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ALEXANDER TRANSFORM OF CLOSE-TO-CONVEX FUNCTIONS

PAL AUREL KUPAN AND ROBERT SZASZ

Abstract. In this paper a result concerning the starlikeness of the im-
age of the Alexander Operator is deduced. The technique of differential
subordinations is used.

1. Introduction

Let U = {z € C: |z| < 1 be the open unit disc of the complex plane.

We denote by A the class of analytic functions defined on the unit disc U
and having the form f(2) = z + a22? + azz® + ... .

The subclass of A consisting of functions for which the domain f(U) is starlike
with respect to 0, is called the class of starlike functions, and is denoted by S*. An

analytic description of S* is

. o 2F(2) .
S _{feA.Re 8 >0, (V) eU}.

Let e € [0,1). The class of starlike functions of order « denoted by S*(«), is defined
by the equality:

S*(oz):{feA:ReZJ{;S) > a, (V)ZGU}.

Another subclass of A which we deal with, is defined by

Cz{feA|(3)geS*:ReZ§(/S)>0, zeU}.

This is the class of close-to-convex functions.

We mention that C, S* and S*(«) contain univalent functions.
The Operator of Alexander is defined by

F(2) = A(f)(2) = /O @dt. (1.1)
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In [3] it has been proved that A(C) ¢ S*.

This result put the problem to determine suitable conditions which ensure
that subclasses of C' are mapped by the Alexander operator to S*.

In [2] (pg. 310-311), the authors proved the following theorem concerning
this question:

Theorem 1.1. Let A be the operator of Alexander defined by (1.1) and let g € A
satisfy

Re Zggéz) > ‘I Z(Zgg(/i)z))/  zeU. (1.2)
If f € A satisfies
R 2f'2) >0, z€eU,
9(z)

then F' = A(f) € S*.

We will prove another result regarding this problem. We will need the fol-
lowing definitions and lemmas in our work.

2. Preliminaries
The class P is defined by the equality:
P ={f|f analytic in U, f(0) =1, and Ref(z) >0, z € U}.

Lemma 2.1. [1](The Herglotz formula) For every f € P there exists a measure i on
the interval [0,27] so that u([0,27]) =1 (a probability measure) and

I 4 ozem
1) = [ TEdute)

or in developed form

_1+22/ n—ind‘u

The converse of the theorem is also valid.

(o)
Lemma 2.2. [2] p.26 Let p(2) = a+ Y. apz®, p(z) Za and n > 1. If 20 € U and
k=n

Rep(z9) = min{Rep(z) : |z| < |z0l},
then
(i) zop'(20) < —2

and
(ii) Re [23p" (20)] + 20p' (20) < 0.
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Lemma 2.3. Iff,g € A and

1 it
// (uvz ““’Z@ “ PR udv] 20, 2 €U, tER, (2.1)

uvze i

then the inequality Re g,éjg >0, z € U implies that
F(z)

Re o)

>0, zeU, (2.2)

where F is defined by (1.1).
Proof. The developments

z)=z+ i anz"
n=2
z)=z+ i bp 2"
n=2

hold for =z e U.
The conditions of the lemma 1mply - € P and from the Herglotz formula it

follows that: )
f'(=) /”( i )
=1+2 e |du(t), z€e U
e e ©

for a suitable probability measure p.

Denoting ¢,, = 2 fOQW e~ mdu(t), we get:

) =g+ ez
n=1
= (14 ) nbyz" A+ ") =14 dp2", (2.3)
n=2 n=1 n=1
_ - dn n+1
f(2) 7z+n=1n+1z
and
(Z) — dn n
=1
z + ; (n+1)2

Thus we have

po (z 1 + E dpu dudv
and according to (2.3), this is equwalent to
27 —it
1
) (uvz) + uvze —————dudvdpu(t),
zg'(
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and the proof is finished. O
Lemma 2.4. The following inequality holds:

