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A COLLOCATION METHOD USING CUBIC B-SPLINES

FUNCTIONS FOR SOLVING SECOND ORDER LINEAR VALUE

PROBLEMS WITH CONDITIONS INSIDE THE INTERVAL [0, 1]

DANIEL N. POP

Abstract. Consider the problem:

y
′′(x) − Q(x)y(x) = R(x), x ∈ [0, 1]

y(a) = α

y(b) = β, a, b ∈ (0, 1).

where Q(x),R(x) ∈ C[0, 1]; y ∈ C2[0, 1]. The aim of this paper is to present

an approximate solution of this problem based on cubic B-splines. The

approximate solution uses a mesh based on Legendre points.A numerical

solution is also given.

1. Introduction

Consider the problem(PVP):

y′′(x) − Q(x)y(x) = R(x), x ∈ [0, 1] (1.1)

y(a) = α

y(b) = β, a, b ∈ (0, 1).

where Q(x), R(x) ∈ C[0, 1]; y ∈ C2[0, 1], a, b, α, β ∈ R.This is not a two point bound-

ary value problem (BVP), since a, b ∈ (0, 1).

If the solution of the two-point boundary value problem (BVP):

y′′(x) − Q(x)y(x) = r(x), x ∈ [a, b]

y(a) = α (1.2)

y(b) = β,

exists and it is unique, then the requirement y ∈ C2[0, 1] assures the existence and

the uniqueness of (1.1).
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I have two initial value problems on [0, a] and [b, 1], respectively, and the exis-

tence and the uniqueness for (1.2) assure existence and uniqueness of these problems.

It is possible to solve this problem by dividing it into the three above-mentioned prob-

lems and to solve each of these problem separately, but I am interested to a unitary

approach that solve it as a whole.

Remark 1.1. • If a = 0 and b = 1 the problem (PVP) becomes a classical (BVP).

• If a = 0 or b = 1 the problem (PVP) may be decomposed into an (BVP)

and one initial value problem(IVP).

Historical Note

In 1966, two researchers from Tiberiu Popoviciu Institute of Romanian Aca-

demy Cluj Napoca, D. Rı̂pianu and O. Aramă published a paper on polylocal problem

(see [10]).

2. Preliminaries

Consider a partition of [0, 1] like:

π : 0 = x0 < x1 < · · · < xN < xN+1 = 1, (2.1)

and the step sizes:

Hi := xi+1 − xi, i = 0, . . . , N. (2.2)

In each subinterval [xi, xi+1] we construct the collocation points as follows

ξij := xi + Hiρj ; i = 0, 1, ..., N, j = 0, 1, 2, ..., k, (2.3)

where

0 ≤ ρ0 < ρ1 < ρ2 < ... < ρk ≤ 1 (2.4)

are the roots of k-th Legendre polynomial on each subintervals:[xi, xi+1], i = 0, 1, ..., N

with the stepsize given by (2.2) (see [1] for more details). I insert the points a, b so I

obtained N(k+1)+2 points. One renumbers the collocation points such that the first

is ξ0 := x0 +H0ρ0 = 0, and the last is ξn+2 := xN +HNρk = 1, where n = N(K +1).

Therefore the partition of [0, 1] becomes:

∆ := 0 ≤ ξ0 < ξ1 < ... < ξn+2 = 1

We augment the above partition ∆ to form:

∆ : ξ−2 < ξ−1 < ξ0 = 0 < ξ1 < ... < ξn+2 = 1 < ξn+3 < ξn+4 (2.5)

where: ξl := a; ξl+p := b; 0 < l < n+1; 1 < l+p < n+2, ξ−1−ξ−2 = ξ0−ξ−1 = ξ1−ξ0,

ξn+4 − ξn+3 = ξn+3 − ξn+2 = ξn+2 − ξn+1.

Remark 2.1. If a = ξi or b = ξi+p, 1 ≤ i ≤ n− 2, 1 < p < n + 1− i we increment k.
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Notation 2.2.

