ALEXANDER TRANSFORM OF CLOSE-TO-CONVEX FUNCTIONS

PÁl AUREL KUPÁN AND RÓBERT SZÁSZ

Abstract

In this paper a result concerning the starlikeness of the image of the Alexander Operator is deduced. The technique of differential subordinations is used.

1. Introduction

Let $U=\{z \in \mathbb{C}:|z|<1$ be the open unit disc of the complex plane.
We denote by \mathcal{A} the class of analytic functions defined on the unit disc U and having the form $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$.

The subclass of \mathcal{A} consisting of functions for which the domain $f(U)$ is starlike with respect to 0 , is called the class of starlike functions, and is denoted by S^{*}. An analytic description of S^{*} is

$$
S^{*}=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0,(\forall) z \in U\right\}
$$

Let $\alpha \in[0,1)$. The class of starlike functions of order α denoted by $S^{*}(\alpha)$, is defined by the equality:

$$
S^{*}(\alpha)=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\alpha,(\forall) z \in U\right\}
$$

Another subclass of \mathcal{A} which we deal with, is defined by

$$
C=\left\{f \in \mathcal{A} \mid(\exists) g \in S^{*}: \operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, z \in U\right\}
$$

This is the class of close-to-convex functions.
We mention that C, S^{*} and $S^{*}(\alpha)$ contain univalent functions.
The Operator of Alexander is defined by

$$
\begin{equation*}
F(z)=A(f)(z)=\int_{0}^{z} \frac{f(t)}{t} d t \tag{1.1}
\end{equation*}
$$

[^0]In [3] it has been proved that $A(C) \not \subset S^{*}$.
This result put the problem to determine suitable conditions which ensure that subclasses of C are mapped by the Alexander operator to S^{*}.

In [2] (pg. 310-311), the authors proved the following theorem concerning this question:
Theorem 1.1. Let A be the operator of Alexander defined by (1.1) and let $g \in \mathcal{A}$ satisfy

$$
\begin{equation*}
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq\left|\operatorname{Im} \frac{z\left(z g^{\prime}(z)\right)^{\prime}}{g(z)}\right|, z \in U . \tag{1.2}
\end{equation*}
$$

If $f \in \mathcal{A}$ satisfies

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, z \in U
$$

then $F=A(f) \in S^{*}$.
We will prove another result regarding this problem. We will need the following definitions and lemmas in our work.

2. Preliminaries

The class \mathcal{P} is defined by the equality:

$$
\mathcal{P}=\{f \mid f \text { analytic in } \mathrm{U}, f(0)=1, \text { and } \operatorname{Re} f(z)>0, z \in \mathrm{U}\} .
$$

Lemma 2.1. [1](The Herglotz formula) For every $f \in \mathcal{P}$ there exists a measure μ on the interval $[0,2 \pi]$ so that $\mu([0,2 \pi])=1$ (a probability measure) and

$$
f(z)=\int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu(t)
$$

or in developed form

$$
f(z)=1+2 \sum_{n=1}^{\infty} \int_{0}^{2 \pi} z^{n} e^{-i n} d \mu(t)
$$

The converse of the theorem is also valid.
Lemma 2.2. [2] p.26 Let $p(z)=a+\sum_{k=n}^{\infty} a_{k} z^{k}, p(z) \not \equiv a$ and $n \geq 1$. If $z_{0} \in U$ and

$$
\operatorname{Re} p\left(z_{0}\right)=\min \left\{\operatorname{Re} p(z):|z| \leq\left|z_{0}\right|\right\}
$$

then
(i) $z_{0} p^{\prime}\left(z_{0}\right) \leq-\frac{n}{2} \frac{\left|p\left(z_{0}\right)-a\right|^{2}}{\operatorname{Re}\left(a-p\left(z_{0}\right)\right)}$
and
(ii) $\operatorname{Re}\left[z_{0}^{2} p^{\prime \prime}\left(z_{0}\right)\right]+z_{0} p^{\prime}\left(z_{0}\right) \leq 0$.

