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MIXED CONVECTION IN A VERTICAL CHANNEL SUBJECT

TO ROBIN BOUNDARY CONDITION

FLAVIUS PĂTRULESCU, TEODOR GROŞAN, AND ADRIAN VASILE LAR

Abstract. The steady mixed convection flow in a vertical channel is in-

vestigated for laminar and fully developed flow regime. In the modelling of

the heat transfer the viscous dissipation term was also considered. Tem-

perature on the right wall is assumed constant while a mixed boundary

condition (Robin boundary condition) is considered on the left wall. The

governing equations are expressed in non-dimensional form and then solved

both analytically and numerically. It was found that there is a decrease in

reversal flow with an increase in the mixed convection parameter.

1. Introduction

Heat transfer in channels occurs in many industrial processes and natural

phenomena. It has been, therefore, the subject of many detailed, mostly numerical

studies for different flow configurations. Most of the interest in this subject is due to

its practical applications, for example, in the design of cooling systems for electronic

devices and in the field of solar energy collection. Some of the published papers, such

as by Aung [1], Aung et al. [2], Aung and Worku [3, 4], Barletta [5, 6], and Boulama

and Galanis [7], are concerned with the evaluation of the temperature and velocity

profiles for the vertical parallel-flow fully developed regime. As is well known, heat

exchangers technology involves convective flows in vertical channels. In most cases,

these flows imply conditions of uniform heating of a channel, which can be modelled

either by uniform wall temperature (UWT) or uniform wall heat flux (UHF) thermal

boundary conditions. In the present paper, new types of boundary conditions are

considered. The right wall is kept at constant temperature while a convective heat

flux is considered on the left wall (see, Bejan[8]):
(

k
∂T

∂y

)

y=0

+ ha (Ta − T )y=0
= 0 (1.1)
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Figure 1. Geometry of the problem and the co-ordinate system

where k is the thermal conductivity, ha is the external heat transfer coefficient and

Ta is the external temperature (see Figure 1). This kind of boundary condition

is appropriate to express mathematically heat loosing in insullation problems. In

addition we have taken in account in this paper the effect of viscous dissipation, see

Barletta [9].

2. Basic equations

Consider a viscous and incompressible fluid, which steadily flows between two

infinite vertical and parallel plane walls. At the entrance of the channel the fluid has

an entrance velocity U0 parallel to the vertical axis of the channel. The geometry of

the problem, the boundary conditions, and the coordinate system are shown in Fig. 1.

The variation of density with temperature is given by the Boussinesq approximation

and the fluid rises in the duct driven by buoyancy forces and initial velocity. Hence,

the flow is due to difference in temperature and in the pressure gradient. The flow

being fully developed the following relations apply here v = 0, ∂v/∂y = 0 , ∂p/∂y = 0,

where v is the velocity in the transversal direction and p is the pressure. Thus, from

the continuity equation, we get ∂u/∂x = 0 so that the velocity component along x-

axis depends only by y, u = u(y). Based on the fact that the flow is fully developed we

can assume that the temperature T = T (y). Under these assumptions the momentum
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and energy equations for the flow and heat transfer have the following form:

ν
d2u

dy2
−

1

ρ

dp

dx
+ gβ (T − T0) = 0 (2.1)

α
d2T

dy2
+

ν

cp

(

du

dy

)2

= 0 (2.2)

subject to the boundary condition given by Eq. (1.1), noslip condition for for velocity

at the walls and constant temperature at the left wall:

u(0) = 0, u(L) = 0, T (L) = Tw (2.3)

where α is the thermal diffusivity of the viscous fluid, ρ is the fluid density and cp

is the specific heat at constant pressure. In the system (2.1) and (2.2) there is an

additional unknown, the gradient of pressure, dp/dx. In order to close the above

system subject to the boundary conditions (1.1) and (2.3) it is necessary to consider

the equation of the mass flux conservation:

U0 =
1

L

∫ L

0

u(y)dy (2.4)

where L is the channel width. Further, we introduce the following dimensionless

variables (see Pop and Ingham[10] or Kohr and Pop[11]):

