STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume ${\bf LV},$ Number 2, June 2010

ALEXANDER TRANSFORM OF CLOSE-TO-CONVEX FUNCTIONS

PÁL AUREL KUPÁN AND RÓBERT SZÁSZ

Abstract. In this paper a result concerning the starlikeness of the image of the Alexander Operator is deduced. The technique of differential subordinations is used.

1. Introduction

Let $U = \{z \in \mathbb{C} : |z| < 1$ be the open unit disc of the complex plane. We denote by \mathcal{A} the class of analytic functions defined on the unit disc Uand having the form $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$.

The subclass of \mathcal{A} consisting of functions for which the domain f(U) is starlike with respect to 0, is called the class of starlike functions, and is denoted by S^* . An analytic description of S^* is

$$S^* = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{zf'(z)}{f(z)} > 0, \ (\forall) \ z \in U \right\}.$$

Let $\alpha \in [0, 1)$. The class of starlike functions of order α denoted by $S^*(\alpha)$, is defined by the equality:

$$S^*(\alpha) = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha, \ (\forall) \ z \in U \right\}.$$

Another subclass of \mathcal{A} which we deal with, is defined by

$$C = \left\{ f \in \mathcal{A} \mid (\exists) \ g \in S^* : \operatorname{Re} \frac{zf'(z)}{g(z)} > 0, \ z \in U \right\}.$$

This is the class of close-to-convex functions.

We mention that C, S^* and $S^*(\alpha)$ contain univalent functions. The Operator of Alexander is defined by

$$F(z) = A(f)(z) = \int_0^z \frac{f(t)}{t} dt.$$
 (1.1)

Received by the editors: 11.10.2009.

 $^{2000\} Mathematics\ Subject\ Classification.\ 30C45.$

Key words and phrases. Operator of Alexander, starlike functions, close-to-convex functions. This work was supported by Sapientia Research Foundation.

PÁL AUREL KUPÁN AND RÓBERT SZÁSZ

In [3] it has been proved that $A(C) \not\subset S^*$.

This result put the problem to determine suitable conditions which ensure that subclasses of C are mapped by the Alexander operator to S^* .

In [2] (pg. 310-311), the authors proved the following theorem concerning this question:

Theorem 1.1. Let A be the operator of Alexander defined by (1.1) and let $g \in A$ satisfy

$$\operatorname{Re} \frac{zg'(z)}{g(z)} \ge \left| \operatorname{Im} \frac{z(zg'(z))'}{g(z)} \right|, \ z \in U.$$
(1.2)

If $f \in \mathcal{A}$ satisfies

$$\operatorname{Re}\frac{zf'(z)}{g(z)} > 0, \ z \in U,$$

then $F = A(f) \in S^*$.

We will prove another result regarding this problem. We will need the following definitions and lemmas in our work.

2. Preliminaries

The class \mathcal{P} is defined by the equality:

 $\mathcal{P} = \{ f | f \text{ analytic in } \mathbf{U}, f(0) = 1, \text{ and } \operatorname{Re} f(z) > 0, z \in \mathbf{U} \}.$

Lemma 2.1. [1] (The Herglotz formula) For every $f \in \mathcal{P}$ there exists a measure μ on the interval $[0, 2\pi]$ so that $\mu([0, 2\pi]) = 1$ (a probability measure) and

$$f(z) = \int_0^{2\pi} \frac{1 + ze^{-it}}{1 - ze^{-it}} d\mu(t),$$

or in developed form

$$f(z) = 1 + 2\sum_{n=1}^{\infty} \int_{0}^{2\pi} z^{n} e^{-in} d\mu(t).$$

 $The \ converse \ of \ the \ theorem \ is \ also \ valid.$

Lemma 2.2. [2] p.26 Let $p(z) = a + \sum_{k=n}^{\infty} a_k z^k$, $p(z) \not\equiv a$ and $n \ge 1$. If $z_0 \in U$ and $\operatorname{Re} p(z_0) = \min\{\operatorname{Re} p(z) : |z| \le |z_0|\},$

then

(i)
$$z_0 p'(z_0) \le -\frac{n}{2} \frac{|p(z_0) - a|^2}{\operatorname{Re}(a - p(z_0))}$$

