STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume \mathbf{LV} , Number 2, June 2010

ON A NEW SEQUENCE SPACE DEFINED BY MUSIELAK-ORLICZ FUNCTIONS

VAKEEL A. KHAN

Abstract. In this paper we define a new sequence space $m(\mathcal{M}, \phi, p)$, which is a generalization of $m(\phi, p)$ (B. C. Tripathy and M. Sen [12]) by Musielak-Orlicz functions. We study some of the properties of this space.

1. Introduction

An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \to \infty$ as $x \to \infty$. If convexity of Orlicz function M is replaced by

$$M(x+y) \le M(x) + M(y)$$

then this function is called a modular function, defined and discussed by Nakano [10] and Musielak [7] and others. It is well known that if M is a convex functions and M(0) = 0, then $M(\lambda x) \leq \lambda M(x)$ for all λ with $0 < \lambda < 1$ (see [1], [2], [9]).

Lindendstrauss and Tzafriri [5] used the idea of Orlicz function to construct the sequence space

$$\ell_M = \left\{ x = (x_k) : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \text{ for some } \rho > 0 \right\}.$$

The space ℓ_M with the norm

$$||x|| = \inf\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\}$$

becomes a Banach space which is called an Orlicz sequence space. For $M(x) = x^p$, $1 \le p < \infty$, the space ℓ_M coincides with the classical sequence space l_p .

Received by the editors: 05.01.2009.

 $^{2000\} Mathematics\ Subject\ Classification.\ 40A05,\ 46A45.$

Key words and phrases. Symmetric space, normal space, completeness, Banach space, Orlicz-function, Musielak-Orlicz function.

VAKEEL A. KHAN

A sequence $\mathcal{M} = (M_k)$ of Orlicz functions is called a Musielak-Orlicz function [See [3], [4], [6], [7]). In addition, a **Musielak-Orlicz function** $N = (N_k)$ is called a complementary function of a Musielak-Orlicz function \mathcal{M} if

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\}, \ k = 1, 2, \cdots$$

For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $l_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows:

$$l_{\mathcal{M}} := \{ x \in s : I_{\mathcal{M}}(cx) < \infty \text{ for some } c > 0 \},\$$

$$h_{\mathcal{M}} := \{ x \in s : I_{\mathcal{M}}(cx) < \infty \text{ for all } c > 0 \},\$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} M_k(x_k), \ x = (x_k) \in l_{\mathcal{M}}.$$

We consider $l_{\mathcal{M}}$ equipped with the Luxemburg norm

$$||x|| = \inf\{k > 0 : I_{\mathcal{M}}(\frac{x}{k}) \le 1\},\$$

or equipped with the Orlicz norm

$$||x||^{0} = \inf\{\frac{1}{k}(1 + I_{\mathcal{M}}(kx)) : k > 0\}.$$

If $x = (x_n)$ is a sequence, then S(x) denotes the set of all permutation of the elements of (x_n) . A sequence space E is said to be symmetric if $S(x) \subset E$ for all $x \in E$. A sequence space E is said to be solid if $(y_n) \in E$ whenever $(x_n) \in E$ and $|y_n| \leq |x_n|$ for all $n \in \mathbb{N}$.

A BK-space is a Banach sequence space E in which the coordinate maps are continuous, i.e. if $(x_k^{(n)})_k \in E$, then

$$||(x_k^{(n)}) - (x_k)|| \to 0 \text{ as } n \to \infty$$

 $\Rightarrow |(x_k^{(n)}) - (x_k)| \to 0 \text{ as } n \to \infty, \text{ for each fixed k}$

Let \mathcal{C} denote the space whose elements are finite sets of distinct positive integers. Given any element σ of \mathcal{C} , we denote by $c(\sigma)$ the sequence $\{c_n(\sigma)\}$ which is such that $c_n(\sigma) = 1$ if $n \in \sigma$, $c_n(\sigma) = 0$ otherwise. Further, let

$$C_s = \left\{ \sigma \in \mathcal{C} : \sum_{n=1}^{\infty} c_n(\sigma) \le s \right\} (\text{cf.}[8]),$$

be the set of those σ whose support has cardinality at most s. Throughout the paper ϕ_n denotes a non-decreasing sequence of positive numbers such that $n\phi_{n+1} \leq (n+1)\phi_n$ for all $n \in \mathbb{N}$.

