z −
∞∑

n=2

(hn(z)− z)Xn +
∞∑

n=1

(gn(z)− z)Yn

=
∞∑

n=1

(Xnhn(z) + Yngn(z))

as required. �

The following theorem gives the distortion bounds for functions in RH(m,α)
which yields a covering result for the class HRm

k (λ, α).
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Theorem 1.6. Let f ∈ HRm
k (λ, α). Then for |z| = r < 1, we have

(1− b1)r −
1

2kC(2,m)

(
1− α

2− α− αλ
− 1 + α

2− α− αλ
b1

)
r2 ≤ |f(z)|

≤ (1 + b1)r +
1

2kC(2,m)

(
1− α

2− α− αλ
− 1 + α

2− α− αλ
b1

)
r2.

Proof. We only prove the right hand inequality. Taking the absolute value of f(z),
we obtain

|f(z)| =

∣∣∣∣∣z +
∞∑

n=2

anz
n +

∞∑
n=1

bnz
n

∣∣∣∣∣
=

∣∣∣∣∣z + b1 z +
∞∑

n=2

(anz
n + bnz

n)

∣∣∣∣∣
≤ (1 + b1)|z|+

∞∑
n=2

(an + bn)|z|n

≤ (1 + |b1|)r +
∞∑

n=2

(an + bn)rn

≤ (1 + b1)r +
∞∑

n=2

(an + bn)r2

≤ (1 + b1)r +
1− α

2kC(2,m)(2− α− αλ)
∞∑

n=2

(
2kC(2,m)(2− α− αλ)

1− α
an +

2kC(2,m)(2− α− αλ)
1− α

bn

)
r2

≤ (1 + b1)r +
1− α

2kC(2,m)(2− α− αλ)

(
1− 1 + α

1− α
b1

)
r2

≤ (1 + b1)r +
1

2kC(2,m)

(
1− α

2− α− αλ
− 1 + α

2− α− αλ
b1

)
r2.

�

The proof of the left hand inequality follows on lines similar to that of the
right hand side inequality.
The covering result follows from the left hand inequality given in Theorem 1.6.

Corollary 1.7. If f(z) ∈ HRm
k (λ, α). Then{

w : |w| < 2k+1C(2,m)− 1− ((1 + λ)2kC(2,m)− 1)α
2kC(2,m)(2− α− αλ)

−2k+1C(2,m)− 1− ((1 + λ)2kC(2,m)− 1)α
2kC(2,m)(2− α− αλ)

b1

}
⊂ f(U).
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Proof. Using the left hand inequality of Theorem 1.6 and letting r → 1, we prove
that

(1− b1)−
1

2kC(2,m)

(
1− α

2− α− αλ
− 1 + α

2− α− αλ
b1

)
= (1− b1)−

1
2kC(2,m)(2− α− αλ)

[1− α− (1 + α)b1]

=
(1− b1)2kC(2,m)(2− α− αλ)− (1− α) + (1 + α)b1

2kC(2,m)(2− α− αλ)

=
2kC(2,m)(2− α− αλ)− 2kC(2,m)(2− α− αλ)b1 − (1− α) + (1 + α)b1

2kC(2,m)(2− α− αλ)

=
2kC(2,m)(2− α− αλ)− 1 + α− [2kC(2,m)(2− α− αλ)− (1 + α)]b1

2kC(2,m)(2− α− αλ)

=
2k+1C(2,m)− 1− α[(1 + λ)2kC(2,m)− 1]

2kC(2,m)(2− α− αλ)

− [2C(2,m)− 1− α((1 + λ)C(2,m)− 1)]
2kC(2,m)(2− α− αλ)

b1 ⊂ f(U).

�

Now we show that HRm
k (λ, α) is closed under convex combinations of its

member and also closed under the convolution product.

Theorem 1.8. The family HRm
k (λ, α) is closed under convex combinations.

Proof. For i = 1, 2, . . . , suppose that fi ∈ HRm
k (λ, α) where

fi(z) = z −
∞∑

n=2

ai,nz
n +

∞∑
n=2

bi,nz
n.

Then, by Theorem 1.3
∞∑

n=2

nkC(n,m)[n− α− αλ(n− 1)]
(1− α)

ai,n +
∞∑

n=1

nkC(n,m)[n+ α− αλ(n+ 1)]
(1− α)

bi,n ≤ 1.

(1.10)

For
∞∑

i=1

ti, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑

n=2

( ∞∑
i=1

tiai,n

)
zn +

∞∑
n=1

( ∞∑
i=1

tibi,n

)
zn.

Using the inequality (1.8), we obtain

∞∑
n=2

nkC(n,m)[n− α− αλ(n− 1)]
(1− α)

( ∞∑
i=1

tiai,n

)
+
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+
∞∑

n=1

nkC(n,m)[n+ α− αλ(n+ 1)]
(1− α)

( ∞∑
i=1

tibi,n

)

=

∞∑
i=1

ti

(
∞∑

n=2

nkC(n, m)[n− α− αλ(n− 1)]

(1− α)
ai,n +

∞∑
n=1

nkC(n, m)[n + α− αλ(n + 1)]

(1− α)
bi,n

)

≤
∞∑

i=1

ti = 1,

and therefore
∞∑

i=1

tifi ∈ HRm
k (λ, α). �

Theorem 1.9. For 0 ≤ β ≤ α < 1, let f(z) ∈ HRm
k (λ, α) and F (z) ∈ HRm

k (λ, β).
Then f(z) ∗ F (z) ∈ HRm

k (λ, α)) ⊂ HRm
k (λ, β).

Proof. Let

f(z) = z −
∞∑

n=2

anz
n +

∞∑
n=1

bnz
n ∈ HRm

k (λ, α)

and

F (z) = z −
∞∑

n=2

Anz
n +

∞∑
n=1

Bnz
n ∈ HRm

k (λ, β).

Then f(z) ∗ F (z) is

f(z) ∗ F (z) = z −
∞∑

n=2

anAnz
n +

∞∑
n=1

bnBnz
n.

For f(z) ∗ F (z) ∈ HRm
k (λ, β) we note that |An| ≤ 1 and |Bn| ≤ 1.

Now by Theorem 1.3 we have
∞∑

n=2

nkC(n,m)[n− β − βλ(n− 1)]
1− β

|an| |An|

+
∞∑

n=1

nkC(n,m)[n+ β − βλ(n+ 1)]
1− β

|bn| |Bn|

≤
∞∑

n=2

nkC(n,m)[n− β − βλ(n− 1)]
1− β

|an|+
∞∑

n=1

nkC(n,m)[n+ β − βλ(n+ 1)]
1− β

|bn|

and since 0 ≤ β ≤ α < 1
∞∑

n=2

nkC(n,m)[n− α− αλ(n− 1)]
1− α

|an|+
∞∑

n=1

nkC(n,m)[n+ α− αλ(n+ 1)]
1− α

|bn| ≤ 1,

by Theorem 1.3 f(z) ∈ HRm
k (λ, α). Therefore

f(z) ∗ F (z) ∈ HRm
k (λ, α) ⊂ HRm

k (λ, β). �
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Concluding remarks. We observe that, if we specialize the parameter
λ = 0, for suitable choice of k = 0 and m = 0 ; m = 0 and k = 0 we obtain the
analogous results for the classes studied in [2, 3] and [4] respectively.
Acknowledgements. The authors would like to thank the referees for their valuable
suggestions. Also wish to record our thanks to Prof. G. Murugusundaramoorthy,
VIT UNIVERSITY, Vellore-632 014 for his suggestions and comments to improve the
results.
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