and

(*ii*) Re
$$[z_0^2 p''(z_0)] + z_0 p'(z_0) \le 0$$

Lemma 2.3. If $f, g \in A$ and

$$\operatorname{Re}\left[\frac{1}{g'(z)} \int_{0}^{1} \int_{0}^{1} g'(uvz) \frac{1 + uvze^{-it}}{1 - uvze^{-it}} dudv\right] \ge 0, \ z \in U, \ t \in \mathbb{R},$$
(2.1)

then the inequality $\operatorname{Re} \frac{f'(z)}{g'(z)} > 0, \ z \in U$ implies that

$$\operatorname{Re}\frac{F(z)}{zg'(z)} > 0, \ z \in U,$$

$$(2.2)$$

where F is defined by (1.1).

Proof. The developments

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n$$

hold for $z \in U$.

The conditions of the lemma imply $\frac{f'}{g'} \in \mathcal{P}$ and from the Herglotz formula it follows that:

$$\frac{f'(z)}{g'(z)} = 1 + 2\int_0^{2\pi} \left(\sum_{n=1}^\infty z^n e^{-in}\right) d\mu(t), \ z \in U$$

for a suitable probability measure $\mu.$ Denoting $c_n=2\int_0^{2\pi}e^{-in}d\mu(t),$ we get:

$$f'(z) = g'(z)(1 + \sum_{n=1}^{\infty} c_n z^n)$$

= $(1 + \sum_{n=2}^{\infty} nb_n z^{n-1})(1 + \sum_{n=1}^{\infty} c_n z^n) = 1 + \sum_{n=1}^{\infty} d_n z^n,$ (2.3)
$$f(z) = z + \sum_{n=1}^{\infty} \frac{d_n}{n+1} z^{n+1}$$

and

$$\frac{F(z)}{z} = 1 + \sum_{n=1}^{\infty} \frac{d_n}{(n+1)^2} z^n.$$

Thus we have

$$\frac{F(z)}{zg'(z)} = \frac{1}{g'(z)} \int_0^1 \int_0^1 \left(1 + \sum_{n=1}^\infty d_n u^n v^n z^n\right) du dv,$$

and according to (2.3), this is equivalent to

$$\frac{F(z)}{zg'(z)} = \frac{1}{g'(z)} \int_0^{2\pi} \int_0^1 \int_0^1 g'(uvz) \frac{1 + uvze^{-it}}{1 - uvze^{-it}} dudv d\mu(t),$$

and the proof is finished.

Lemma 2.4. The following inequality holds:

$$1 + r^4 u^2 \rho^2 - r^2 \rho^2 \sqrt{(1+u^2)^2 + \frac{4u^2 \rho^2 (1-u^2)^2 \sin^2 \alpha}{(1-u^2 \rho^2)^2 (1+u^2)^2}} \cos(2\theta + \gamma) \ge 1 + r^4 u^2 - r^2 \sqrt{1+6u^2 + u^4}, \quad \rho, u \in [0,1]; \theta, \alpha \in \mathbb{R}.$$

Proof. It is easily seen that:

$$1 + r^{4}u^{2}\rho^{2} - r^{2}\rho^{2}\sqrt{(1+u^{2})^{2} + \frac{4u^{2}\rho^{2}(1-u^{2})^{2}\sin^{2}\alpha}{(1-u^{2}\rho^{2})^{2}(1+u^{2})^{2}}}\cos(2\theta + \gamma) \ge$$

$$1 + r^{4}u^{2}\rho^{2} - r^{2}\rho^{2}\sqrt{(1+u^{2})^{2} + \frac{4u^{2}\rho^{2}(1-u^{2})^{2}}{(1-u^{2}\rho^{2})^{2}(1+u^{2})^{2}}}$$

$$(2.4)$$

Since

$$1 \ge \rho^2$$

and

$$-r^{4}u^{2} + r^{2}\sqrt{1 + 6u^{2} + u^{4}} \ge -r^{4}u^{2} + r^{2}\sqrt{(1 + u^{2})^{2} + \frac{4u^{2}\rho^{2}(1 - u^{2})^{2}}{(1 - u^{2}\rho^{2})^{2}(1 + u^{2})^{2}}} \ge 0$$
$$r, u, \rho \in [0, 1]$$

it follows that

$$-r^4u^2 + r^2\sqrt{1+6u^2+u^4} \ge -r^4u^2\rho^2 + r^2\rho^2\sqrt{(1+u^2)^2 + \frac{4u^2\rho^2(1-u^2)^2}{(1-u^2\rho^2)^2(1+u^2)^2}}$$
$$r, u, \rho \in [0,1].$$