U =
u

U0

, X =
xRe

L
, Y =

y

L
, θ =

T − T0

Tw − T0

, P =
L2

ρν2
p (2.5)

where Re = U0L/ν is the Reynolds number and T0 = (Ta + Tw)/2 is a characteristic

temperature. Using (2.5) in the equations (2.1)-(2.2), in the boundary conditions

(1.1) and (2.3) and in the mass flux conservation (2.4) we obtain:

d2U

dY 2
+ λθ − γ = 0 (2.6)

d2θ

dY 2
+ Br(

dU

dY
)2 = 0 (2.7)

U(0) = 0, U(1) = 0,

(

dθ

dY

)

Y =0

= κ(1 + θ)Y =0, θ(1) = 1 (2.8)

∫

1

0

U(Y )dY = 1; (2.9)

In Eqs. (2.6)-(2.9) γ is the pressure gradient in X direction, Br is the Brinkman

number, λ is the mixed convection parameter and κ is the convection heat transfer

parameter given by

γ =
dP

dX
, Br = PrEc =

µU2

0

k(Tw − T0)
, λ =

Gr

Re
=

gβ(Tw − T0)L
2

U0ν
, κ =

haL

k
(2.10)
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and Pr, Ec, Gr and Re are the Prandtl number, Eckert number, Grashoff number

and Reynolds number,respectively, defined as:

Pr =
ν

α
, Ec =

U2

0

cp(Tw − T0)
, Gr =

gβ(Tw − T0)L
3

ν2
, Re =

U0L

ν
(2.11)

The physical quantity of interest in this problem are the skin friction coeffi-

cient Cf and the Nusselt number Nu, which are defined as:

Cf =
µ

ρU2
0

(

du

dy

)

y=0,L

, Nu =

(

hfL

k

)

y=0,L

(2.12)

In Eq. (2.12) hf is the internal heat transfer coefficient which can be calculated from

the heat transfer balance at the wall:
(

k
∂T

∂n

)

wall

= hf (Twall − Tfluid)

where n is the normal to the wall. Using dimensionless variables (2.5) we obtain:

CfRe =

(

dU

dY

)

Y =0,1

, Nu|Y =0 = κ

(

θ(0) + 1

θ(0) − 1

)

, Nu|Y =1 = −

(

dθ
dY

)

Y =1

θ(0) − 1
(2.13)

3. Results and discussions

Equations (2.6) to (2.9) admit an analytical solution in two particular cases:

i) Case Br = 0

In this case the system (2.6) and (2.7) becomes:

d2U

dY 2
−

dP

dX
+ λθ = 0 (3.1)

d2θ

dY 2
= 0 (3.2)

subject to the boundary conditions (2.8). Further, from Eq. (3.1), (3.2) and condition

(2.9) we obtain

θ(Y ) =
2κ

1 + κ
Y +

1 − κ

1 + κ

U(Y ) = −
κλ

1 + κ

Y 3

3
+ (γ +

1 − κ

1 + κ
λ)

Y 2

2
+ (

κλ

3(1 + κ)
−

1

2
(γ +

1 − κ

1 + κ
))Y (3.3)

γ = −12 +
λ

1 + κ
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ii) Case λ = 0

For λ = 0 the forced convection only is considered. The system (2.6) and (2.7) takes

the following form:
d2U

dY 2
− γ = 0 (3.4)

d2θ

dY 2
+ Br(

dU

dY
)2 = 0 (3.5)

Taking in account that γ is constant, using the boundary conditions (2.8) and mass

flux conservation (2.9) we have:

U(Y ) = −6Y 2 + 6Y

θ(Y ) = −12BrY 4 + 24BrY 3 − 18BrY 2 +
2κ

1 + κ
(1 + 3Br)Y +

1 + 6Br − κ

1 + κ
(3.6)

γ = −12

Equations (2.6) and (2.7) subject to (2.8) and (2.9) were solved numerically

for different values of the parameters, λ, κ and Br (λ = 0, 100, 250, 500; κ = 0.01,

0.1, 1, 10; Br = 0, 0.001, 0.01, 0.025) using an implicit finite-difference method for

velocity and a Gauss-Seidel iteration for temperature. Dimensionless velocity profiles,

U(Y), and temperature profiles, θ(Y ), are presented in Figs. 2 to 7 for different values

of the above parameters. Analytical solutions ( λ= 0, Br = 0) are also presented on

figures with a circle marker.