Lemma 2.3. If $f, g \in \mathcal{A}$ and

$$
\begin{equation*}
\operatorname{Re}\left[\frac{1}{g^{\prime}(z)} \int_{0}^{1} \int_{0}^{1} g^{\prime}(u v z) \frac{1+u v z e^{-i t}}{1-u v z e^{-i t}} d u d v\right] \geq 0, z \in U, t \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

then the inequality $\operatorname{Re} \frac{f^{\prime}(z)}{g^{\prime}(z)}>0, z \in U$ implies that

$$
\begin{equation*}
\operatorname{Re} \frac{F(z)}{z g^{\prime}(z)}>0, z \in U \tag{2.2}
\end{equation*}
$$

where F is defined by (1.1).
Proof. The developments

$$
\begin{aligned}
& f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \\
& g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
\end{aligned}
$$

hold for $z \in U$.
The conditions of the lemma imply $\frac{f^{\prime}}{g^{\prime}} \in \mathcal{P}$ and from the Herglotz formula it follows that:

$$
\frac{f^{\prime}(z)}{g^{\prime}(z)}=1+2 \int_{0}^{2 \pi}\left(\sum_{n=1}^{\infty} z^{n} e^{-i n}\right) d \mu(t), z \in U
$$

for a suitable probability measure μ.
Denoting $c_{n}=2 \int_{0}^{2 \pi} e^{-i n} d \mu(t)$, we get:

$$
\begin{gather*}
f^{\prime}(z)=g^{\prime}(z)\left(1+\sum_{n=1}^{\infty} c_{n} z^{n}\right) \\
=\left(1+\sum_{n=2}^{\infty} n b_{n} z^{n-1}\right)\left(1+\sum_{n=1}^{\infty} c_{n} z^{n}\right)=1+\sum_{n=1}^{\infty} d_{n} z^{n}, \tag{2.3}\\
f(z)=z+\sum_{n=1}^{\infty} \frac{d_{n}}{n+1} z^{n+1}
\end{gather*}
$$

and

$$
\frac{F(z)}{z}=1+\sum_{n=1}^{\infty} \frac{d_{n}}{(n+1)^{2}} z^{n}
$$

Thus we have

$$
\frac{F(z)}{z g^{\prime}(z)}=\frac{1}{g^{\prime}(z)} \int_{0}^{1} \int_{0}^{1}\left(1+\sum_{n=1}^{\infty} d_{n} u^{n} v^{n} z^{n}\right) d u d v
$$

and according to (2.3), this is equivalent to

$$
\frac{F(z)}{z g^{\prime}(z)}=\frac{1}{g^{\prime}(z)} \int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1} g^{\prime}(u v z) \frac{1+u v z e^{-i t}}{1-u v z e^{-i t}} d u d v d \mu(t)
$$

and the proof is finished.
Lemma 2.4. The following inequality holds:

$$
\begin{array}{r}
1+r^{4} u^{2} \rho^{2}-r^{2} \rho^{2} \sqrt{\left(1+u^{2}\right)^{2}+\frac{4 u^{2} \rho^{2}\left(1-u^{2}\right)^{2} \sin ^{2} \alpha}{\left(1-u^{2} \rho^{2}\right)^{2}\left(1+u^{2}\right)^{2}}} \cos (2 \theta+\gamma) \geq \\
1+r^{4} u^{2}-r^{2} \sqrt{1+6 u^{2}+u^{4}}, \quad \rho, u \in[0,1] ; \theta, \alpha \in \mathbb{R}
\end{array}
$$