Thus

$$1 + r^{4}u^{2}\rho^{2} - r^{2}\rho^{2}\sqrt{(1+u^{2})^{2} + \frac{4u^{2}\rho^{2}(1-u^{2})^{2}}{(1-u^{2}\rho^{2})^{2}(1+u^{2})^{2}}} \geq 1 + r^{4}u^{2} - r^{2}\sqrt{1+6u^{2}+u^{4}} \quad r, u, \rho \in [0,1].$$

$$(2.5)$$

The desiderated inequality follows by (2.4) and (2.5).

3. Main result

Theorem 3.1. Let $g \in A$ be a function having the property:

$$Re\frac{g'(uz)}{g'(z)}\frac{1+uw}{1-uw} > 0, \text{ for all } u \in (0,1) \text{ and } z, w \in U, |z| = |w|.$$
(3.1)

Provided that $f \in A$, and the function h defined by h(z) = zg'(z) satisfies the inequality

$$Re\frac{zf'(z)}{h(z)} > 0 \quad z \in U,$$
(3.2)

then $F = A(f) \in S^*$.

Proof. We differentiate twice the equality $F(z) = \int_0^z \frac{f(t)}{t}$ and we get: zF''(z) + F'(z) = f'(z). If we set $p(z) = \frac{zF'(z)}{F(z)}$, then this equality can be rewritten as follows:

$$\frac{F(z)}{zg'(z)}(zp'(z) + p^2(z)) = \frac{zf'(z)}{h(z)}.$$

The conditions of the theorem imply:

$$\operatorname{Re}\left[\frac{F(z)}{zg'(z)}(zp'(z)+p^2(z))\right] > 0, \text{ for all } z \in U.$$
(3.3)

If the inequality $\operatorname{Re}p(z) > 0$ does not hold for all $z \in U$, then according to Lemma 2 (in case of a = 1) there is a point $z_0 \in U$ and there are two real numbers $x, y \in \mathbb{R}$ having the property:

$$p(z_0) = ix$$

 $z_0 p'(z_0) = y \le -\frac{x^2 + 1}{2}.$

Thus it follows that:

$$\operatorname{Re}\left[\frac{F(z_0)}{z_0g'(z_0)}(z_0p'(z_0) + p^2(z_0))\right] = \operatorname{Re}\frac{F(z_0)}{z_0g'(z_0)}(y - x^2).$$
(3.4)

Since $\operatorname{Re} \frac{f'(z)}{g'(z)} = \operatorname{Re} \frac{zf'(z)}{h(z)} > 0, z \in U$, Lemma 3 and condition (3.1) lead to the inequality $\operatorname{Re} \frac{F(z)}{zg'(z)} > 0, z \in U$. This inequality and (3.4) imply

$$\operatorname{Re}\frac{z_0 f'(z_0)}{h(z_0)} = \operatorname{Re}\left[\frac{F(z_0)}{z_0 g'(z_0)}(z_0 p'(z_0) + p^2(z_0))\right] \le 0$$

which contradicts (3.3). The contradiction shows that $\operatorname{Re}p(z) > 0$ for all $z \in U$, and this is equivalent to $F \in S^*$.

Corollary 3.2. If $Re\frac{f'(z)}{e^z} > 0$ for all $z \in U$, then $A(f) \in S^*$.