Qi := Q(ξi) ; hi := ξi+1 − ξi; H := max
0≤ i≤ n+1

(ξi+1 − ξi); h := min
0≤ i≤n+1

(ξi+1 − ξi).

Definition 2.3. Given the meshpoint (2.5) I define the vector space:

S
(
∆
)

= {p(x) ∈ C2[0, 1] : p(x) is a cubic polynomial of each

subinterval [ξi−2 ,ξi+2], 0 ≤ i ≤ n + 2}.

dimS
(
∆
)

= n + 2 (numbers of subintervals, see [12, pp. 73])

Definition 2.4. For x ∈ R ; 0 ≤ i ≤ n, the cubic B-splines with the five knots: ξi−2,

ξi−1, ξ, ξ, ξ are given by:

Bi,3(x) =
x − ξ i−2

hi−2 + hi−1 + hi

Bi,2(x) +
ξ i+2 − x

hi+1 + hi + hi−1
Bi+1,2(x) (2.6)

where

Bi,0 =

{
1 if ξi−2 ≤ x < ξi−1

0 otherwise

Bi,2(x) =






(x−ξ
i−2)2

hi−2 (h
i−2+hi−1)

, if ξi−2 ≤ x ≤ ξi−1

(x−ξ
i−2)(ξi

−x)

hi−1(hi−1+hi−2) +
(ξ

i +1−x)(x−ξ
i−1)

hi−1(h
i−1+hi)

, if ξi−1 ≤ x ≤ ξi

(ξi+1−x)2

(hi−1+hi)hi

, if ξi ≤ x ≤ ξi+1

0 , otherwise .

We need a bases from S(∆) having (n+2) cubic B-splines.Our choice is based

on some special properties of cubic B-splines (see [11, pp.19-21] for details):

• The set

{Bi} i = 0, ..., n + 1 (2.7)

form a basis for S(∆).

•
{Bi} is positive on (ξi−2, ξi+2) and zero elsewhere. (2.8)

• {Bi} has local support (ξi−2, ξi+2) so computations using B-splines lead

to linear system of equations with banded matrices.

•
n+1∑

i = 0

Bi,3(x) = 1 for every x ∈ [0, 1] (2.9)

I recall some results from matrix theory ([7, pp. 359-361], [8, pp. 50-55]):
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Figure 1. B-spline bases

Definition 2.5. A matrix A = [ai j ], i = 1, 2, ..., m, j = 1, 2, ..., n is called reducible

if there is a permutation that puts it into the form

Ã =

(
B 0

C D

)
,

where B and D are square matrices. Otherwise A is called irreducible.

Definition 2.6. A matrix A = [ai j ], i = 1, 2, ..., m, j = 1, 2, ..., n is called monotone

if Az ≥ 0 implies z ≥ 0.

Theorem 2.7. A square tridiagonal matrix A = [aij ] i, j = 1, 2, ..., n is irreducible

iff:

ai,i−1 6= 0 (i = 2, 3, ..., n) and ai,i+1 6= 0 (i = 1, 2, ..., n− 1)

and is reducible iff:

ai,i−1 = 0 or ai,i+1 = 0 for some i = 2, 3, ..., n

Theorem 2.8. A monotone matrix is nonsingular.

3. Main Results

3.1. Consistency of the method. I wish to find a approximate solution of the

problem (1.1) in the following form:

u∆(x) =
n+1∑

i= 0

ciBi,3(x). (3.1)

where Bi,3(x) is a cubic B-splines with knots {ξi+k}2
k = −2.

Remark 3.1. My approximation method is inspired from ([3], chap. 2,5)
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I impose the conditions:

(c1) The approximate solution (3.1) verifies the differential equation (1.1) at

ξj , j = 1, ..., n + 2, j 6= l, j 6= l + p.

(c2) The solution verifies u∆(ξl) = α, u∆(ξl+p) = β (we recall that a =

ξl, b = ξl+p).

Conditions (c1) and (c2) yield to a linear system:

A · c = γ (3.2)

with (n + 2) equations and (n + 2) unknowns ci, i = 0, ..., n + 1.The system matrix

A is tridiagonal with 3 nonzero elements on each row.