ON A NEW SEQUENCE SPACE DEFINED BY MUSIELAK-ORLICZ FUNCTIONS

The space $m(\phi)$ is defined as follows (Sargent [11]):

$$m(\phi) := \left\{ x = (x_k) \in \omega : \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |x_k| < \infty \right\}.$$

The space $m(\phi, p)$ is defined as follows (B.C. Tripathy and M. Sen [12]): For $1 \le p < \infty$,

$$m(\phi,p) := \left\{ x = (x_k) \in \omega : \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \sup_{\phi_s} \left\{ \sum_{k \in \sigma} |x_k|^p \right\}^{1/p} < \infty \right\}.$$

In this paper we introduce the space $m(\mathcal{M}, \phi, p)$ as follows:

Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function. We define the following sequence space

$$m(\mathcal{M},\phi,p) := \left\{ x = (x_k) \in \omega : \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \left\{ \sum_{k \in \sigma} \left[M_k \left(\frac{|x_k|}{\rho} \right) \right]^p \right\}^{1/p} < \infty, \text{ for some } \rho > 0 \right\}.$$

It is clear that if $M_k(x) = x$ then $m(\mathcal{M}, \phi, p) = m(\phi, p)$.

Throughout ω , l^p , l^1 , l^∞ denote the spaces of all *p*-absolutely summable, absolutely summable and bounded sequences respectively. N and C denotes the set of all natural numbers and complex numbers, respectively.

2. Main results

Theorem 2.1. The space $m(\mathcal{M}, \phi, p)$ is complete.

Proof. Let $\{x^{(n)}\}$ be a Cauchy sequence in $m(\mathcal{M}, \phi, p)$. Then

$$\sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \left\{ \sum_{i \in \sigma} \left[M_i \left(\frac{|x_i|}{\rho} \right) \right]^p \right\}^{1/p} < \infty,$$

for some $\rho > 0$ and for all $n \ n = 1, 2, 3, \cdots$).

For each $\epsilon > 0$, there exists a positive integer n_0 such that

$$|x^{(m)} - x^{(n)}||_{m(\mathcal{M},\phi,p)} < \epsilon$$
, for all $m, n \ge n_0$.

This implies that

$$\sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \left\{ \sum_{i \in \sigma} \left[M_i \left(\frac{|x_i^{(m)} - x_i^{(n)}|}{\rho} \right) \right]^p \right\}^{1/p} < \epsilon,$$
(2.1)

for some $\rho > 0$ and for all $m, n \ge n_0$.

Hence

$$|x_i^{(m)} - x_i^{(n)}| < \epsilon \phi_1 \text{ for all } m, n \ge n_0 \text{ and for all } i \in \mathbb{N},$$

145

VAKEEL A. KHAN

showing that for each fixed $i~(1\leq i<\infty),$ the sequence $\{x_i^{(n)}\}$ is a Cauchy sequence in $\mathbb C.$

Let $x_i^{(n)} \to x_i$ as $n \to \infty$. We define $x = (x_1, x_2, x_3, \cdots)$. We need to show that $x \in m(\mathcal{M}, \phi, p)$ and $x^{(n)} \to x$.

From (2.1) we get, for each fixed s

$$\sum_{i \in \sigma} \left[M_i \left(\frac{|x_i^{(m)} - x_i^{(n)}|}{\rho} \right) \right]^p < \epsilon^p \phi_s^p , \text{ for some } \rho > 0, \text{ for all } m, n \ge n_0 \text{ and } \sigma \in \mathcal{C}_s.$$

Taking $n \to \infty$ we get

$$\sum_{i\in\sigma} \left[M_i\left(\frac{|x_i^{(m)} - x_i^{(n)}|}{\rho}\right) \right]^p < \epsilon^p \phi_s^{-p} , \text{ for some } \rho > 0, \text{ for all } m, n \ge n_0 \text{ and } \sigma \in \mathcal{C}_s.$$

This implies that

$$\sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \left\{ \sum_{i \in \sigma} \left[M_i \left(\frac{|x_i^{(m)} - x_i|}{\rho} \right) \right]^p \right\}^{1/p} < \epsilon,$$
(2.2)

for some $\rho > 0$ and for all $m, n \ge n_0$.

$$\Rightarrow x^{(n)} - x \in m(\mathcal{M}, \phi, p), \text{ for all } n \ge n_0.$$

Hence $x = x^{(n_0)} + x - x^{(n_0)} \in m(\mathcal{M}, \phi, p)$ as $m(\mathcal{M}, \phi, p)$ is a linear space. From (2.2)

$$||x^{(n)} - x||_{m(\mathcal{M},\phi,p)} < \epsilon$$
, for all $n \ge n_0$,

which implies that

$$||x^{(n)} - x||_{m(\mathcal{M},\phi,p)} \to 0$$
, as $n \to \infty$.

