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ALEXANDER TRANSFORM OF CLOSE-TO-CONVEX FUNCTIONS

PÁL AUREL KUPÁN AND RÓBERT SZÁSZ

Abstract. In this paper a result concerning the starlikeness of the im-

age of the Alexander Operator is deduced. The technique of differential

subordinations is used.

1. Introduction

Let U = {z ∈ C : |z| < 1 be the open unit disc of the complex plane.
We denote by A the class of analytic functions defined on the unit disc U

and having the form f(z) = z + a2z
2 + a3z

3 + . . . .

The subclass ofA consisting of functions for which the domain f(U) is starlike
with respect to 0, is called the class of starlike functions, and is denoted by S∗. An
analytic description of S∗ is

S∗ =
{

f ∈ A : Re
zf ′(z)
f(z)

> 0, (∀) z ∈ U

}
.

Let α ∈ [0, 1). The class of starlike functions of order α denoted by S∗(α), is defined
by the equality:

S∗(α) =
{

f ∈ A : Re
zf ′(z)
f(z)

> α, (∀) z ∈ U

}
.

Another subclass of A which we deal with, is defined by

C =
{

f ∈ A | (∃) g ∈ S∗ : Re
zf ′(z)
g(z)

> 0, z ∈ U

}
.

This is the class of close-to-convex functions.
We mention that C, S∗ and S∗(α) contain univalent functions.
The Operator of Alexander is defined by

F (z) = A(f)(z) =
∫ z

0

f(t)
t

dt. (1.1)
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In [3] it has been proved that A(C) 6⊂ S∗.

This result put the problem to determine suitable conditions which ensure
that subclasses of C are mapped by the Alexander operator to S∗.

In [2] (pg. 310-311), the authors proved the following theorem concerning
this question:

Theorem 1.1. Let A be the operator of Alexander defined by (1.1) and let g ∈ A
satisfy

Re
zg′(z)
g(z)

≥
∣∣∣∣Im z(zg′(z))′

g(z)

∣∣∣∣ , z ∈ U. (1.2)

If f ∈ A satisfies

Re
zf ′(z)
g(z)

> 0, z ∈ U,

then F = A(f) ∈ S∗.

We will prove another result regarding this problem. We will need the fol-
lowing definitions and lemmas in our work.

2. Preliminaries

The class P is defined by the equality:

P = {f |f analytic in U, f(0) = 1, and Ref(z) > 0, z ∈ U}.

Lemma 2.1. [1](The Herglotz formula) For every f ∈ P there exists a measure µ on
the interval [0, 2π] so that µ([0, 2π]) = 1 (a probability measure) and

f(z) =
∫ 2π

0

1 + ze−it

1− ze−it
dµ(t),

or in developed form

f(z) = 1 + 2
∞∑

n=1

∫ 2π

0

zne−indµ(t).

The converse of the theorem is also valid.

Lemma 2.2. [2] p.26 Let p(z) = a +
∞∑

k=n

akzk, p(z) 6≡ a and n ≥ 1. If z0 ∈ U and

Re p(z0) = min{Re p(z) : |z| ≤ |z0|},

then

(i) z0p
′(z0) ≤ −n

2
|p(z0)− a|2

Re (a− p(z0))
and

(ii) Re [z2
0p′′(z0)] + z0p

′(z0) ≤ 0.
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Lemma 2.3. If f, g ∈ A and

Re
[ 1
g′(z)

∫ 1

0

∫ 1

0

g′(uvz)
1 + uvze−it

1− uvze−it
dudv

]
≥ 0, z ∈ U, t ∈ R, (2.1)

then the inequality Re f ′(z)
g′(z) > 0, z ∈ U implies that

Re
F (z)
zg′(z)

> 0, z ∈ U, (2.2)

where F is defined by (1.1).

Proof. The developments

f(z) = z +
∞∑

n=2

anzn

g(z) = z +
∞∑

n=2

bnzn

hold for z ∈ U.

The conditions of the lemma imply f ′

g′ ∈ P and from the Herglotz formula it
follows that:

f ′(z)
g′(z)

= 1 + 2
∫ 2π

0

( ∞∑
n=1

zne−in

)
dµ(t), z ∈ U

for a suitable probability measure µ.

Denoting cn = 2
∫ 2π

0
e−indµ(t), we get:

f ′(z) = g′(z)(1 +
∞∑

n=1

cnzn)

= (1 +
∞∑

n=2

nbnzn−1)(1 +
∞∑

n=1

cnzn) = 1 +
∞∑

n=1

dnzn, (2.3)

f(z) = z +
∞∑

n=1

dn

n + 1
zn+1

and
F (z)

z
= 1 +

∞∑
n=1

dn

(n + 1)2
zn.

