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A COLLOCATION METHOD USING CUBIC B-SPLINES
FUNCTIONS FOR SOLVING SECOND ORDER LINEAR VALUE
PROBLEMS WITH CONDITIONS INSIDE THE INTERVAL |0, 1]

DANIEL N. POP

Abstract. Consider the problem:
y"(2) - Q(2)y(z) = R(z), = €[0,1]
y(a) = o
y(b) = B, a,b € (0,1).

where Q(x), R(x) € C[0,1];y € C?[0,1]. The aim of this paper is to present
an approximate solution of this problem based on cubic B-splines. The
approximate solution uses a mesh based on Legendre points.A numerical
solution is also given.

1. Introduction

Consider the problem(PVP):

y'(z) = Q(x)y(r) = R(x),  x€][0,1] (1.1)
y(a) =«
y) =8, abe(0,1).

where Q(z), R(z) € C[0,1];y € C?[0,1],a,b,a, 8 € R.This is not a two point bound-
ary value problem (BVP), since a,b € (0,1).
If the solution of the two-point boundary value problem (BVP):
y'(x) = Qa)y(x) =r(z),  x€lal]
y(a) = a (1.2)
y(b) =3,
exists and it is unique, then the requirement y € C?[0, 1] assures the existence and

the uniqueness of (1.1).
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I have two initial value problems on [0, a] and [b, 1], respectively, and the exis-
tence and the uniqueness for (1.2) assure existence and uniqueness of these problems.
It is possible to solve this problem by dividing it into the three above-mentioned prob-
lems and to solve each of these problem separately, but I am interested to a unitary

approach that solve it as a whole.

Remark 1.1. ¢ If a = 0 and b = 1 the problem (PVP) becomes a classical (BVP).
e If a =0 or b =1 the problem (PVP) may be decomposed into an (BVP)

and one initial value problem(IVP).

Historical Note
In 1966, two researchers from Tiberiu Popoviciu Institute of Romanian Aca-

demy Cluj Napoca, D. Ripianu and O. Aramé published a paper on polylocal problem
(see [10]).

2. Preliminaries
Consider a partition of [0, 1] like:
T:0=x0<z21 < - <Ny <ZTN41 =1, (2.1)
and the step sizes:
H; =241 — x;, 1=0,...,N. (2.2)
In each subinterval [z;,2;41] we construct the collocation points as follows
€ =mi+ Hipj; i=0,1,...N, j=0,1,2,....k, (2.3)
where
0<po<pr<pz<..<pp<l (2.4)

are the roots of k-th Legendre polynomial on each subintervals:[z;, x;11],i = 0,1, ..., N
with the stepsize given by (2.2) (see [1] for more details). I insert the points a,b so I
obtained N (k+1)+2 points. One renumbers the collocation points such that the first
is & := xo+ Hopo = 0, and the last is &, 2 := 2y + Hypr = 1, where n = N(K +1).

Therefore the partition of [0, 1] becomes:
A=0<E<é < <=1
We augment the above partition A to form:
A 2<E1<&H=0<& <. <&pa=1<E&ny3 <&nga (2.5)

where: § :=a; {yp =00 <l <n+1; 1 <l4p <n+2,{1—E 2 =& —E—1 =& o,
Enta — &n+3 = En43 — &nv2 = &nt2 — &nt
Remark 2.1. Ifa=§& orb=§4p, 1 <i<n—-2,1<p<n+1—1iwe increment k.
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Notation 2.2.

Qi =Q(&); hi =81 —&; H:= max ({31 —&); hi=_ min  (§11 —&).

0< i< n+1 0< i<n+1

Definition 2.3. Given the meshpoint (2.5) I define the vector space:
S (A) = {p(z) € C?[0,1] : p(z) is a cubic polynomial of each
subinterval [§;_2 ,&iq2], 0 <i < n+ 2}

dim S (Z) = n + 2 (numbers of subintervals, see [12, pp. 73])

Definition 2.4. For x € R ;0 < i < n, the cubic B-splines with the five knots: & _o,
&i-1, &, &, € are given by:

T —& 2 ita—x
3(z) P —— 2(7) P +1,2(2) (2.6)

where

1if &0 <2 <&
Bio = .
0 otherwise

(x—€;_ )2 .
e i e < @ <&

(175172)(5»;71) (fl +171)(175¢71

) .
Bi 2(117> = hifl(hiflJrhif?) T hi,l(hi71+hi) 71f &71 S v S &
’ (‘El 7%)2 .
T ghon H& <o <&in
0 , otherwise .

