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THE RATE OF APPROXIMATION OF FUNCTIONS
IN AN INFINITE INTERVAL BY POSITIVE LINEAR OPERATORS

ADRIAN HOLHOŞ

Abstract. We obtain an estimation, in the uniform norm, of the rate of

the approximation by positive linear operators of functions defined on the

positive half line that have a finite limit at the infinity.

1. Introduction

Let us denote by C∗[0,∞), the Banach space of all real-valued continuous
functions on [0,∞) with the property that limx→∞ f(x) exists and is finite, endowed
with the uniform norm. In [2], it is proved the following theorem:

Theorem 1.1. If the sequence An : C∗[0,∞) → C∗[0,∞) of positive linear operators
satisfies the conditions

lim
n→∞

An(e−kt, x) = e−kx, k = 0, 1, 2,

uniformly in [0,∞), then
lim

n→∞
Anf(x) = f(x),

uniformly in [0,∞), for every f ∈ C∗[0,∞).

In [1], it is proved the above theorem in a more general setting. In the same
book, the authors give the results for the particular operators of Szász-Mirakjan, of
Baskakov and of Bernstein-Chlodovsky.

In the following, we obtain an estimation of the rate of convergence of op-
erators satisfying the conditions from the above theorem, first, in the general form
and then, for the particular cases presented above. For this estimation, we use the
following modulus of continuity:

ω∗(f, δ) = sup
x,t≥0

|e−x−e−t|≤δ

|f(x)− f(t)|,
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defined for every δ ≥ 0 and every function f ∈ C∗[0,∞). This modulus can be
expressed in terms of the usual modulus of continuity, by the relation:

ω∗(f, δ) = ω(f∗, δ),

where f∗ is the continuous function defined on [0, 1] by

f∗(x) =

{
f(− lnx), x ∈ (0, 1]
limt→∞ f(t), x = 0.

Remark 1.2. Because |e−t − e−x| ≤ |t− x|, for every t, x ≥ 0, we have for δ ≥ 0

ω(f, δ) ≤ ω∗(f, δ),

and because |e−t − e−x| = e−θ|t− x| ≥ e−M |t− x|, for every t, x ∈ [0,M ], we have

ω∗(f, δ) ≤ ω(f, eMδ) ≤ (1 + eM ) · ω(f, δ).

2. Main result

Theorem 2.1. If An : C∗[0,∞) → C∗[0,∞) is a sequence of positive linear operators
with

‖An1− 1‖∞ = an,

‖An(e−t, x)− e−x‖∞ = bn,∥∥An(e−2t, x)− e−2x
∥∥
∞ = cn,

where an, bn and cn tend to zero as n goes to the infinity, then

||Anf − f ||∞ ≤ ‖f‖∞ an + (2 + an) · ω∗
(
f,
√

an + 2bn + cn

)
,

for every function f ∈ C∗[0,∞).

Proof. Using the property of the usual modulus of continuity

|F (u)− F (v)| ≤
(

1 +
(u− v)2

δ2

)
ω(F, δ),

for the function F = f∗ and for u = e−t and v = e−x and using the relation f∗(e−t) =
f(t), we obtain

|f(t)− f(x)| ≤
(

1 +
(e−t − e−x)2

δ2

)
ω∗(f, δ).

Because

An((e−t−e−x)2, x) = [An(e−2t, x)−e−2x]−2e−x[An(e−t, x)−e−x]+e−2x[An(1, x)−1]
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we obtain

An(|f(t)− f(x)|, x) ≤
(

An(1, x) +
An((e−t − e−x)2, x)

δ2

)
ω∗(f, δ)

≤
(

1 + an +
an + 2bn + cn

δ2

)
ω∗(f, δ).

Choosing δ =
√

an + 2bn + cn and using the inequality

|Anf(x)− f(x)| ≤ |f(x)| · |An(1, x)− 1|+ An(|f(t)− f(x)|, x),

we obtain, in the uniform norm, the estimation stated in the theorem. �

Remark 2.2. Because all positive linear operators L can be modified to preserve
constant functions, L̃f = 1

L1Lf , we can take an = 0 in the theorem above and obtain:

||Anf − f ||∞ ≤ 2 · ω∗(f,
√

2bn + cn).

Remark 2.3. If we restrict ourselves on a compact interval [0,M ] and if we use the
Remark 1.2, we obtain an estimation using the usual modulus of continuity:

||Anf − f ||∞ ≤ C · ω
(
f,
√

2bn + cn

)
.

We have used the Korovkin subset
{

1, e−x, e−2x
}

for C∗[0,∞), but as sug-
gested in the article [3], we can use any other Korovkin subset for this space, such as
for example

{
1, x

1+x , x2

(1+x)2

}
. In this case we can introduce

ω#(f, δ) = sup
x,t≥0

| x
1+x−

t
1+t |≤δ

|f(x)− f(t)|,

defined for every δ ≥ 0 and every function f ∈ C∗[0,∞). This modulus can be
expressed in terms of the usual modulus of continuity, by the relation:

ω#(f, δ) = ω(f#, δ),

where f# is the continuous function defined on [0, 1] by

f#(x) =

{
f
(

x
1−x

)
, x ∈ [0, 1)

limt→∞ f(t), x = 1.