Proof. It is easily seen that:

$$
\begin{array}{r}
1+r^{4} u^{2} \rho^{2}-r^{2} \rho^{2} \sqrt{\left(1+u^{2}\right)^{2}+\frac{4 u^{2} \rho^{2}\left(1-u^{2}\right)^{2} \sin ^{2} \alpha}{\left(1-u^{2} \rho^{2}\right)^{2}\left(1+u^{2}\right)^{2}}} \cos (2 \theta+\gamma) \geq \\
1+r^{4} u^{2} \rho^{2}-r^{2} \rho^{2} \sqrt{\left(1+u^{2}\right)^{2}+\frac{4 u^{2} \rho^{2}\left(1-u^{2}\right)^{2}}{\left(1-u^{2} \rho^{2}\right)^{2}\left(1+u^{2}\right)^{2}}} \tag{2.4}
\end{array}
$$

Since

$$
1 \geq \rho^{2}
$$

and

$$
\begin{array}{r}
-r^{4} u^{2}+r^{2} \sqrt{1+6 u^{2}+u^{4}} \geq-r^{4} u^{2}+r^{2} \sqrt{\left(1+u^{2}\right)^{2}+\frac{4 u^{2} \rho^{2}\left(1-u^{2}\right)^{2}}{\left(1-u^{2} \rho^{2}\right)^{2}\left(1+u^{2}\right)^{2}}} \geq 0 \\
r, u, \rho \in[0,1]
\end{array}
$$

it follows that

$$
\begin{array}{r}
-r^{4} u^{2}+r^{2} \sqrt{1+6 u^{2}+u^{4}} \geq-r^{4} u^{2} \rho^{2}+r^{2} \rho^{2} \sqrt{\left(1+u^{2}\right)^{2}+\frac{4 u^{2} \rho^{2}\left(1-u^{2}\right)^{2}}{\left(1-u^{2} \rho^{2}\right)^{2}\left(1+u^{2}\right)^{2}}} \\
r, u, \rho \in[0,1] .
\end{array}
$$

Thus

$$
\begin{array}{r}
1+r^{4} u^{2} \rho^{2}-r^{2} \rho^{2} \sqrt{\left(1+u^{2}\right)^{2}+\frac{4 u^{2} \rho^{2}\left(1-u^{2}\right)^{2}}{\left(1-u^{2} \rho^{2}\right)^{2}\left(1+u^{2}\right)^{2}}} \geq \\
1+r^{4} u^{2}-r^{2} \sqrt{1+6 u^{2}+u^{4}} \quad r, u, \rho \in[0,1] \tag{2.5}
\end{array}
$$

The desiderated inequality follows by (2.4) and (2.5).

3. Main result

Theorem 3.1. Let $g \in \mathcal{A}$ be a function having the property:

$$
\begin{equation*}
R e \frac{g^{\prime}(u z)}{g^{\prime}(z)} \frac{1+u w}{1-u w}>0, \text { for all } u \in(0,1) \text { and } z, w \in U,|z|=|w| \tag{3.1}
\end{equation*}
$$

Provided that $f \in \mathcal{A}$, and the function h defined by $h(z)=z g^{\prime}(z)$ satisfies the inequality

$$
\begin{equation*}
R e \frac{z f^{\prime}(z)}{h(z)}>0 \quad z \in U, \tag{3.2}
\end{equation*}
$$

then $F=A(f) \in S^{*}$.
Proof. We differentiate twice the equality $F(z)=\int_{0}^{z} \frac{f(t)}{t}$ and we get: $z F^{\prime \prime}(z)+$ $F^{\prime}(z)=f^{\prime}(z)$. If we set $p(z)=\frac{z F^{\prime}(z)}{F(z)}$, then this equality can be rewritten as follows:

$$
\frac{F(z)}{z g^{\prime}(z)}\left(z p^{\prime}(z)+p^{2}(z)\right)=\frac{z f^{\prime}(z)}{h(z)}
$$

The conditions of the theorem imply:

$$
\begin{equation*}
\operatorname{Re}\left[\frac{F(z)}{z g^{\prime}(z)}\left(z p^{\prime}(z)+p^{2}(z)\right)\right]>0, \text { for all } z \in U \tag{3.3}
\end{equation*}
$$

