A COLLOCATION METHOD USING CUBIC B-SPLINES FUNCTIONS FOR SOLVING SECOND ORDER LINEAR VALUE PROBLEMS WITH CONDITIONS INSIDE THE INTERVAL $[0,1]$

DANIEL N. POP

Abstract. Consider the problem:

$$
\begin{aligned}
& y^{\prime \prime}(x)-Q(x) y(x)=R(x), \quad x \in[0,1] \\
& y(a)=\alpha \\
& y(b)=\beta, \quad a, b \in(0,1) .
\end{aligned}
$$

where $Q(x), R(x) \in C[0,1] ; y \in C^{2}[0,1]$. The aim of this paper is to present an approximate solution of this problem based on cubic B-splines. The approximate solution uses a mesh based on Legendre points.A numerical solution is also given.

1. Introduction

Consider the problem(PVP):

$$
\begin{align*}
y^{\prime \prime}(x)-Q(x) y(x) & =R(x), \quad x \in[0,1] \tag{1.1}\\
y(a) & =\alpha \\
y(b) & =\beta, \quad a, b \in(0,1) .
\end{align*}
$$

where $Q(x), R(x) \in C[0,1] ; y \in C^{2}[0,1], a, b, \alpha, \beta \in \mathbb{R}$. This is not a two point boundary value problem (BVP), since $a, b \in(0,1)$.

If the solution of the two-point boundary value problem (BVP):

$$
\begin{align*}
y^{\prime \prime}(x)-Q(x) y(x) & =r(x), \quad x \in[a, b] \\
y(a) & =\alpha \tag{1.2}\\
y(b) & =\beta,
\end{align*}
$$

exists and it is unique, then the requirement $y \in C^{2}[0,1]$ assures the existence and the uniqueness of (1.1).

I have two initial value problems on $[0, a]$ and $[b, 1]$, respectively, and the existence and the uniqueness for (1.2) assure existence and uniqueness of these problems. It is possible to solve this problem by dividing it into the three above-mentioned problems and to solve each of these problem separately, but I am interested to a unitary approach that solve it as a whole.
Remark 1.1. - If $a=0$ and $b=1$ the problem (PVP) becomes a classical (BVP).

- If $a=0$ or $b=1$ the problem (PVP) may be decomposed into an (BVP) and one initial value problem(IVP).

Historical Note

In 1966, two researchers from Tiberiu Popoviciu Institute of Romanian Academy Cluj Napoca, D. Rîpianu and O. Aramă published a paper on polylocal problem (see [10]).

2. Preliminaries

Consider a partition of $[0,1]$ like:

$$
\begin{equation*}
\pi: 0=x_{0}<x_{1}<\cdots<x_{N}<x_{N+1}=1 \tag{2.1}
\end{equation*}
$$

and the step sizes:

$$
\begin{equation*}
H_{i}:=x_{i+1}-x_{i}, \quad i=0, \ldots, N \tag{2.2}
\end{equation*}
$$

In each subinterval $\left[x_{i}, x_{i+1}\right]$ we construct the collocation points as follows

$$
\begin{equation*}
\xi_{i j}:=x_{i}+H_{i} \rho_{j} ; i=0,1, \ldots, N, j=0,1,2, \ldots, k \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
0 \leq \rho_{0}<\rho_{1}<\rho_{2}<\ldots<\rho_{k} \leq 1 \tag{2.4}
\end{equation*}
$$

are the roots of k-th Legendre polynomial on each subintervals: $\left[x_{i}, x_{i+1}\right], i=0,1, \ldots, N$ with the stepsize given by (2.2) (see [1] for more details). I insert the points a, b so I obtained $N(k+1)+2$ points. One renumbers the collocation points such that the first is $\xi_{0}:=x_{0}+H_{0} \rho_{0}=0$, and the last is $\xi_{n+2}:=x_{N}+H_{N} \rho_{k}=1$, where $n=N(K+1)$. Therefore the partition of $[0,1]$ becomes:

$$
\Delta:=0 \leq \xi_{0}<\xi_{1}<\ldots<\xi_{n+2}=1
$$

We augment the above partition Δ to form:

$$
\begin{equation*}
\bar{\Delta}: \xi_{-2}<\xi_{-1}<\xi_{0}=0<\xi_{1}<\ldots<\xi_{n+2}=1<\xi_{n+3}<\xi_{n+4} \tag{2.5}
\end{equation*}
$$

where: $\xi_{l}:=a ; \xi_{l+p}:=b ; 0<l<n+1 ; 1<l+p<n+2, \xi_{-1}-\xi_{-2}=\xi_{0}-\xi_{-1}=\xi_{1}-\xi_{0}$, $\xi_{n+4}-\xi_{n+3}=\xi_{n+3}-\xi_{n+2}=\xi_{n+2}-\xi_{n+1}$.
Remark 2.1. If $a=\xi_{i}$ or $b=\xi_{i+p}, 1 \leq i \leq n-2,1<p<n+1-i$ we increment k.

Notation 2.2.

$$
Q_{i}:=Q\left(\xi_{i}\right) ; h_{i}:=\xi_{i+1}-\xi_{i} ; H:=\max _{0 \leq i \leq n+1}\left(\xi_{i+1}-\xi_{i}\right) ; h:=\min _{0 \leq i \leq n+1}\left(\xi_{i+1}-\xi_{i}\right)
$$

Definition 2.3. Given the meshpoint (2.5) I define the vector space:

$$
S(\bar{\Delta})=\left\{p(x) \in C^{2}[0,1]: p(x)\right. \text { is a cubic polynomial of each }
$$

subinterval $\left.\left[\xi_{i-2}, \xi_{i+2}\right], 0 \leq i \leq n+2\right\}$.
$\operatorname{dim} S(\bar{\Delta})=n+2$ (numbers of subintervals, see [12, pp. 73])
Definition 2.4. For $x \in \mathbb{R} ; 0 \leq i \leq n$, the cubic B-splines with the five knots: ξ_{i-2}, ξ_{i-1}, ξ, ξ, ξ are given by:

$$
\begin{equation*}
B_{i, 3}(x)=\frac{x-\xi_{i-2}}{h_{i-2}+h_{i-1}+h_{i}} B_{i, 2}(x)+\frac{\xi_{i+2}-x}{h_{i+1}+h_{i}+h_{i-1}} B_{i+1,2}(x) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& B_{i, 0}=\left\{\begin{array}{l}
1 \text { if } \xi_{i-2} \leq x<\xi_{i-1} \\
0 \text { otherwise }
\end{array}\right. \\
& B_{i, 2}(x)=\left\{\begin{array}{l}
\frac{\left(x-\xi_{i-2}\right)^{2}}{\frac{\left.h_{i-2}\left(h_{i-2}\right)^{2}+h_{i-1}\right)}{}, \text { if } \xi_{i-2} \leq x \leq \xi_{i-1}} \\
\frac{\left(x-\xi_{i-2}\right)\left(\xi_{i}-x\right)}{h_{i-1}\left(h_{i-1}+h_{i-2}\right)}+\frac{\left(\xi_{i+1}-x\right)\left(x-\xi_{i-1}\right)}{h_{i-1}\left(h_{i-1}+h_{i}\right)}, \text { if } \xi_{i-1} \leq x \leq \xi_{i} \\
\frac{\left(\xi_{i+1}-x\right)^{2}}{\left(h_{i-1}+h_{i}\right) h_{i}}, \quad \text { if } \xi_{i} \leq x \leq \xi_{i+1} \\
0, \quad \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

We need a bases from $S(\bar{\Delta})$ having $(n+2)$ cubic B-splines. Our choice is based on some special properties of cubic B-splines (see [11, pp.19-21] for details):