Thus we have
F (z)
zg′(z)

=
1

g′(z)

∫ 1

0

∫ 1

0

(
1 +

∞∑
n=1

dnunvnzn
)
dudv,

and according to (2.3), this is equivalent to

F (z)
zg′(z)

=
1

g′(z)

∫ 2π

0

∫ 1

0

∫ 1

0

g′(uvz)
1 + uvze−it

1− uvze−it
dudvdµ(t),
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and the proof is finished. �

Lemma 2.4. The following inequality holds:

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2 sin2 α

(1− u2ρ2)2(1 + u2)2
cos(2θ + γ) ≥

1 + r4u2 − r2
√

1 + 6u2 + u4, ρ, u ∈ [0, 1]; θ, α ∈ R.

Proof. It is easily seen that:

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2 sin2 α

(1− u2ρ2)2(1 + u2)2
cos(2θ + γ) ≥

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2

(1− u2ρ2)2(1 + u2)2
(2.4)

Since

1 ≥ ρ2

and

−r4u2 + r2
√

1 + 6u2 + u4 ≥ −r4u2 + r2

√
(1 + u2)2 +

4u2ρ2(1− u2)2

(1− u2ρ2)2(1 + u2)2
≥ 0

r, u, ρ ∈ [0, 1]

it follows that

−r4u2 + r2
√

1 + 6u2 + u4 ≥ −r4u2ρ2 + r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2

(1− u2ρ2)2(1 + u2)2

r, u, ρ ∈ [0, 1].

Thus

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2

(1− u2ρ2)2(1 + u2)2
≥

1 + r4u2 − r2
√

1 + 6u2 + u4 r, u, ρ ∈ [0, 1]. (2.5)

The desiderated inequality follows by (2.4) and (2.5). �

3. Main result

Theorem 3.1. Let g ∈ A be a function having the property:

Re
g′(uz)
g′(z)

1 + uw

1− uw
> 0, for all u ∈ (0, 1) and z, w ∈ U, |z| = |w|. (3.1)
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Provided that f ∈ A, and the function h defined by h(z) = zg′(z) satisfies the inequal-
ity

Re
zf ′(z)
h(z)

> 0 z ∈ U, (3.2)

then F = A(f) ∈ S∗.

Proof. We differentiate twice the equality F (z) =
∫ z

0
f(t)

t and we get: zF ′′(z) +
F ′(z) = f ′(z). If we set p(z) = zF ′(z)

F (z) , then this equality can be rewritten as follows:

F (z)
zg′(z)

(zp′(z) + p2(z)) =
zf ′(z)
h(z)

.

The conditions of the theorem imply:

Re
[ F (z)
zg′(z)

(zp′(z) + p2(z))
]

> 0, for all z ∈ U. (3.3)

If the inequality Rep(z) > 0 does not hold for all z ∈ U, then according to Lemma 2
(in case of a = 1) there is a point z0 ∈ U and there are two real numbers x, y ∈ R
having the property:

p(z0) = ix

z0p
′(z0) = y ≤ −x2 + 1

2
.

Thus it follows that:

Re
[ F (z0)
z0g′(z0)

(z0p
′(z0) + p2(z0))

]
= Re

F (z0)
z0g′(z0)

(y − x2). (3.4)

Since Re f ′(z)
g′(z) = Re zf ′(z)

h(z) > 0, z ∈ U, Lemma 3 and condition (3.1) lead to the

inequality Re F (z)
zg′(z) > 0, z ∈ U. This inequality and (3.4) imply

Re
z0f

′(z0)
h(z0)

= Re
[ F (z0)
z0g′(z0)

(z0p
′(z0) + p2(z0))

]
≤ 0

which contradicts (3.3). The contradiction shows that Rep(z) > 0 for all z ∈ U , and
this is equivalent to F ∈ S∗. �

Corollary 3.2. If Re f ′(z)
ez > 0 for all z ∈ U, then A(f) ∈ S∗.

Proof. We apply Theorem 2 to prove this assertion. In case of g(z) = ez − 1, z = reiθ

and w = reiα, r ∈ (0, 1) the following equality holds:

Re
g′(uz)
g′(z)

1 + uw

1− uw
=

er(u−1) cos θ(1− u2r2)
1 + u2r2 − 2ur cos α

{
cos[r(1− u) sin θ] +

2ur sinα

1− u2r2
sin[r(1− u) sin θ]

}
(3.5)

155
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There is a real number v ∈ (−π
2 , π

2 ) having the property tan v = 2ur sin α
1−u2r2 . Therefore

the equality (3.5) can be rewritten in the following way:

Re
g′(uz)
g′(z)

1 + uw

1− uw
=

er(u−1) cos θ(1− u2r2)
(1 + u2r2 − 2ur cos α) cos v

cos[r(1− u) sin θ − v].