If the inequality $\operatorname{Re} p(z)>0$ does not hold for all $z \in U$, then according to Lemma 2 (in case of $a=1$) there is a point $z_{0} \in U$ and there are two real numbers $x, y \in \mathbb{R}$ having the property:

$$
\begin{gathered}
p\left(z_{0}\right)=i x \\
z_{0} p^{\prime}\left(z_{0}\right)=y \leq-\frac{x^{2}+1}{2} .
\end{gathered}
$$

Thus it follows that:

$$
\begin{equation*}
\operatorname{Re}\left[\frac{F\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\left(z_{0} p^{\prime}\left(z_{0}\right)+p^{2}\left(z_{0}\right)\right)\right]=\operatorname{Re} \frac{F\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\left(y-x^{2}\right) . \tag{3.4}
\end{equation*}
$$

Since $\operatorname{Re} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\operatorname{Re} \frac{z f^{\prime}(z)}{h(z)}>0, z \in U$, Lemma 3 and condition (3.1) lead to the inequality $\operatorname{Re} \frac{F(z)}{z g^{\prime}(z)}>0, z \in U$. This inequality and (3.4) imply

$$
\operatorname{Re} \frac{z_{0} f^{\prime}\left(z_{0}\right)}{h\left(z_{0}\right)}=\operatorname{Re}\left[\frac{F\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\left(z_{0} p^{\prime}\left(z_{0}\right)+p^{2}\left(z_{0}\right)\right)\right] \leq 0
$$

which contradicts (3.3). The contradiction shows that $\operatorname{Rep}(z)>0$ for all $z \in U$, and this is equivalent to $F \in S^{*}$.
Corollary 3.2. If $R e \frac{f^{\prime}(z)}{e^{z}}>0$ for all $z \in U$, then $A(f) \in S^{*}$.
Proof. We apply Theorem 2 to prove this assertion. In case of $g(z)=e^{z}-1, z=r e^{i \theta}$ and $w=r e^{i \alpha}, r \in(0,1)$ the following equality holds:

$$
\begin{array}{r}
\operatorname{Re} \frac{g^{\prime}(u z)}{g^{\prime}(z)} \frac{1+u w}{1-u w}=\frac{e^{r(u-1) \cos \theta}\left(1-u^{2} r^{2}\right)}{1+u^{2} r^{2}-2 u r \cos \alpha}\{\cos [r(1-u) \sin \theta]+ \\
\left.\frac{2 u r \sin \alpha}{1-u^{2} r^{2}} \sin [r(1-u) \sin \theta]\right\} \tag{3.5}
\end{array}
$$

There is a real number $v \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ having the property $\tan v=\frac{2 u r \sin \alpha}{1-u^{2} r^{2}}$. Therefore the equality (3.5) can be rewritten in the following way:

$$
\operatorname{Re} \frac{g^{\prime}(u z)}{g^{\prime}(z)} \frac{1+u w}{1-u w}=\frac{e^{r(u-1) \cos \theta}\left(1-u^{2} r^{2}\right)}{\left(1+u^{2} r^{2}-2 u r \cos \alpha\right) \cos v} \cos [r(1-u) \sin \theta-v] .
$$

This means that in order to prove condition (3.1) of Theorem 2, we have to prove the inequality: $\cos [r(1-u) \sin \theta-v]>0, r, u \in(0,1), \alpha, \theta \in \mathbb{R}$.