The variation of the velocity U(Y ) and temperature θ(Y ) with the mixed

convection parameter λ is presented in Figs. 2 and 5.
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[7] K. Boulama, N. Galanis, Analytical solution for fully developed mixed convection between

parallel vertical plates with heat and mass transfer, In: J. Heat Transfer, 126(2004), 381-

388.

[8] A. Bejan, Convection Heat Transfer, 2nd edition, Wiley, New York, 1995.

[9] A. Barletta, Laminar mixed convection with viscous dissipation in a vertical channel,

In: Int. J. Heat Mass Transfer, 41(1988), 3501-3513.

[10] I. Pop, D. B. Ingham, Convective Heat Transfer: Mathematical and Computational

Modeling of Viscous Fluids and Porous Media, Pergamon, Oxford, 2001.

[11] M. Kohr, I. Pop, Viscous Incompressible Flow for Low Reynolds Numbers, WIT Press,

Southamton, 2004.

λ κ Br = 0 Br = 0.001 Br = 0.01

0 0.1 5.940594 5.940594 5.940594

1 5.940594 5.940594 5.940594

10 5.940594 5.940594 5.940594

100 0.1 4.470594 4.501963 4.799567

1 -2.144405 -2.134825 -2.047795

10 -8.759405 -8.784130 -9.001301

500 0.1 -1.409405 -1.27279 -0.125966

1 -34.484405 -32.905781 -25.265381

10 -67.559405 -68.912398 -68.791864

Table 1. Friction coefficient CfRe|Y =0

λ κ Br = 0 Br = 0.001 Br = 0.01

0 0.1 -5.940594 -5.940594 -5.940594

1 -5.940594 -5.940594 -5.940594

10 -5.940594 -5.940594 -5.940594

100 0.1 -7.410594 -7.370828 -6.999151

1 -14.025594 -13.992628 -13.700667

10 -20.640594 -20.606004 -20.288425

500 0.1 -13.290594 -13.053063 -11.199059

1 -46.365594 -43.025955 -27.986534

10 -79.440594 -74.606586 -42.694129

Table 2. Friction coefficient CfRe|Y =1
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Figure 2. Velocity profiles for different values of λ
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Figure 3. Velocity profiles for different values of Br
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Figure 4. Velocity profiles for different values of κ
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Figure 5. Temperature profiles for different values of λ
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Figure 6. Temperature profiles for different values of Br
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Figure 7. Temperature profiles for different values of κ
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λ κ Br = 0 Br = 0.001 Br = 0.01

0 0.1 -0.999999 -1.032983 -1.451739

1 -1.000000 -1.005839 -1.059969

10 -1.000000 -1.003203 -1.032116

100 0.1 -0.999999 -1.027827 -1.377468

1 -1.000000 -1.006256 -1.063425

10 -1.000000 -1.009053 -1.092552

500 0.1 -0.999999 -1.031473 -1.360956

1 -1.000000 -1.133834 -2.040945

10 -1.000000 -1.276971 -3.552673

Table 3. Nusselt number on the left wall Nu|Y =0

λ κ Br = 0 Br = 0.001 Br = 0.01

0 0.1 1.000000 0.967016 0.548260

1 1.000000 0.994160 0.940030

10 1.000000 0.996796 0.967883

100 0.1 1.000000 0.959813 0.498805

1 1.000000 0.981394 0.813917

10 0.999999 0.978624 0.787469

500 0.1 1.000000 0.906917 0.033431

1 1.000000 0.810584 -0.328300

10 0.999999 0.683490 -0.854004

Table 4. Nusselt number on the right wall Nu|Y =1
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