We need a bases from S(A) having (n+2) cubic B-splines.Our choice is based
on some special properties of cubic B-splines (see [11, pp.19-21] for details):

e The set
{B;}i=0,...,n+1 (2.7)

form a basis for S(A).

{B;} is positive on (§_2,&2) and zero elsewhere. (2.8)

e {B;} has local support (£;—2,&;4+2) so computations using B-splines lead
to linear system of equations with banded matrices.

n+1

3 Buaw) =1 for every o € 0.1 (29)
1 =0

I recall some results from matrix theory ([7, pp. 359-361], [8, pp. 50-55]):
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FIGURE 1. B-spline bases

Definition 2.5. A matrix A = [a; 5], = 1,2,...,m,j = 1,2, ...,n is called reducible

if there is a permutation that puts it into the form

A_(B 0 )
C D

where B and D are square matrices. Otherwise A is called irreducible.

Definition 2.6. A matrix A = [a; ;],1 =1,2,...,m,j = 1,2,...,n is called monotone

if Az > 0 implies z > 0.

Theorem 2.7. A square tridiagonal matriz A = [a;;] 1,7 = 1,2,...,n is irreducible
a;ii—1 70 (i=2,3,...,n) and a; ;41 #0 (i =1,2,...,n—1)

and is reducible ff:

aii—1 =0 ora;i+1 =0 for somei=2,3,...,n

Theorem 2.8. A monotone matrix is nonsingular.

3. Main Results

3.1. Consistency of the method. I wish to find a approximate solution of the
problem (1.1) in the following form:

n+1

ux(z) = Z ¢;B;3(x). (3.1)
i= 0
where B; 3(x) is a cubic B-splines with knots {&1x}7 _ 5.

Remark 3.1. My approximation method is inspired from ([3], chap. 2,5)

180



A COLLOCATION METHOD USING CUBIC B-SPLINES FUNCTIONS

I impose the conditions:
(c1) The approximate solution (3.1) verifies the differential equation (1.1) at

& J=Ln+2,j#1Lj#1+p.
(c2) The solution verifies ux(&) = a,ux(&4p) = B (we recall that a =

glv b= gH‘P)'
Conditions (c1) and (c2) yield to a linear system:

A-c=vy (3.2)

with (n + 2) equations and (n 4 2) unknowns ¢;, i = 0, ...,n + 1.The system matrix
A is tridiagonal with 3 nonzero elements on each row.
We denote by:

filz) := B”; 3(x) — Q(z)B; 3(x), i=0,1,...,n+ 1;

then
fi(&);i€{0,1,2...,n+1}, je{l,2,...,n+2\{l,l+p}
A= Bi73(§[);i:l—1,l,l+1
Big(Gup)ii=1l+p—11l+pl+p+1
The right hand side of (3.2) is:

V= [R(gl)u "'7R(€l—1)7 «a, R (§l+1) ) "'7R(§l+p—l)767 R(§l+p+l)7 ) R(§n+2)]

Lemma 3.2. (see [11, p. 23]) For each | > 0, and x € [0,1], we have B; (x) € C1[0,1]
and

Bii-1(x) Bit1,-1(x)
() =1 { d — d ) 3.3
(@) Siti—2 —&i—2  &it1—1 — &i1 (33)
First I prove the next lemmas:
Lemma 3.3. For each z € [0,1], B; 3(x) € C?[0,1] and
» Bi 1(&[:)
B. =3! i — 3.4
113(20) [(hz +hic1 4+ hi—2)(hic1 + hi—2) (3-4a)
_ Bij1,1(2)(hi—2 + 2hi—1 + 2h; + hit1) n (3.4D)
(hi + hi—1)(hi + hi—1 + hi—2)(hig1 + hi + hi—1)
B;
+21(2) (3.4c)