Since $|r(1-u) \sin \theta-v|=\left|r(1-u) \sin \theta-\arctan \frac{2 u r \sin \alpha}{1-u^{2} r^{2}}\right| \leq r(1-u)+$ $\arctan \frac{2 u r}{1-u^{2} r^{2}}<1-u+\arctan \frac{2 u}{1-u^{2}}$, and $\varphi^{\prime}(u)=\frac{1-u^{2}}{1+u^{2}}>0$ where $\varphi:(0,1) \rightarrow$ $\mathbb{R}, \varphi(u)=1-u+\arctan \frac{2 u}{1-u^{2}}$, the inequality follows $|r(1-u) \sin \theta-v|<$ $\lim _{u \rightarrow 1} \varphi(u)=\frac{\pi}{2}$.
Thus condition (3.1) also holds, and applying Theorem 2 the proof is done.
Remark 3.3. In case of $g(z)=e^{z}-1$, it is easily seen that $g \in \mathcal{A}$ and $h(z)=$ $z g^{\prime}(z)=z e^{z}$ and $\operatorname{Re}\left(\frac{z h^{\prime}(z)}{h(z)}\right)=\operatorname{Re}(1+z)>0, z \in U$, consequently $h \in S^{*}$ holds. Thus the differential inequality $\operatorname{Re} \frac{z f^{\prime}(z)}{h(z)}=\operatorname{Re} \frac{f^{\prime}(z)}{e^{z}}>0, z \in U$, defines a subclass of C and this subclass is mapped by the Operator of Alexander in S^{*}.
Corollary 3.4. If $0<r \leq\left(3-8^{\frac{1}{2}}\right)^{\frac{1}{4}}=0,643 \ldots$ and

$$
\begin{equation*}
\operatorname{Re}\left(1-r^{2} z^{2}\right) f^{\prime}(z)>0, \quad z \in U \tag{3.6}
\end{equation*}
$$

then $A(f) \in S^{*}$.
Proof. We apply again Theorem 2 to prove this assertion. Let $g: U \rightarrow \mathbb{C}$ be the mapping defined by the equality: $g(z)=\frac{1}{2 r} \log \frac{1+r z}{1-r z}, \quad r \in(0,1]$, and $h(z)=z g^{\prime}(z)=$ $\frac{z}{1-r^{2} z^{2}}$. We have to prove condition (3.1) in case of $z=\rho e^{i \theta}$ and $w=\rho e^{i \alpha}$. The following equalities hold:

$$
\begin{array}{r}
\operatorname{Re} \frac{g^{\prime}(u z)}{g^{\prime}(z)} \frac{1+u w}{1-u w}=\operatorname{Re} \frac{1-r^{2} \rho^{2} e^{2 i \theta}}{1-r^{2} u^{2} \rho^{2} e^{2 i \theta}} \frac{1+u \rho e^{i \alpha}}{1-u \rho e^{i \alpha}}= \\
\frac{\left(1-u^{2} \rho^{2}\right)\left[1+r^{4} u^{2} \rho^{2}-r^{2} \rho^{2}\left(1+u^{2}\right) \cos 2 \theta+2 \frac{1-u^{2}}{1-u^{2} \rho^{2}} u r^{2} \rho^{3} \sin 2 \theta \sin \alpha\right]}{\left|1-r^{2} u^{2} e^{2 i \theta}\right|^{2}\left|1-u e^{i \alpha}\right|^{2}} \tag{3.7}
\end{array}
$$

According to (3.7) condition (3.1) holds if and only if:

$$
\begin{array}{r}
1+r^{4} u^{2} \rho^{2}-r^{2} \rho^{2}\left(1+u^{2}\right) \cos 2 \theta+2 \frac{1-u^{2}}{1-u^{2} \rho^{2}} u r^{2} \rho^{3} \sin 2 \theta \sin \alpha \geq 0 \\
\rho, u \in[0,1] ; \theta, \alpha \in \mathbb{R}
\end{array}
$$

and this is equivalent to

$$
\begin{array}{r}
1+r^{4} u^{2} \rho^{2}-r^{2} \rho^{2}\left(1+u^{2}\right)\left[\cos 2 \theta-2 \frac{1-u^{2}}{\left(1-u^{2} \rho^{2}\right)\left(1+u^{2}\right)} u \rho \sin 2 \theta \sin \alpha\right] \geq 0 \\
\rho, u \in[0,1] ; \theta, \alpha \in \mathbb{R}
\end{array}
$$