- The set

$$
\begin{equation*}
\left\{B_{i}\right\} i=0, \ldots, n+1 \tag{2.7}
\end{equation*}
$$

form a basis for $S(\bar{\Delta})$.
-

$$
\begin{equation*}
\left\{B_{i}\right\} \text { is positive on }\left(\xi_{i-2}, \xi_{i+2}\right) \text { and zero elsewhere. } \tag{2.8}
\end{equation*}
$$

- $\left\{B_{i}\right\}$ has local support $\left(\xi_{i-2}, \xi_{i+2}\right)$ so computations using B-splines lead to linear system of equations with banded matrices.
-

$$
\begin{equation*}
\sum_{i=0}^{n+1} B_{i, 3}(x)=1 \text { for every } x \in[0,1] \tag{2.9}
\end{equation*}
$$

I recall some results from matrix theory ([7, pp. 359-361], [8, pp. 50-55]):

Figure 1. B-spline bases

Definition 2.5. A matrix $A=\left[a_{i}{ }_{j}\right], i=1,2, \ldots, m, j=1,2, \ldots, n$ is called reducible if there is a permutation that puts it into the form

$$
\widetilde{A}=\left(\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right)
$$

where B and D are square matrices. Otherwise A is called irreducible.
Definition 2.6. A matrix $A=\left[a_{i} j\right], i=1,2, \ldots, m, j=1,2, \ldots, n$ is called monotone if $A z \geq 0$ implies $z \geq 0$.
Theorem 2.7. A square tridiagonal matrix $A=\left[a_{i j}\right] i, j=1,2, \ldots, n$ is irreducible iff:

$$
a_{i, i-1} \neq 0(i=2,3, \ldots, n) \text { and } a_{i, i+1} \neq 0(i=1,2, \ldots, n-1)
$$

and is reducible iff:

$$
a_{i, i-1}=0 \text { or } a_{i, i+1}=0 \text { for some } i=2,3, \ldots, n
$$

Theorem 2.8. A monotone matrix is nonsingular.

3. Main Results

3.1. Consistency of the method. I wish to find a approximate solution of the problem (1.1) in the following form:

$$
\begin{equation*}
u_{\bar{\Delta}}(x)=\sum_{i=0}^{n+1} c_{i} B_{i, 3}(x) \tag{3.1}
\end{equation*}
$$

where $B_{i, 3}(x)$ is a cubic B-splines with knots $\left\{\xi_{i+k}\right\}_{k=-2}^{2}$.
Remark 3.1. My approximation method is inspired from ([3], chap. 2,5)

I impose the conditions:
(c1) The approximate solution (3.1) verifies the differential equation (1.1) at $\xi_{j}, j=1, \ldots, n+2, j \neq l, j \neq l+p$.
(c2) The solution verifies $u_{\bar{\Delta}}\left(\xi_{l}\right)=\alpha, u_{\bar{\Delta}}\left(\xi_{l+p}\right)=\beta$ (we recall that $a=$ $\left.\xi_{l}, b=\xi_{l+p}\right)$.

Conditions (c1) and (c2) yield to a linear system:

$$
\begin{equation*}
A \cdot c=\gamma \tag{3.2}
\end{equation*}
$$

with $(n+2)$ equations and $(n+2)$ unknowns $c_{i}, i=0, \ldots, n+1$.The system matrix A is tridiagonal with 3 nonzero elements on each row.

We denote by:

$$
f_{i}(x):=B "_{i, 3}(x)-Q(x) B_{i, 3}(x), i=0,1, \ldots, n+1
$$

then

$$
A=\left[\begin{array}{c}
f_{i}\left(\xi_{j}\right) ; i \in\{0,1,2 \ldots, n+1\}, \quad j \in\{1,2, \ldots, n+2\} \backslash\{l, l+p\} \\
B_{i, 3}\left(\xi_{l}\right) ; i=l-1, l, l+1 \\
B_{i, 3}\left(\xi_{l+p}\right) ; i=l+p-1, l+p, l+p+1
\end{array}\right]
$$