We denote by:

fi(x) := B”i,3(x) − Q(x)Bi,3(x), i = 0, 1, ..., n + 1;

then

A =




fi(ξj); i ∈ {0, 1, 2..., n + 1}, j ∈ {1, 2, ..., n + 2}\{l, l + p}
Bi,3(ξl); i = l − 1, l, l + 1

Bi,3(ξl+p); i = l + p − 1, l + p, l + p + 1




The right hand side of (3.2) is:

γ = [R(ξ1), ..., R(ξl−1), α, R (ξl+1) , ..., R(ξl+p−1), β, R(ξl+p+1), ..., R(ξn+2)]

Lemma 3.2. (see [11, p. 23]) For each l > 0, and x ∈ [0, 1], we have Bi,l(x) ∈ C1[0, 1]

and

B′
i,l(x) = l

[
Bi,l−1(x)

ξi+l−2 − ξi−2
− Bi+1,l−1(x)

ξi+l−1 − ξi−1

]
. (3.3)

First I prove the next lemmas:

Lemma 3.3. For each x ∈ [0, 1], Bi,3(x) ∈ C2[0, 1] and

B”
i,3(x)=3!

[
Bi,1(x)

(hi + hi−1 + hi−2)(hi−1 + hi−2)
− (3.4a)

− Bi+1,1(x)(hi−2 + 2hi−1 + 2hi + hi+1)

(hi + hi−1)(hi + hi−1 + hi−2)(hi+1 + hi + hi−1)
+ (3.4b)

+
Bi+2,1(x)

(hi+1 + hi + hi−1)(hi + hi+1)

]
, (3.4c)

where

Bi,1(x) =





x−ξi−2

hi−2
, if ξi−2 ≤ x < ξi−1

ξi−x
hi−1

, if ξi−1 ≤ x < ξi

0, otherwise.
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Proof. For l = 3 we obtain from (3.3)

B′
i,3(x) = 3

[
Bi,2(x)

hi + hi−1 + hi−2
− Bi+1,2(x)

(hi+1 + hi + hi−1

]
.

Then

B”
i,3(x) = 3

[
B′

i,2(x)

hi + hi−1 + hi−2
−

B′
i+1,2(x)

hi+1 + hi + hi−1

]
. (3.5)

Using again (3.3) for l = 2, it results:

B′
i,2(x) = 2

[
Bi,1(x)

hi−1 + hi−2
− Bi+1,1(x)

hi + hi−1

]
, (3.6)

B′
i+1,2(x) = 2

[
Bi+1,1(x)

hi + hi−1
− Bi+2,1(x)

hi+1 + hi

]
. (3.7)

By substituting (3.6) and (3.7) into (3.5), I obtain (3.4a), �

Lemma 3.4. For every i = 0, 1, ..., n + 1, it holds

h2

3H2
< Bi,3(ξi) <

H2

3h2
(3.8)

− 2

h2
< B′′

i,3(ξi) < − 2

H2
(3.9)

Proof. By substituting ξi into (2.6) I obtain:

Bi,3(ξi) =
1

(hi−1 + hi)

[
hi(hi−1 + hi−2)

(hi + hi−1 + hi−2)
+

hi−1(hi+1 + hi)

(hi + hi−1 + hi+1)

]

But since

h ≤ hi ≤ H, for every i = 0, 1, ..., n (3.10)

we obtain (3.8). Also substituting ξi into (3.4a) we have:

B′′
i,3(ξi) = − 1

(hi−1 + hi)

[
1

(hi + hi−1 + hi−2)
+

1

(hi + hi−1 + hi+1)

]

Using again (3.10), it results (3.9). �

Lemma 3.5. If Q(x) < −1 for all x ∈ [0, 1], then the elements of the matrix A are

strictly positive.

Proof. From (2.8)

Bi,3(ξl) > 0; i = l − 1, l, l + 1

Bi,3(ξl+p) > 0; i = l + p − 1, l + p, l + p + 1.
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Using (3.4a)

B′′
i,3(ξi−1) =

3!