4u2p?(1 — u?)? sin® a
(= w22)2(1 + w22

1+ r*u? —r2V/14-6u2 +ut, p,uc[0,1];0,a € R.

cos(20 +v) >

1+T4U2p2—7"2p2\/(1+u2)2+

Proof. Tt is easily seen that:

4u2p2?(1 — u2)2 sin® o
0= w2221+ u2)? cos(260 4 ) >

1—|—r4u2p2—7’2p2\/(1+u2)2+

1+ rtu?p? — r2p2\/(1 +u?)? + i iujg;(;(_lti);y (2.4)
Since
1> p2
and
du2p?(1 — u?)?
TR e ey A
ryu, p € [0,1]

it follows that

4u?p?(1 — u?)?
4,2 2 4.2 2 2 2

—rfu® + 1714 6u? +ut > —rup  +r 1+u?)2+

- p an ) (1 —u2p?)2(1 4 u?)?

ryu, p € [0, 1].
Thus
Au2p2(1 — u2)2
1 4.2 2 _ 2 2 1 2\2 >
+rutp” —rop*y [ (1 4+ u?) +(1—u2p2)2(1+u2)2_
14+ r*u? — 214 6u2 +ut ru,p € 0,1]. (2.5)
The desiderated inequality follows by (2.4) and (2.5). O

3. Main result

Theorem 3.1. Let g € A be a function having the property:

g (uz) 14+ vw
e
g (z) 1—uw

>0, for all we(0,1) and z,w € U, |z| = |w]. (3.1)
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Provided that f € A, and the function h defined by h(z) = zg'(z) satisfies the inequal-
ity

zf'(z)
h(z)

Re >0 zeU, (3.2)

then F = A(f) € S*.
Proof.  We differentiate twice the equality F(z) = [ @ and we get: zF"(z) +

F'(2) = f'(2). If we set p(z) = ZﬁES), then this equality can be rewritten as follows:

Fz) 2.y _ 21 (2)
9 (2) (2p'(2) +p7(2)) = )
The conditions of the theorem imply:
Re[;;/((zz)) (2p/(2) + p*(2))] >0, for all z € U. (3.3)

If the inequality Rep(z) > 0 does not hold for all z € U, then according to Lemma 2
(in case of a = 1) there is a point zy € U and there are two real numbers z,y € R

having the property:

p(20) = ix
2 +1
zop' (20) =y < — 5
Thus it follows that:
F(z) / 2 F(z) 2
Re zop (20) + p° (2 = Re — ). 3.4
[zog’(zo)( Op( 0) p ( 0))] ZOg/(ZO) Yy ) ( )

Since Regjg = ReZ,{;S) > 0,z € U, Lemma 3 and condition (3.1) lead to the
F(z)

inequality Re_775 > 0, z € U. This inequality and (3.4) imply
20" (20) [ F(20)

R =R ' ’ <0

Thtea) gy (0 0] <

which contradicts (3.3). The contradiction shows that Rep(z) > 0 for all z € U, and
this is equivalent to F' € S*. ]

Corollary 3.2. If ReL2 > 0 for all z € U, then A(f) € S*.

Proof. We apply Theorem 2 to prove this assertion. In case of g(z) = e* — 1, z = re'’

and w = re!®, r € (0,1) the following equality holds:
R g/(uz> 1+ uw er(u—l)cos@(l _ u27“2)

e =
g (z) 1—uw 14 u?r?2 —2urcosa

{ cos[r(1 — u)sin6] +

2ur sin «

Tt sinfr(1 — u)sinf]} (3.5)
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There is a real number v € (=%, §) having the property tanv = 21” Sé“?. Therefore
the equality (3.5) can be rewritten in the following way:
! 1 r(u—1) cos 6 1 — u2p2
Re? (we) Lfuw e (1 =) os[r(1 —u)sinf — v].

g(z) 1—uw  (1+u2r2 — 2urcosa)cosv
This means that in order to prove condition (3.1) of Theorem 2, we have to prove the
inequality: cos[r(l —u)sinf —v] >0, r,u € (0,1), a,0 € R.