The right hand side of (3.2) is:

$$
\gamma=\left[R\left(\xi_{1}\right), \ldots, R\left(\xi_{l-1}\right), \alpha, R\left(\xi_{l+1}\right), \ldots, R\left(\xi_{l+p-1}\right), \beta, R\left(\xi_{l+p+1}\right), \ldots, R\left(\xi_{n+2}\right)\right]
$$

Lemma 3.2. (see [11, p. 23]) For each $l>0$, and $x \in[0,1]$, we have $B_{i, l}(x) \in C^{1}[0,1]$ and

$$
\begin{equation*}
B_{i, l}^{\prime}(x)=l\left[\frac{B_{i, l-1}(x)}{\xi_{i+l-2}-\xi_{i-2}}-\frac{B_{i+1, l-1}(x)}{\xi_{i+l-1}-\xi_{i-1}}\right] . \tag{3.3}
\end{equation*}
$$

First I prove the next lemmas:
Lemma 3.3. For each $x \in[0,1], B_{i, 3}(x) \in C^{2}[0,1]$ and

$$
\begin{align*}
B_{i, 3}^{\prime \prime}(x) & =3!\left[\frac{B_{i, 1}(x)}{\left(h_{i}+h_{i-1}+h_{i-2}\right)\left(h_{i-1}+h_{i-2}\right)}-\right. \tag{3.4a}\\
& -\frac{B_{i+1,1}(x)\left(h_{i-2}+2 h_{i-1}+2 h_{i}+h_{i+1}\right)}{\left(h_{i}+h_{i-1}\right)\left(h_{i}+h_{i-1}+h_{i-2}\right)\left(h_{i+1}+h_{i}+h_{i-1}\right)}+ \tag{3.4b}\\
& \left.+\frac{B_{i+2,1}(x)}{\left(h_{i+1}+h_{i}+h_{i-1}\right)\left(h_{i}+h_{i+1}\right)}\right], \tag{3.4c}
\end{align*}
$$

where

$$
B_{i, 1}(x)=\left\{\begin{array}{c}
\frac{x-\xi_{i-2}}{h_{i-2}}, \text { if } \xi_{i-2} \leq x<\xi_{i-1} \\
\frac{\xi_{i-}-x}{h_{i-1}}, \text { if } \xi_{i-1} \leq x<\xi_{i} \\
0, \quad \text { otherwise } .
\end{array}\right.
$$

Proof. For $l=3$ we obtain from (3.3)

$$
B_{i, 3}^{\prime}(x)=3\left[\frac{B_{i, 2}(x)}{h_{i}+h_{i-1}+h_{i-2}}-\frac{B_{i+1,2}(x)}{\left(h_{i+1}+h_{i}+h_{i-1}\right.}\right]
$$

Then

$$
\begin{equation*}
B_{i, 3}^{\prime \prime}(x)=3\left[\frac{B_{i, 2}^{\prime}(x)}{h_{i}+h_{i-1}+h_{i-2}}-\frac{B_{i+1,2}^{\prime}(x)}{h_{i+1}+h_{i}+h_{i-1}}\right] \tag{3.5}
\end{equation*}
$$

Using again (3.3) for $l=2$, it results:

$$
\begin{align*}
& B_{i, 2}^{\prime}(x)=2\left[\frac{B_{i, 1}(x)}{h_{i-1}+h_{i-2}}-\frac{B_{i+1,1}(x)}{h_{i}+h_{i-1}}\right] \tag{3.6}\\
& B_{i+1,2}^{\prime}(x)=2\left[\frac{B_{i+1,1}(x)}{h_{i}+h_{i-1}}-\frac{B_{i+2,1}(x)}{h_{i+1}+h_{i}}\right] \tag{3.7}
\end{align*}
$$