(hi + hi−1 + hi−2)(hi−1 + hi−2)
> 0,

B′′
i,3(ξi+1) =

3!

(hi+1 + hi + hi−1)(hi + hi+1)
> 0

and:

Q(x) < 0, Bi,3(ξi−1) > 0, Bi,3(ξi+1) > 0 then fi(ξi−1) > 0, fi(ξi+1) > 0.

Also since

fi(ξi) = B′′
i,3(ξi) − Qi · Bi,3(ξi)

it follows:

If Qi <
B′′

i,3(ξi)

Bi,3(ξi)
< − 2

H2

3H2

h2
< − 1

h2
< −1; then for all i = 0, 1, 2, ..., n : fi(ξi) > 0

�

Lemma 3.6. If A = [ai,j ] is a square tridiagonal matrix with all elements strict

positive then A is monotone.

Proof. By hypothesis ai,i−1 > 0; ai,i > 0; ai,i+1 > 0 then, cf. Theorem 2.7, the

matrix A is irreducible, and moreover

ai,i−1 + ai,i + ai,i+1 > 0 (3.11)

Reductio ad absurdum.I assume that there exists a vector z with a negative

component zq < 0 but such Az ≥ 0. This assumption is equivalent to assuming

that A is not monotone.I shall show that this contradicts the assumption that A is

irreducible. Denote by W := {1, 2, ..., n} and e the vector whose components are all

1. Then from (3.11) we have

A · e > 0, A · e 6= 0. (3.12)

Since the sum of two nonnegative vectors is nonnegative, it follows that for 0 ≤ λ ≤ 1

λAz + (1 − λ)Ae = A[λz + (1 − λ)e] > 0 (3.13)

Consider the vector wλ = λz + (1 − λ)e as a function of λ.For λ = 0 all

components wλ are positive, namely +1. For λ = 1 there is a least one negative

component, namely zq, q ∈ W . The components of wλ are continuous functions of λ.

Since 0 ≤ λ ≤ 1, at least one component of wλ must pass thought the value 0. Let δ

the smallest value of λ such that wλ has a zero component (0 < δ < 1). Now let S

be a set of indices of zero components of wλ and let T = W − S. (By construction,
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S 6= Φ, T 6= Φ). For if all components of wλ were zero, then the vectors z and e

would be proportional:

e = − δ

1 − δ
z, (3.14)

and from Az ≥ 0 it would followed that:

Ae = − δ

1 − δ
Az ≤ 0

contradicting (3.12). By (3.13), Awδ ≥ 0, so in particular, if i ∈ S :

(Awδ)i =
∑

j∈T

ai jwδ j ≥ 0 (3.15)

by construction wδ j > 0, if j ∈ T. In view of ai,j > 0 if j ∈ T , (3.15) is thus possible

if ai,i−1 = ai,i = ai,i+1 = 0.Then A is reducible, contradicting our assumption, that

implies A is monotone. �

Theorem 3.7. If Q(x) < −1 the system(3.2) has a unique solution.

Proof. Using above lemmas the system matrix A is monotone. By Theorem 2.8 A

is nonsingular and moreover detA 6= 0. �

To solve the system (3.2), I use Crout Reduction for Tridiagonal Linear Sys-

tems Algorithm (see [5, pp. 336-340]). This algorithm requires only (5n − 4) mul-

tiplications/divisions and (3n − 3) addition/subtractions, and consequently it has

considerable computational advantages over the methods that do not consider the

tridiagonality of the matrix, especially for large values of n.

3.2. Error analysis. I recall ([2, pp. 58-62]):

Theorem 3.8. If the exact solution of (PVP) y(x) ∈ C2[0, 1], then there exists a

B-spline B(x) ∈ S(∆) determined locally as follows

max
ξi−2≤x≤ξi+2

|y(x) − Bi(x)| := ‖y − Bi‖[ξi−2,ξi+2]
≤ K · H2

1 ·
∥∥∥y(2)

∥∥∥
[ξi−2,ξi+2]

, (3.16)

where H1 := max{hi−2, hi−1, hi, hi+1} and K is a real constant independent of ∆

and y(x).