Proof. We apply Theorem 2 to prove this assertion. In case of $g(z) = e^z - 1$, $z = re^{i\theta}$ and $w = re^{i\alpha}$, $r \in (0, 1)$ the following equality holds:

$$\operatorname{Re}\frac{g'(uz)}{g'(z)}\frac{1+uw}{1-uw} = \frac{e^{r(u-1)\cos\theta}(1-u^2r^2)}{1+u^2r^2-2ur\cos\alpha} \left\{ \cos[r(1-u)\sin\theta] + \frac{2ur\sin\alpha}{1-u^2r^2}\sin[r(1-u)\sin\theta] \right\}$$
(3.5)

There is a real number $v \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ having the property $\tan v = \frac{2ur \sin \alpha}{1 - u^2 r^2}$. Therefore the equality (3.5) can be rewritten in the following way:

$$\operatorname{Re}\frac{g'(uz)}{g'(z)}\frac{1+uw}{1-uw} = \frac{e^{r(u-1)\cos\theta}(1-u^2r^2)}{(1+u^2r^2-2ur\cos\alpha)\cos v}\cos[r(1-u)\sin\theta - v].$$

This means that in order to prove condition (3.1) of Theorem 2, we have to prove the inequality: $\cos[r(1-u)\sin\theta - v] > 0$, $r, u \in (0,1)$, $\alpha, \theta \in \mathbb{R}$.

Since $|r(1-u)\sin\theta - v| = |r(1-u)\sin\theta - \arctan\frac{2ur\sin\alpha}{1-u^2r^2}| \leq r(1-u) + \arctan\frac{2ur}{1-u^2r^2} < 1-u + \arctan\frac{2u}{1-u^2}$, and $\varphi'(u) = \frac{1-u^2}{1+u^2} > 0$ where φ : $(0,1) \rightarrow \mathbb{R}$, $\varphi(u) = 1-u + \arctan\frac{2u}{1-u^2}$, the inequality follows $|r(1-u)\sin\theta - v| < \lim_{u\to 1} \varphi(u) = \frac{\pi}{2}$.

Thus condition (3.1) also holds, and applying Theorem 2 the proof is done. **Remark 3.3.** In case of $g(z) = e^z - 1$, it is easily seen that $g \in \mathcal{A}$ and $h(z) = zg'(z) = ze^z$ and $\operatorname{Re}\left(\frac{zh'(z)}{h(z)}\right) = \operatorname{Re}(1+z) > 0$, $z \in U$, consequently $h \in S^*$ holds. Thus the differential inequality $\operatorname{Re}\frac{zf'(z)}{h(z)} = \operatorname{Re}\frac{f'(z)}{e^z} > 0$, $z \in U$, defines a subclass of C and this subclass is mapped by the Operator of Alexander in S^* .

Corollary 3.4. If $0 < r \le (3 - 8^{\frac{1}{2}})^{\frac{1}{4}} = 0,643...$ and

$$Re(1 - r^2 z^2) f'(z) > 0, \quad z \in U,$$
(3.6)

then $A(f) \in S^*$.

Proof. We apply again Theorem 2 to prove this assertion. Let $g: U \to \mathbb{C}$ be the mapping defined by the equality: $g(z) = \frac{1}{2r} \log \frac{1+rz}{1-rz}$, $r \in (0,1]$, and $h(z) = zg'(z) = \frac{z}{1-r^2z^2}$. We have to prove condition (3.1) in case of $z = \rho e^{i\theta}$ and $w = \rho e^{i\alpha}$. The following equalities hold:

$$\operatorname{Re}\frac{g'(uz)}{g'(z)}\frac{1+uw}{1-uw} = \operatorname{Re}\frac{1-r^2\rho^2 e^{2i\theta}}{1-r^2u^2\rho^2 e^{2i\theta}}\frac{1+u\rho e^{i\alpha}}{1-u\rho e^{i\alpha}} = \frac{(1-u^2\rho^2)[1+r^4u^2\rho^2-r^2\rho^2(1+u^2)\cos 2\theta+2\frac{1-u^2}{1-u^2\rho^2}ur^2\rho^3\sin 2\theta\sin\alpha]}{|1-r^2u^2e^{2i\theta}|^2|1-ue^{i\alpha}|^2}.$$
 (3.7)