+
(hig1 + hi + hi—1)(hi + hit1)

where

12157;2 yif Sice S < &

B;1(z) = SLifGa<e <&

0, otherwise.
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Proof. For | = 3 we obtain from (3.3)

o) = [ B Bunat ]
' hi+hi—1+hi—2  (hig1 +hi + hizy
Then
» B!, (x B! T
Biae) =8 [t D] (35
’ hi+hi1+hi2 hig1+hi+hi
Using again (3.3) for [ = 2, it results:
Bii(z) Bit11(z)
B! =2 . — : 3.6
2(®) [hi—l +hi—a  hi+hi—1]’ (3.6)
Biy11(z)  Biyai(w)
B, =2 | : : 3.7
By substituting (3.6) and (3.7) into (3.5), I obtain (3.4a), O
Lemma 3.4. For everyt=0,1,...,n+ 1, it holds
2 H2
e < BuslE) < (39)
2 2
2 S Bi3(&) < 0 (3.9)
Proof. By substituting &; into (2.6) I obtain:
Bis(&s) = 1 [ hi(hi—1 + hi—2) hi—1(hit1 + hi) ]
P (hici+hi) [(hi +hici+hi—2)  (hi +hiy + higa)
But since
h<h; <H, forevery i =0,1,....n (3.10)
we obtain (3.8). Also substituting & into (3.4a) we have:
1 1 1
1
1’3(5 ) (hi—1 + hi) [(hz +hici4+hi—2)  (hi+hi-1 + hz‘+1)]
Using again (3.10), it results (3.9). O

Lemma 3.5. If Q(z) < =1 for all x € [0,1], then the elements of the matriz A are
strictly positive.

Proof. From (2.8)

Bi,3(€l) >077’:l_1alal+1
Bi)3(§[+p) >O;i=l+p—1,l+p,l+p+1.
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Using (3.4a)
3!

Bl3(&i-1) = >0
i3(&i-1) (hi +hi—1 +hi—2)(hi—1 + hi_2)
3!

" (Ein) = >0

i.3(&iv1) (hix1 + hi +hi_1)(hi + hiv1)
and:

Q(x) <0,Bi3(&i-1) >0, Bi3(&iv1) > 0 then fi(&i-1) >0, fi(§ir1) > 0.
Also since
fi(&) = Bil3(&) — Qi - Bis(&)
it follows:
Bl's(& 2 3H? 1
1t , < Bial&) 3 — < —1;then for all i = 0,1,2,...,n: fi(&) >0

Biae) ~ H2RZ T B2

0

Lemma 3.6. If A = [a;,] is a square tridiagonal matriz with all elements strict
positive then A is monotone.

Proof. By hypothesis a;;—1 > 0;a;; > 0;a;;+1 > 0 then, cf. Theorem 2.7, the

matrix A is irreducible, and moreover
aji-1+a;;+a;ir1 >0 (3.11)

Reductio ad absurdum.l assume that there exists a vector z with a negative
component z, < 0 but such Az > 0. This assumption is equivalent to assuming
that A is not monotone.I shall show that this contradicts the assumption that A is
irreducible. Denote by W := {1,2,...,n} and e the vector whose components are all
1. Then from (3.11) we have

A-e>0,A-e#0. (3.12)
Since the sum of two nonnegative vectors is nonnegative, it follows that for 0 < A <1
Az + (1= NAe= A z+ (1 —Xe| >0 (3.13)

Consider the vector wy, = Az + (1 — A)e as a function of A.For A = 0 all
components w)y are positive, namely +1. For A = 1 there is a least one negative
component, namely zq,q € W. The components of wy are continuous functions of A.
Since 0 < X\ < 1, at least one component of wy must pass thought the value 0. Let §
the smallest value of A such that wy has a zero component (0 < § < 1). Now let S

be a set of indices of zero components of wy and let T'= W — S. (By construction,
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S # ®,T # ®). For if all components of wy were zero, then the vectors z and e

would be proportional:

0
e= 155 (3.14)
and from Az > 0 it would followed that:
)
=——" A<
Ae T 5AZ <0
contradicting (3.12). By (3.13), Aws > 0, so in particular, if i € S :
(Aw(;)i = Zai FjWs 4 Z 0 (315)
jeT

by construction ws ; > 0,if j € T. Inview of a; ; > 0if j € T, (3.15) is thus possible
if a; ;-1 = a;; = a;,;4+1 = 0.Then A is reducible, contradicting our assumption, that
implies A is monotone. O

Theorem 3.7. If Q(z) < —1 the system(5.2) has a unique solution.