This means that in order to prove condition (3.1) of Theorem 2, we have to prove the
inequality: cos[r(1− u) sin θ − v] > 0, r, u ∈ (0, 1), α, θ ∈ R.

Since |r(1 − u) sin θ − v| = |r(1 − u) sin θ − arctan 2ur sin α
1−u2r2 | ≤ r(1− u) +

arctan 2ur
1−u2r2 < 1− u + arctan 2u

1−u2 , and ϕ′(u) = 1−u2

1+u2 > 0 where ϕ : (0, 1) →
R, ϕ(u) = 1− u + arctan 2u

1−u2 , the inequality follows |r(1 − u) sin θ − v| <

limu→1 ϕ(u) = π
2 .

Thus condition (3.1) also holds, and applying Theorem 2 the proof is done. �

Remark 3.3. In case of g(z) = ez − 1, it is easily seen that g ∈ A and h(z) =
zg′(z) = zez and Re

( zh′(z)
h(z)

)
= Re(1 + z) > 0, z ∈ U, consequently h ∈ S∗ holds.

Thus the differential inequality Re zf ′(z)
h(z) = Re f ′(z)

ez > 0, z ∈ U, defines a subclass of
C and this subclass is mapped by the Operator of Alexander in S∗.

Corollary 3.4. If 0 < r ≤
(
3− 8

1
2
) 1

4 = 0, 643... and

Re(1− r2z2)f ′(z) > 0, z ∈ U, (3.6)

then A(f) ∈ S∗.

Proof. We apply again Theorem 2 to prove this assertion. Let g : U → C be the
mapping defined by the equality: g(z) = 1

2r log 1+rz
1−rz , r ∈ (0, 1], and h(z) = zg′(z) =

z
1−r2z2 . We have to prove condition (3.1) in case of z = ρeiθ and w = ρeiα. The
following equalities hold:

Re
g′(uz)
g′(z)

1 + uw

1− uw
= Re

1− r2ρ2e2iθ

1− r2u2ρ2e2iθ

1 + uρeiα

1− uρeiα
=

(1− u2ρ2)[1 + r4u2ρ2 − r2ρ2(1 + u2) cos 2θ + 2 1−u2

1−u2ρ2 ur2ρ3 sin 2θ sinα]

|1− r2u2e2iθ|2|1− ueiα|2
. (3.7)

According to (3.7) condition (3.1) holds if and only if:

1 + r4u2ρ2 − r2ρ2(1 + u2) cos 2θ + 2
1− u2

1− u2ρ2
ur2ρ3 sin 2θ sinα ≥ 0,

ρ, u ∈ [0, 1]; θ, α ∈ R,

and this is equivalent to

1 + r4u2ρ2 − r2ρ2(1 + u2)
[
cos 2θ − 2

1− u2

(1− u2ρ2)(1 + u2)
uρ sin 2θ sinα

]
≥ 0,

ρ, u ∈ [0, 1]; θ, α ∈ R.
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Using the notation tan γ = 2uρ(1−u2) sin α
(1−u2ρ2)(1+u2) , γ ∈ (−π

2 , π
2 ) it can be rewritten as follows:

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2 sin2 α

(1− u2ρ2)2(1 + u2)2
cos(2θ + γ) ≥ 0,

u, ρ ∈ [0, 1]; θ, α ∈ R. (3.8)

According to Lemma 4 we have:

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2 sin2 α

(1− u2ρ2)2(1 + u2)2
cos(2θ + γ) ≥

1 + r4u2 − r2
√

1 + 6u2 + u4, ρ, u ∈ [0, 1]; θ, α ∈ R.

Inequality (3.8) holds provided that:

1 + r4u2 − r2
√

1 + 6u2 + u4 ≥ 0, u ∈ [0, 1].

The last inequality is equivalent to

1− r4 − 4r4u2 − r4(1− r4)u4 ≥ 0, u ∈ [0, 1],

which holds for all u ∈ [0, 1] if and only if:

1− 6r4 + r8 ≥ 0, r ∈ (0, 1]

and this leads to 0 < r ≤
(
3− 8

1
2
) 1

4 . �

Remark 3.5. 1. Since g, h ∈ A and

Re
zh′(z)
h(z)

= Re
1 + r2z2

1− r2z2
> 0, z ∈ U, r ∈ [0, 1],

follows that h ∈ S∗. Thus condition (3.6) defines a subclass of C.

2. It remains an interesting open question to determine the biggest r ∈ [0, 1]
for which the class of analytic functions defined by the conditions

f ∈ A, Re(1− r2z2)f ′(z) > 0, z ∈ U

is mapped in S∗, by the Alexander Operator.
3. Since Corollary 1 and Corollary 2 can not be proved using Theorem 1, we

may assert that Theorem 2 is independent from Theorem 1, in spite of the fact, that
the ideas of their proofs are analogous.
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