According to (3.7) condition (3.1) holds if and only if:

$$\begin{split} 1 + r^4 u^2 \rho^2 - r^2 \rho^2 (1 + u^2) \cos 2\theta + 2 \frac{1 - u^2}{1 - u^2 \rho^2} u r^2 \rho^3 \sin 2\theta \sin \alpha &\geq 0, \\ \rho, u \in [0, 1]; \theta, \alpha \in \mathbb{R}, \end{split}$$

and this is equivalent to

$$1 + r^4 u^2 \rho^2 - r^2 \rho^2 (1 + u^2) \left[\cos 2\theta - 2 \frac{1 - u^2}{(1 - u^2 \rho^2)(1 + u^2)} u \rho \sin 2\theta \sin \alpha \right] \ge 0,$$

$$\rho, u \in [0, 1]; \theta, \alpha \in \mathbb{R}.$$

ALEXANDER TRANSFORM OF CLOSE-TO-CONVEX FUNCTIONS

Using the notation $\tan \gamma = \frac{2u\rho(1-u^2)\sin\alpha}{(1-u^2\rho^2)(1+u^2)}, \ \gamma \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ it can be rewritten as follows:

$$1 + r^{4}u^{2}\rho^{2} - r^{2}\rho^{2}\sqrt{(1+u^{2})^{2} + \frac{4u^{2}\rho^{2}(1-u^{2})^{2}\sin^{2}\alpha}{(1-u^{2}\rho^{2})^{2}(1+u^{2})^{2}}\cos(2\theta+\gamma)} \ge 0,$$
$$u, \rho \in [0,1]; \theta, \alpha \in \mathbb{R}.$$
(3.8)

According to Lemma 4 we have:

$$\begin{split} 1 + r^4 u^2 \rho^2 - r^2 \rho^2 \sqrt{(1+u^2)^2 + \frac{4u^2 \rho^2 (1-u^2)^2 \sin^2 \alpha}{(1-u^2 \rho^2)^2 (1+u^2)^2}} \cos(2\theta + \gamma) \geq \\ 1 + r^4 u^2 - r^2 \sqrt{1+6u^2 + u^4}, \rho, u \in [0,1]; \theta, \alpha \in \mathbb{R}. \end{split}$$

Inequality (3.8) holds provided that:

$$1 + r^4 u^2 - r^2 \sqrt{1 + 6u^2 + u^4} \ge 0, \ u \in [0, 1]$$

The last inequality is equivalent to

$$1 - r^4 - 4r^4u^2 - r^4(1 - r^4)u^4 \ge 0, \ u \in [0, 1],$$

which holds for all $u \in [0, 1]$ if and only if:

$$1 - 6r^4 + r^8 \ge 0, \ r \in (0, 1]$$

and this leads to $0 < r \le (3 - 8^{\frac{1}{2}})^{\frac{1}{4}}$.

Remark 3.5. 1. Since $g, h \in \mathcal{A}$ and

$$\operatorname{Re}\frac{zh'(z)}{h(z)} = \operatorname{Re}\frac{1+r^2z^2}{1-r^2z^2} > 0, z \in U, \ r \in [0,1],$$

follows that $h \in S^*$. Thus condition (3.6) defines a subclass of C.

2. It remains an interesting open question to determine the biggest $r \in [0, 1]$ for which the class of analytic functions defined by the conditions

$$f \in \mathcal{A}, \operatorname{Re}(1 - r^2 z^2) f'(z) > 0, \ z \in U$$

is mapped in S^* , by the Alexander Operator.

3. Since Corollary 1 and Corollary 2 can not be proved using Theorem 1, we may assert that Theorem 2 is independent from Theorem 1, in spite of the fact, that the ideas of their proofs are analogous.

References

- D. J. Hallenbeck, T. H. Mac Gregor, *Linear problems and convexity techniques in geometric function theory*, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1984.
- [2] S. S. Miller, P. T. Mocanu, Differential Subordinations Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
- [3] R. Szász, A Counter-Example Concerning Starlike Functions, Studia Univ. Babeş-Bolyai, Mathematica, LII(2007), no. 3, 171-172.

SAPIENTIA UNIVERSITY, DEPARTMENT OF MATHEMATICS CORUNCA, STR. SIGHISOAREI, 1C, ROMANIA

SAPIENTIA UNIVERSITY, DEPARTMENT OF MATHEMATICS CORUNCA, STR. SIGHISOAREI, 1C, ROMANIA *E-mail address:* szasz_robert2001@yahoo.com