Proof. Using above lemmas the system matrix A is monotone. By Theorem 2.8 A
is nonsingular and moreover det A # 0. O

To solve the system (3.2), I use Crout Reduction for Tridiagonal Linear Sys-
tems Algorithm (see [5, pp. 336-340]). This algorithm requires only (5n — 4) mul-
tiplications/divisions and (3n — 3) addition/subtractions, and consequently it has
considerable computational advantages over the methods that do not consider the

tridiagonality of the matrix, especially for large values of n.

3.2. Error analysis. I recall ([2, pp. 58-62]):
Theorem 3.8. If the ezact solution of (PVP) y(z) € C?[0,1], then there exists a

B-spline B(z) € S(A) determined locally as follows

. (3.16)

max, () = Bi(o) = ly = Billg . <K -HP- [0
i—2,8i42]

§i—2<z<&it2

where Hy := max{h;_a,hi—1,hi,hiy1} and K is a real constant independent of A
and y(z).
Since the points of A, except & = a and &4, = b are the roots of the kth
Legendre polynomial, the orthogonality relation
k

1
/0 o) [Tt~ o)t = 0

j=1
holds for all polynomials p(t) of degree ¢(2 < ¢ < k), and then the superconvergence

occurs at the meshpoints:
y (&) —u (gi)\ =O(HM;0<i<n+20<j<1 (3.17)
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(see [1], [4]). T use as collocation points the Gaussian points taking ¢ = k.Then the
superconvergence of my method at the meshpoints &;,i € {0,1,2,...,n+2}\ {l,l+ p}
is assured.

[y (&) = (&)| = O™ R0 <i<n+20< <1
Since Q(z) € C1[0,1], then there exists N = Jmax |Q(z)| such that

y" (&) —ux (&)
In & = a,&4p = b cf(3.16)

(&) = Bi(€)lig,_,.,.p < F1-H*- Hy@)‘

< Ny(&) —uz(&)] = N-O(H?).

[€1-2,&142)

[y(&+p) — Bi(Si4p) <K, -H?. Hy(2)}

Si+p—2:814p+2)

[E14p—2,814pt2]
where K1, K are constants, independent of A and y(z). It follows that my method

is superconvergent of order O(H?).

3.3. Numerical examples. I shall give one example. For this example, I plot the
approximate solution, error in semilogarithmic scale and I generate the execution
profile with the pair profile — showprofile, see ([6]).

I want to approximate the oscillating solution of the following problem:

Z"(t) —50- Z(t) =sin(t);0 <t < 1 (3.18)

with conditions:

(3.19)

7 (1) 1 —sin(22)sin 1 +sin Lsin(5v2)

6 49 sin(5+/2)

(§> 1 —sin(1%2)sin1 + sin 3 sin(5v/2)
49 sin(5+/2)

4

The exact solution provided by dsolve is:

1 —sin(5v/2t)sin1 + sint sin(5v/2)
(1) = 49 sin(5v/2)

Since )
/ Q)| d > 4,
0

due to disconjugate criteria given by Lyapunov (1893), the problem (3.18) has an
oscillatory solution. I used Maple 8 to solve the problem exactly and to approximate
the solution, for n = 10 and k = 3. I obtained a very good approximation, but I must
increase the number of decimals with Maple command:
> Digits := 18;
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If T use a method based on orthogonal polynomials, for example first kind Chebyshev
polynomials, I observe that the B-spline method is faster and requires less memory.
The reason is that for the B-spline method the matrix of the system that provides
the coefficients is a band matrix with at most 3 nonzero elements per line, while
for Chebyshev method the matrix is dense. This example with oscillating solution
supports this conclusion (see for more details [9]).

Here are the profiles for the procedures genspline and genceb in the case of
oscillating solution to problem (3.18):

function depth calls time time bytes bytes
genspline 1 1 7.691 100.0 156424156 100.00
genceb 1 1 17115 100.0 156424156 100.00

The the graphs of approximate solution and the error in semilogarithmic scale

are given in Figure 2 and Figure 3, respectively.

o 02 a 0% 08 1

FIGURE 2. Approximate solution n =10, k =3

5e-05

1e-05

FIGURE 3. Error plot, n =10, k =3
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