Hence $m(\mathcal{M}, \phi, p)$ $(1 \le p < \infty)$ is a Banach space.

Theorem 2.2. The space $m(\mathcal{M}, \phi, p)$ is a BK-space.

Proof. Suppose that

$$||x^{(n)} - x||_{m(\mathcal{M},\phi,p)} \to 0 \text{ as } n \to \infty.$$

For each $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that

$$||x^{(n)} - x|| < \epsilon \text{ for all } n \ge n_0.$$

This implies that

$$\sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \left\{ \sum_{k \in \sigma} \left[M_k \left(\frac{|x_k^{(n)} - x_k|}{\rho} \right) \right]^p \right\}^{1/p} < \epsilon, \text{ for some } \rho > 0 \text{ and for all } n \ge n_0.$$
146

ON A NEW SEQUENCE SPACE DEFINED BY MUSIELAK-ORLICZ FUNCTIONS

Consequently

$$|x_k^{(n)} - x_k| < \epsilon \phi_1$$
, for all $n \ge n_0$ and for all k .

So $|x_k^{(n)} - x_k| \to 0$ as $n \to \infty$ and the proof is complete.

Proposition 2.3. 1. The space $m(\mathcal{M}, \phi, p)$ is a symmetric space. If $x \in m(\mathcal{M}, \phi, p)$ and $v \in S(x)$, then $||v||_{m(\mathcal{M},\phi,p)} = ||x||_{m(\mathcal{M},\phi,p)}$.

2. The space $m(\mathcal{M}, \phi, p)$ is a normal space.

Proposition 2.4. $m(\phi) \subseteq m(\mathcal{M}, \phi, p)$.

Proof. Suppose that $x \in m(\phi)$. Then

$$||x||_{m(\phi)} = \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \left\{ \sum_{n \in \sigma} |x_n| \right\} = K < \infty.$$

Hence for each fixed s,

$$\sum_{n\in\sigma}|x_n|\leq K\phi_s,\ \sigma\in\mathcal{C}_s.$$

This implies that

$$\left\{\sum_{n\in\sigma} \left[M_n\left(\frac{|x_n|}{\rho}\right)\right]^p\right\}^{1/p} \le K\phi_s, \ \sigma\in\mathcal{C}_s, \text{ for some } \rho>0,$$

so that

$$\sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \left[\frac{1}{\phi_s} \left\{ \sum_{n \in \sigma} \left[M_n \left(\frac{|x_n|}{\rho} \right) \right]^p \right\}^{1/p} \right] \le K, \text{ for some } \rho > 0.$$

Thus $x \in m(\mathcal{M}, \phi, p)$ and this completes the proof.

Proposition 2.5. $m(\mathcal{M}, \phi, p) \subseteq m(\mathcal{M}, \psi, p)$ if and only if $\sup_{s \ge 1} \left(\frac{\phi_s}{\psi_s}\right) < \infty$. *Proof.*Let $\sup_{s \ge 1} \left(\frac{\phi_s}{\psi_s}\right) = K < \infty$. Then $\phi_s \le K\psi_s$. Now if $(x_k) \in m(\mathcal{M}, \phi, p)$, then

$$\sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \left[\frac{1}{\phi_s} \left\{ \sum_{n \in \sigma} \left[M_n \left(\frac{|x_n|}{\rho} \right) \right]^p \right\}^{1/p} \right] < \infty, \text{ for some } \rho > 0$$

This implies that

$$\sup_{s\geq 1} \sup_{\sigma\in\mathcal{C}_s} \left[\frac{1}{K\psi_s} \left\{ \sum_{n\in\sigma} \left[M_n\left(\frac{|x_n|}{\rho}\right) \right]^p \right\}^{1/p} \right] < \infty, \text{ for some } \rho > 0.$$

so that

$$||x||_{m(\mathcal{M},\psi,p)} < \infty.$$

Hence $m(\mathcal{M}, \phi, p) \subseteq m(\mathcal{M}, \psi, p)$.