Since the points of ∆, except ξl = a and ξl+p = b are the roots of the kth

Legendre polynomial, the orthogonality relation

∫ 1

0

ρ(t)

k∏

j=1

(t − ρj)dt = 0

holds for all polynomials ρ(t) of degree q(2 ≤ q ≤ k), and then the superconvergence

occurs at the meshpoints:
∣∣∣y(j)(ξi) − u

(j)

∆
(ξi)
∣∣∣ = O(Hk+q); 0 ≤ i ≤ n + 2, 0 ≤ j ≤ 1 (3.17)
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(see [1], [4]). I use as collocation points the Gaussian points taking q = k.Then the

superconvergence of my method at the meshpoints ξi, i ∈ {0, 1, 2, ..., n+ 2} \ {l, l + p}
is assured. ∣∣∣y(j)(ξi) − u

(j)

∆
(ξi)
∣∣∣ = O(H2k); 0 ≤ i ≤ n + 2, 0 ≤ j ≤ 1

Since Q(x) ∈ C1[0, 1], then there exists N = max
0≤x≤1

|Q(x)| such that

∣∣∣y′′(ξi) − u”

∆
(ξi)
∣∣∣ ≤ N

∣∣y(ξi) − u
∆

(ξi)
∣∣ = N · O(H2k).

In ξl = a, ξl+p = b cf(3.16)

|y(ξl) − Bi(ξl)|[ξl−2,ξl+2]
≤ K1 · H2 ·

∥∥∥y(2)
∥∥∥

[ξl−2,ξl+2]

|y(ξl+p) − Bi(ξl+p)|[ξl+p−2,ξl+p+2]
≤ K1 · H2 ·

∥∥∥y(2)
∥∥∥

[ξl+p−2,ξl+p+2]

where K1, K2 are constants, independent of ∆ and y(x). It follows that my method

is superconvergent of order O(H2).

3.3. Numerical examples. I shall give one example. For this example, I plot the

approximate solution, error in semilogarithmic scale and I generate the execution

profile with the pair profile− showprofile, see ([6]).

I want to approximate the oscillating solution of the following problem:

Z ′′(t) − 50 · Z(t) = sin(t); 0 ≤ t ≤ 1 (3.18)

with conditions:

Z

(
1

6

)
=

1

49

− sin(5
√

2
6 ) sin 1 + sin 1

6 sin(5
√

2)

sin(5
√

2)
(3.19)

Z

(
3

4

)
=

1

49

− sin(15
√

2
4 ) sin 1 + sin 3

4 sin(5
√

2)

sin(5
√

2)

The exact solution provided by dsolve is:

Z(t) =
1

49

− sin(5
√

2t) sin 1 + sin t sin(5
√

2)

sin(5
√

2)

Since ∫ 1

0

|Q(x)| dx > 4,

due to disconjugate criteria given by Lyapunov (1893), the problem (3.18) has an

oscillatory solution. I used Maple 8 to solve the problem exactly and to approximate

the solution, for n = 10 and k = 3. I obtained a very good approximation, but I must

increase the number of decimals with Maple command:

> Digits := 18;
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If I use a method based on orthogonal polynomials, for example first kind Chebyshev

polynomials, I observe that the B-spline method is faster and requires less memory.

The reason is that for the B-spline method the matrix of the system that provides

the coefficients is a band matrix with at most 3 nonzero elements per line, while

for Chebyshev method the matrix is dense. This example with oscillating solution

supports this conclusion (see for more details [9]).

Here are the profiles for the procedures genspline and genceb in the case of

oscillating solution to problem (3.18):

function depth calls time time bytes bytes

genspline 1 1 7.691 100.0 156424156 100.00

genceb 1 1 17115 100.0 156424156 100.00

The the graphs of approximate solution and the error in semilogarithmic scale

are given in Figure 2 and Figure 3, respectively.
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Figure 2. Approximate solution n = 10, k = 3
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Figure 3. Error plot, n = 10, k = 3
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