By substituting (3.6) and (3.7) into (3.5), I obtain (3.4a),
Lemma 3.4. For every $i=0,1, \ldots, n+1$, it holds

$$
\begin{align*}
\frac{h^{2}}{3 H^{2}} & <B_{i, 3}\left(\xi_{i}\right)<\frac{H^{2}}{3 h^{2}} \tag{3.8}\\
-\frac{2}{h^{2}} & <B_{i, 3}^{\prime \prime}\left(\xi_{i}\right)<-\frac{2}{H^{2}} \tag{3.9}
\end{align*}
$$

Proof. By substituting ξ_{i} into (2.6) I obtain:

$$
B_{i, 3}\left(\xi_{i}\right)=\frac{1}{\left(h_{i-1}+h_{i}\right)}\left[\frac{h_{i}\left(h_{i-1}+h_{i-2}\right)}{\left(h_{i}+h_{i-1}+h_{i-2}\right)}+\frac{h_{i-1}\left(h_{i+1}+h_{i}\right)}{\left(h_{i}+h_{i-1}+h_{i+1}\right)}\right]
$$

But since

$$
\begin{equation*}
h \leq h_{i} \leq H, \text { for every } i=0,1, \ldots, n \tag{3.10}
\end{equation*}
$$

we obtain (3.8). Also substituting ξ_{i} into (3.4a) we have:

$$
B_{i, 3}^{\prime \prime}\left(\xi_{i}\right)=-\frac{1}{\left(h_{i-1}+h_{i}\right)}\left[\frac{1}{\left(h_{i}+h_{i-1}+h_{i-2}\right)}+\frac{1}{\left(h_{i}+h_{i-1}+h_{i+1}\right)}\right]
$$

Using again (3.10), it results (3.9).
Lemma 3.5. If $Q(x)<-1$ for all $x \in[0,1]$, then the elements of the matrix A are strictly positive.
Proof. From (2.8)

$$
\begin{aligned}
& B_{i, 3}\left(\xi_{l}\right)>0 ; i=l-1, l, l+1 \\
& B_{i, 3}\left(\xi_{l+p}\right)>0 ; i=l+p-1, l+p, l+p+1 .
\end{aligned}
$$

A COLLOCATION METHOD USING CUBIC B-SPLINES FUNCTIONS

Using (3.4a)

$$
\begin{aligned}
B_{i, 3}^{\prime \prime}\left(\xi_{i-1}\right) & =\frac{3!}{\left(h_{i}+h_{i-1}+h_{i-2}\right)\left(h_{i-1}+h_{i-2}\right)}>0, \\
B_{i, 3}^{\prime \prime}\left(\xi_{i+1}\right) & =\frac{3!}{\left(h_{i+1}+h_{i}+h_{i-1}\right)\left(h_{i}+h_{i+1}\right)}>0
\end{aligned}
$$

and:

$$
Q(x)<0, B_{i, 3}\left(\xi_{i-1}\right)>0, B_{i, 3}\left(\xi_{i+1}\right)>0 \text { then } f_{i}\left(\xi_{i-1}\right)>0, f_{i}\left(\xi_{i+1}\right)>0
$$

Also since

$$
f_{i}\left(\xi_{i}\right)=B_{i, 3}^{\prime \prime}\left(\xi_{i}\right)-Q_{i} \cdot B_{i, 3}\left(\xi_{i}\right)
$$

it follows:
If $Q_{i}<\frac{B_{i, 3}^{\prime \prime}\left(\xi_{i}\right)}{B_{i, 3}\left(\xi_{i}\right)}<-\frac{2}{H^{2}} \frac{3 H^{2}}{h^{2}}<-\frac{1}{h^{2}}<-1$; then for all $i=0,1,2, \ldots, n: f_{i}\left(\xi_{i}\right)>0$

Lemma 3.6. If $A=\left[a_{i, j}\right]$ is a square tridiagonal matrix with all elements strict positive then A is monotone.