147

VAKEEL A. KHAN

Conversely, suppose that $m(\mathcal{M}, \phi, p) \subseteq m(\mathcal{M}, \psi, p)$. We need to show that

$$\sup_{s\geq 1}(\frac{\phi_s}{\psi_s}) = \sup_{s\geq 1}(\eta_s) < \infty.$$

Let $\sup_{s\geq 1}(\eta_s) = \infty$. Then there exists a subsequence (η_{s_i}) of (η_s) such that

$$\lim_{i \to \infty} (\eta_{s_i}) = \infty.$$

Then for $(x_k) \in m(\mathcal{M}, \phi, p)$ we have

$$\sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \left[\frac{1}{\psi_s} \left\{ \sum_{n \in \sigma} \left[M_n \left(\frac{|x_n|}{\rho} \right) \right]^p \right\}^{1/p} \right]$$
$$\geq \sup_{s_i \ge 1} \sup_{\sigma \in \mathcal{C}_{s_i}} \left[\psi_{s_i} \frac{1}{\phi_{s_i}} \left\{ \sum_{n \in \sigma} \left[M_n \left(\frac{|x_n|}{\rho} \right) \right]^p \right\}^{1/p} \right] = \infty,$$

for some $\rho > 0$.

This implies that $(x_k) \notin m(\mathcal{M}, \psi, p)$, a contradiction which completes the proof. \Box

Theorem 2.6. $l^p \subseteq m(\mathcal{M}, \phi, p) \subset l^{\infty}$.

Proof. Since $m(\mathcal{M}, \phi, p) = l^p$ for $M_k(x) = x$ and $\phi_n = 1$, for all $n \in \mathbb{N}$, it follows that $l^p \subseteq m(\mathcal{M}, \phi, p)$.

Next, let $x \in m(\mathcal{M}, \phi, p)$. Then

$$\sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \left[\frac{1}{\phi_s} \left\{ \sum_{n \in \sigma} \left[M_n \left(\frac{|x_n|}{\rho} \right) \right]^p \right\}^{1/p} \right] = K < \infty, \text{ for some } \rho > 0$$

This implies that

$$|x_n| \leq K\phi_1$$
, for all $n \in \mathbb{N}$,

so that $x \in l^{\infty}$. Thus $m(\mathcal{M}, \phi, p) \subset l^{\infty}$.

References

- Y. A. Cui, On some geometric properties in Musielak-Orlicz sequence spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York and Basel, 213, 2000.
- [2] J. Diestel, Sequences and Series in Banach spaces, Graduate Texts in Math. 92, Springer-Verlag, New York, 1984.
- [3] V. A. Khan, Q. M. D. Lohani, Some new difference sequence spaces defined by Musielak Orlicz function, Thai J. Math., 6(1)(2008), 215-223.
- [4] V. A. Khan, On Riesz Musielak-Orlicz Sequence Space, Numer. Funct. Anal. Optimi, 28(7-8)(2007), 883-895.

ON A NEW SEQUENCE SPACE DEFINED BY MUSIELAK-ORLICZ FUNCTIONS

- [5] J. Lindenstrauss, L. Tzafriri, L., On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
- [6] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- [7] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, 1983.
- [8] M. Mursaleen, Some geometric properties of a new sequence space related to l_p, Bull. Aust. Math. Soc., 67(2003), 343-347.
- M. Mursaleen, Mushir, Qamaruddin, Some difference sequence spaces defined by Orlicz functions, Matimyas Mathematica, 24(1)(2001), 42-47.
- [10] H. Nakano, Modulared sequence spaces, Proc. Jap. Acad., 27(1951).
- [11] W. L. C. Sargent, Some sequence spaces related to the ℓ^p spaces, J. London Math. Soc., ${\bf 35}(1960),\,161\text{-}171.$
- [12] B. C. Tripathy, M. Sen, On a new class of sequences related to the space l^p, Tamkang Journal of Mathematics, 33(2002), 167-171.

DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH, INDIA *E-mail address*: vakhan@math.com