Since |r(1 — u)sinf — 11| = |r(1 — u)sinf — arctan 227500 | < (1 —u) +
2
arctan 124 < 1—u+ arctan 24, and ¢'(u) = (7% > 0 where ¢ : (0,1) —

R, ¢(u) = 1—u + arctan

lim, 1 (u) = 3.
Thus condition (3.1) also holds, and applying Theorem 2 the proof is done. O

2%, the inequality follows |r(1 — u)sin6 — v

Remark 3.3. In case of g¢(z) = e — 1, it is easily seen that g € A and h(z) =
29'(z) = ze* and Re(Zh (i)) = Re(1 +2) > 0, z € U, consequently h € S* holds.
Thus the differential inequality ReZ-%2 Zf (z) = Rel 2 ( ) >0, z € U, defines a subclass of

C and this subclass is mapped by the Operator of Alexander in S*.
Corollary 3.4. If 0 <r < (3 — 8%)% =0,643... and

Re(1 —r223)f'(2) >0, z€U, (3.6)

then A(f) € S*.
Proof. We apply again Theorem 2 to prove this assertion. Let g : U — C be the
mapping defined by the equality: g(z) = 5= log 122, r € (0,1], and h(z) = z¢'(z) =

1—rz>

=22z We have to prove condition (3.1) in case of z = pe? and w = pe'®. The

following equalities hold:
g (uz) 14+ uw 1—1r2p2e?0 1+ upe'

g(z) 1—uw — 1-—r u2p €20 1 — ypeie B
(1 —u?p?)[1 +rtu?p® — r2p?(1 + u?) cos 20 + 2{=4 e *ur?p? sin 20'sin
‘]_ _T2u26210|2|1 uewz‘Q '

According to (3.7) condition (3.1) holds if and only if:

(3.7)

2

1—
1+ r*u?p? — r2p?(1 + u?) cos 20 + 2 ur®p? sin 20 sin o > 0,

-
1 — u2p?
puc01:6,a R,

and this is equivalent to

1—u?

= @A)+ )
p,u €10,1];0,a € R.

1+ rtu?p? —r?p (1+u2)[c0529—2 upsin%‘sina] >0,
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2\ .
Using the notation tany = %, v € (=%, %) it can be rewritten as follows:

4u2p?(1 — u2)? sin® o
A—wPa+ ey S0

u,p €10,1];0,a € R. (3.8)

1+ rtu?p® — rzpz\/(l +u?)? +

According to Lemma 4 we have:

4u2p2(1 — u2)2 sin® o
(1= w2?)2(1 + w22

1+ rtu? — 7214 6u2 +ut, p,u € [0,1];60, 0 € R.

1+ rtu?p? —r2p2\/(1—|—u2)2 + cos(20 + ) >

Inequality (3.8) holds provided that:
1+ rt? — TQW >0, uelo1].
The last inequality is equivalent to
1—rt —4rtu® — (1 — Mt >0, ueo,1],
which holds for all w € [0, 1] if and only if:
1—6rt+78>0, re(0,1]

N
and this leads t00<7°§(3—85)4. O
Remark 3.5. 1. Since g,h € A and

zh'(2) 14 7222
R =R 0 U 0,1
eh(z) e 5,5 >0z € , r€[0,1],

follows that h € S*. Thus condition (3.6) defines a subclass of C.
2. It remains an interesting open question to determine the biggest r € [0, 1]

for which the class of analytic functions defined by the conditions
feA Re(1-7222)f'(2) >0, z€ U

is mapped in S*, by the Alexander Operator.
3. Since Corollary 1 and Corollary 2 can not be proved using Theorem 1, we
may assert that Theorem 2 is independent from Theorem 1, in spite of the fact, that

the ideas of their proofs are analogous.
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