Proof. By hypothesis $a_{i, i-1}>0 ; a_{i, i}>0 ; a_{i, i+1}>0$ then, cf. Theorem 2.7, the matrix A is irreducible, and moreover

$$
\begin{equation*}
a_{i, i-1}+a_{i, i}+a_{i, i+1}>0 \tag{3.11}
\end{equation*}
$$

Reductio ad absurdum.I assume that there exists a vector z with a negative component $z_{q}<0$ but such $A z \geq 0$. This assumption is equivalent to assuming that A is not monotone.I shall show that this contradicts the assumption that A is irreducible. Denote by $W:=\{1,2, \ldots, n\}$ and e the vector whose components are all 1. Then from (3.11) we have

$$
\begin{equation*}
A \cdot e>0, A \cdot e \neq 0 \tag{3.12}
\end{equation*}
$$

Since the sum of two nonnegative vectors is nonnegative, it follows that for $0 \leq \lambda \leq 1$

$$
\begin{equation*}
\lambda A z+(1-\lambda) A e=A[\lambda z+(1-\lambda) e]>0 \tag{3.13}
\end{equation*}
$$

Consider the vector $w_{\lambda}=\lambda z+(1-\lambda) e$ as a function of λ.For $\lambda=0$ all components w_{λ} are positive, namely +1 . For $\lambda=1$ there is a least one negative component, namely $z_{q}, q \in W$. The components of w_{λ} are continuous functions of λ. Since $0 \leq \lambda \leq 1$, at least one component of w_{λ} must pass thought the value 0 . Let δ the smallest value of λ such that w_{λ} has a zero component $(0<\delta<1)$. Now let S be a set of indices of zero components of w_{λ} and let $T=W-S$. (By construction,
$S \neq \Phi, T \neq \Phi)$. For if all components of w_{λ} were zero, then the vectors z and e would be proportional:

$$
\begin{equation*}
e=-\frac{\delta}{1-\delta} z \tag{3.14}
\end{equation*}
$$

and from $A z \geq 0$ it would followed that:

$$
A e=-\frac{\delta}{1-\delta} A z \leq 0
$$

contradicting (3.12). By (3.13), $A w_{\delta} \geq 0$, so in particular, if $i \in S$:

$$
\begin{equation*}
\left(A w_{\delta}\right)_{i}=\sum_{j \in T} a_{i}{ }_{j} w_{\delta}{ }_{j} \geq 0 \tag{3.15}
\end{equation*}
$$

by construction $w_{\delta}{ }_{j}>0$, if $j \in T$. In view of $a_{i, j}>0$ if $j \in T$, (3.15) is thus possible if $a_{i, i-1}=a_{i, i}=a_{i, i+1}=0$. Then A is reducible, contradicting our assumption, that implies A is monotone.
Theorem 3.7. If $Q(x)<-1$ the system(3.2) has a unique solution.
Proof. Using above lemmas the system matrix A is monotone. By Theorem $2.8 A$ is nonsingular and moreover $\operatorname{det} A \neq 0$.

To solve the system (3.2), I use Crout Reduction for Tridiagonal Linear Systems Algorithm (see [5, pp. 336-340]). This algorithm requires only ($5 n-4$) multiplications/divisions and $(3 n-3)$ addition/subtractions, and consequently it has considerable computational advantages over the methods that do not consider the tridiagonality of the matrix, especially for large values of n.

3.2. Error analysis. I recall ([2, pp. 58-62]):

Theorem 3.8. If the exact solution of (PVP) $y(x) \in C^{2}[0,1]$, then there exists a B-spline $B(x) \in S(\bar{\Delta})$ determined locally as follows

$$
\begin{equation*}
\max _{\xi_{i-2} \leq x \leq \xi_{i+2}}\left|y(x)-B_{i}(x)\right|:=\left\|y-B_{i}\right\|_{\left[\xi_{i-2}, \xi_{i+2]}\right.} \leq K \cdot H_{1}^{2} \cdot\left\|y^{(2)}\right\|_{\left[\xi_{i-2}, \xi_{i+2]}\right.} \tag{3.16}
\end{equation*}
$$

where $H_{1}:=\max \left\{h_{i-2}, h_{i-1}, h_{i}, h_{i+1}\right\}$ and K is a real constant independent of $\bar{\Delta}$ and $y(x)$.