Using the notation $\tan \gamma=\frac{2 u \rho\left(1-u^{2}\right) \sin \alpha}{\left(1-u^{2} \rho^{2}\right)\left(1+u^{2}\right)}, \gamma \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ it can be rewritten as follows:

$$
\begin{array}{r}
1+r^{4} u^{2} \rho^{2}-r^{2} \rho^{2} \sqrt{\left(1+u^{2}\right)^{2}+\frac{4 u^{2} \rho^{2}\left(1-u^{2}\right)^{2} \sin ^{2} \alpha}{\left(1-u^{2} \rho^{2}\right)^{2}\left(1+u^{2}\right)^{2}}} \cos (2 \theta+\gamma) \geq 0 \\
u, \rho \in[0,1] ; \theta, \alpha \in \mathbb{R} \tag{3.8}
\end{array}
$$

According to Lemma 4 we have:

$$
\begin{array}{r}
1+r^{4} u^{2} \rho^{2}-r^{2} \rho^{2} \sqrt{\left(1+u^{2}\right)^{2}+\frac{4 u^{2} \rho^{2}\left(1-u^{2}\right)^{2} \sin ^{2} \alpha}{\left(1-u^{2} \rho^{2}\right)^{2}\left(1+u^{2}\right)^{2}}} \cos (2 \theta+\gamma) \geq \\
1+r^{4} u^{2}-r^{2} \sqrt{1+6 u^{2}+u^{4}}, \rho, u \in[0,1] ; \theta, \alpha \in \mathbb{R} .
\end{array}
$$

Inequality (3.8) holds provided that:

$$
1+r^{4} u^{2}-r^{2} \sqrt{1+6 u^{2}+u^{4}} \geq 0, u \in[0,1]
$$

The last inequality is equivalent to

$$
1-r^{4}-4 r^{4} u^{2}-r^{4}\left(1-r^{4}\right) u^{4} \geq 0, u \in[0,1]
$$

which holds for all $u \in[0,1]$ if and only if:

$$
1-6 r^{4}+r^{8} \geq 0, \quad r \in(0,1]
$$

and this leads to $0<r \leq\left(3-8^{\frac{1}{2}}\right)^{\frac{1}{4}}$.
Remark 3.5. 1. Since $g, h \in \mathcal{A}$ and

$$
\operatorname{Re} \frac{z h^{\prime}(z)}{h(z)}=\operatorname{Re} \frac{1+r^{2} z^{2}}{1-r^{2} z^{2}}>0, z \in U, \quad r \in[0,1]
$$

follows that $h \in S^{*}$. Thus condition (3.6) defines a subclass of C.
2. It remains an interesting open question to determine the biggest $r \in[0,1]$ for which the class of analytic functions defined by the conditions

$$
f \in \mathcal{A}, \operatorname{Re}\left(1-r^{2} z^{2}\right) f^{\prime}(z)>0, z \in U
$$

is mapped in S^{*}, by the Alexander Operator.
3. Since Corollary 1 and Corollary 2 can not be proved using Theorem 1, we may assert that Theorem 2 is independent from Theorem 1, in spite of the fact, that the ideas of their proofs are analogous.

References

[1] D. J. Hallenbeck, T. H. Mac Gregor, Linear problems and convexity techniques in geometric function theory, Pitman Advanced Publishing Program, Boston-LondonMelbourne, 1984.
[2] S. S. Miller, P. T. Mocanu, Differential Subordinations Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
[3] R. Szász, A Counter-Example Concerning Starlike Functions, Studia Univ. Babeş Bolyai, Mathematica, LII(2007), no. 3, 171-172.

Sapientia University, Department of Mathematics
Corunca, Str. Sighisoarei, 1c, Romania
Sapientia University, Department of Mathematics
Corunca, Str. Sighisoarei, 1c, Romania
E-mail address: szasz_robert2001@yahoo.com

[^0]: Received by the editors: 11.10 .2009
 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Operator of Alexander, starlike functions, close-to-convex functions.
 This work was supported by Sapientia Research Foundation.