Since the points of $\bar{\Delta}$, except $\xi_{l}=a$ and $\xi_{l+p}=b$ are the roots of the k th Legendre polynomial, the orthogonality relation

$$
\int_{0}^{1} \rho(t) \prod_{j=1}^{k}\left(t-\rho_{j}\right) d t=0
$$

holds for all polynomials $\rho(t)$ of degree $q(2 \leq q \leq k)$, and then the superconvergence occurs at the meshpoints:

$$
\begin{equation*}
\left|y^{(j)}\left(\xi_{i}\right)-u_{\bar{\Delta}}^{(j)}\left(\xi_{i}\right)\right|=\mathbb{O}\left(H^{k+q}\right) ; 0 \leq i \leq n+2,0 \leq j \leq 1 \tag{3.17}
\end{equation*}
$$

(see [1], [4]). I use as collocation points the Gaussian points taking $q=k$. Then the superconvergence of my method at the meshpoints $\xi_{i}, i \in\{0,1,2, \ldots, n+2\} \backslash\{l, l+p\}$ is assured.

$$
\left|y^{(j)}\left(\xi_{i}\right)-u_{\bar{\Delta}}^{(j)}\left(\xi_{i}\right)\right|=\mathbb{O}\left(H^{2 k}\right) ; 0 \leq i \leq n+2,0 \leq j \leq 1
$$

Since $Q(x) \in C^{1}[0,1]$, then there exists $N=\max _{0 \leq x \leq 1}|Q(x)|$ such that

$$
\left|y^{\prime \prime}\left(\xi_{i}\right)-u_{\bar{\Delta}}^{\prime \prime}\left(\xi_{i}\right)\right| \leq N\left|y\left(\xi_{i}\right)-u_{\bar{\Delta}}\left(\xi_{i}\right)\right|=N \cdot \mathbb{O}\left(H^{2 k}\right) .
$$

In $\xi_{l}=a, \xi_{l+p}=b \operatorname{cf}(3.16)$

$$
\begin{aligned}
&\left|y\left(\xi_{l}\right)-B_{i}\left(\xi_{l}\right)\right|_{\left[\xi_{l-2}, \xi_{l+2]}\right.} \leq K_{1} \cdot H^{2} \cdot\left\|y^{(2)}\right\|_{\left[\xi_{l-2}, \xi_{l+2]}\right.} \\
&\left|y\left(\xi_{l+p}\right)-B_{i}\left(\xi_{l+p}\right)\right|_{\left[\xi_{l+p-2}, \xi_{l+p+2]}\right.} \leq K_{1} \cdot H^{2} \cdot\left\|y^{(2)}\right\|_{\left[\xi_{l+p-2}, \xi_{l+p+2]}\right.}
\end{aligned}
$$

where K_{1}, K_{2} are constants, independent of $\bar{\Delta}$ and $y(x)$. It follows that my method is superconvergent of order $\mathbb{O}\left(H^{2}\right)$.
3.3. Numerical examples. I shall give one example. For this example, I plot the approximate solution, error in semilogarithmic scale and I generate the execution profile with the pair profile - showprofile, see ([6]).

I want to approximate the oscillating solution of the following problem:

$$
\begin{equation*}
Z^{\prime \prime}(t)-50 \cdot Z(t)=\sin (t) ; 0 \leq t \leq 1 \tag{3.18}
\end{equation*}
$$

with conditions:

$$
\begin{align*}
& Z\left(\frac{1}{6}\right)=\frac{1}{49} \frac{-\sin \left(\frac{5 \sqrt{2}}{6}\right) \sin 1+\sin \frac{1}{6} \sin (5 \sqrt{2})}{\sin (5 \sqrt{2})} \tag{3.19}\\
& Z\left(\frac{3}{4}\right)=\frac{1}{49} \frac{-\sin \left(\frac{15 \sqrt{2}}{4}\right) \sin 1+\sin \frac{3}{4} \sin (5 \sqrt{2})}{\sin (5 \sqrt{2})}
\end{align*}
$$

The exact solution provided by dsolve is:

$$
Z(t)=\frac{1}{49} \frac{-\sin (5 \sqrt{2} t) \sin 1+\sin t \sin (5 \sqrt{2})}{\sin (5 \sqrt{2})}
$$

Since

$$
\int_{0}^{1}|Q(x)| d x>4
$$

due to disconjugate criteria given by Lyapunov (1893), the problem (3.18) has an oscillatory solution. I used Maple 8 to solve the problem exactly and to approximate the solution, for $n=10$ and $k=3$. I obtained a very good approximation, but I must increase the number of decimals with Maple command:
> Digits := 18;

If I use a method based on orthogonal polynomials, for example first kind Chebyshev polynomials, I observe that the B-spline method is faster and requires less memory. The reason is that for the B-spline method the matrix of the system that provides the coefficients is a band matrix with at most 3 nonzero elements per line, while for Chebyshev method the matrix is dense. This example with oscillating solution supports this conclusion (see for more details [9]).

Here are the profiles for the procedures genspline and genceb in the case of oscillating solution to problem (3.18):

function	depth	calls	time	time	bytes	bytes
genspline	1	1	7.691	100.0	156424156	100.00
genceb	1	1	17115	100.0	156424156	100.00

The the graphs of approximate solution and the error in semilogarithmic scale are given in Figure 2 and Figure 3, respectively.

Figure 2. Approximate solution $n=10, k=3$

Figure 3. Error plot, $n=10, k=3$

Acknowledgements. It is a pleasure to thank: prof. dr. Ion Păvăloiu (I.C. "Tiberiu-Popoviciu", Cluj-Napoca), prof. dr. Damian Trif ("Babeş-Bolyai" University Cluj-Napoca), assoc. prof. dr. Radu T. Trîmbiţaş ("Babeş-Bolyai University Cluj-Napoca), for introducing me to the subject matter of this paper.

References

[1] U. Ascher, S. Pruess, R. D. Russel , On spline basis selection for solving differential equations, SIAM J. Numer. Anal., 20(1983), no. 1, 121-142.
[2] U. Ascher, R. M. Mattheij, R. D. Russel, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, 1997.
[3] C. de Boor, A practical guide to splines, Springer-Verlag, Berlin, Heidelberg, New York, 1978.
[4] C. de Boor, B. Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal., 10(1973), 582-606.
[5] L. R. Burden, J. D. Faires, Numerical analyses, PWS Kent Publishing Company, New York, 1985.
[6] A. Heck, Introduction to Maple, Springer-Verlag, Berlin, Heidelberg, 1997.
[7] P. Henrici, Discrete variable methods in ordinary differential equations, John Willey, New York, 1962, 345-384.
[8] F. R. Gantmacher, Matrix theory, vol I, II, Chelsea Publishing Company, New York, 1989.
[9] D. N. Pop, R. Trîmbiţaş, A comparison between two collocation methods for linear polylocal problems - a Computer Algebra based approach, International Conference in Modelling and Development of Intelligent Systems, MDIS '09, Sibiu.
[10] D. Râpeanu, O. Aramă, Quelque recherche actuelles concernant l'equations de Ch. de la Valee Poussin relative au problem polylocal dans la theorie des equations differentieles, Studia Mathematica, 8(31)(1966),19-28.
[11] J. J. Riessler, Méthodes mathématiques pour la CAO, Ed. Macon, Paris, Milan, Barcelone, Bonn, 1991.
[12] M. H. Schultz, Spline Analysis, Prentice Hall, Inc. Englewood Cliffs, New Jersey, 1972.

Romanian-German University Sibiu
Faculty of Economics and Computers
Calea Dumbravii, Nr. 28-32, Romania
E-mail address: danielnicolaepop@yahoo.com