Because of
∣∣∣ x
1+x −

t
1+t

∣∣∣ ≤ |x− t|, where x, t ≥ 0, we have

ω(f, δ) ≤ ω#(f, δ),

and because
∣∣∣ x
1+x −

t
1+t

∣∣∣ ≥ |x−t|
(1+M)2 , for x, t ∈ [0,M ], we obtain

ω#(f, δ) ≤ ω(f, (1 + M)2δ) ≤ (1 + M)2 · ω(f, δ),

where M > 0, is an integer. We have the following
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Theorem 2.4. If An : C[0,∞) → C[0,∞) is a sequence of positive linear operators
which preserves linear functions and

sup
x≥0

|An(t2, x)− x2|
(1 + x)2

= dn,

is a sequence which tends to zero as n goes to the infinity, then

||Anf − f ||∞ ≤ 2 · ω#
(
f,
√

dn

)
,

for every function f ∈ C∗[0,∞).

Proof. Using the property of the usual modulus of continuity

|F (u)− F (v)| ≤
(

1 +
(u− v)2

δ2

)
ω(F, δ),

for the function F = f# and for u = t/(1+t) and v = x/(1+x) and using the relation
f#(t/(1 + t)) = f(t), we obtain

|f(t)− f(x)| ≤

[
1 +

1
δ2

(
t

1 + t
− x

1 + x

)2
]

ω#(f, δ) ≤
(

1 +
(t− x)2

δ2(1 + x)2

)
ω#(f, δ).

Because
An(t− x)2, x) = An(t2, x)− x2

we obtain

|Anf(x)− f(x)| ≤ An(|f(t)− f(x)|, x) ≤
(

1 +
dn

δ2

)
ω#(f, δ).

Choosing δ =
√

dn we obtain, in the uniform norm, the estimation stated in the
theorem. �

3. Applications

In order to obtain particular results, we use the following

Lemma 3.1. For every x > 0 we have

e−xαn − e−x <
xn

2e
, for every n ≥ 1,

where αn = 1−e−xn

xn
and xn > 0, for every n ≥ 1.

Proof. First, let us notice that

max
x>0

xe−cx =
1
ec

, for every c > 0. (3.1)

Indeed, the point t = 1/c is a maximum point for f(t) = te−ct, t > 0.
Secondly, let us notice that 0 < an < 1, for every n ≥ 1. This is true, because

of the inequality 1− e−x < x, for x 6= 0.
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Next, using the inequalities between geometric, logarithmic and arithmetic
means

√
uv <

u− v

lnu− ln v
<

u + v

2
, for 0 < v < u,

for the values u = e−xαn > v = e−x > 0, we obtain

e−xαn − e−x <
e−xαn + e−x

2
· x(1− αn) =

1− αn

2
(
xe−xαn + xe−x

)
.

Using (3.1), we obtain

e−xαn − e−x ≤ 1− αn

2

(
1

eαn
+

1
e

)
=

1− α2
n

2eαn
.

It remain to prove that 1−α2
n

αn
< xn, which is a particular case of

1−
(

1−e−x

x

)2

1−e−x

x

< x, for x > 0.

This is equivalent with x2e−x + 2e−x − 1 − e−2x < 0, for x > 0, which is true by an
elementary calculus argument. �

Corollary 3.2. For the Szász-Mirakjan operators Mn : C∗[0,∞) → C∗[0,∞) defined
by

Mnf(x) = e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
,

we have for f ∈ C∗[0,∞), the estimations

||Mnf − f ||∞ ≤ 2 · ω∗
(

f,
1√
n

)
, n ≥ 1,

and

||Mnf − f ||∞ ≤ 2 · ω#

(
f,

1
2
√

n

)
, n ≥ 1.

Proof. We have Mn(1, x) = 1, so an = 0. We, also, have

Mn(e−λt, x) = e−λx 1−e−λ/n

λ/n ,

which gives, by Lemma 3.1

|Mn(e−λt, x)− e−λx| ≤ λ

2en
.

It follows that
bn ≤

1
2en

and cn ≤
1
en

, for n ≥ 1,

and because
an + 2bn + cn ≤

2
2en

+
1
en

≤ 1
n

, for n ≥ 1,

we obtain the estimation stated in the theorem.
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Because Mn(t, x) = x and Mn(t2, x) = x2 + x
n , we obtain

dn = sup
x≥0

|Mn(t2, x)− x2|
(1 + x)2

= sup
x≥0

x

n(1 + x)2
=

1
4n

.

�

Corollary 3.3. For the Baskakov operators Vn : C∗[0,∞) → C∗[0,∞) defined by

Vnf(x) =
∞∑

k=0

(
n + k − 1

k

)
xk

(1 + x)n+k
f

(
k

n

)
,

we have for f ∈ C∗[0,∞), the estimations

||Vnf − f ||∞ ≤ 2 · ω∗
(

f,
5

2
√

n

)
, n ≥ 2,

and

||Vnf − f ||∞ ≤ 2 · ω#

(
f,

1√
n

)
, n ≥ 1.

Proof. From the identity Vn(1, x) = 1, we deduce an = 0. Computing

Vn(e−λt, x) =
∞∑

k=0

(
−n

k

)
(−xe−λ/n)k(1 + x)−n−k =

(
−xe−λ/n + 1 + x

)−n

,

we obtain

|Vn(e−λt, x)− e−λx| = |[1 + x(1− e−λ/n)]−n − e−λx|

= e−λx
∣∣∣e−n ln(1+x(1−e−λ/n))+λx − 1

∣∣∣
≤

[
−n ln

(
1 + x(1− e−λ/n)

)
+ λx

]
· e−n ln(1+x(1−e−λ/n)),

where, we have used the inequality et − 1 ≤ tet for

t = −n ln
(
1 + x(1− e−λ/n)

)
+ λx ≥ −nx(1− e−λ/n) + λx ≥ −nx · λ

n
+ λx = 0.

Because ln(1 + t) ≥ t/(1 + t), for every t ≥ 0, we obtain

|Vn(e−λt, x)− e−λx| ≤ −nx(1− e−λ/n) + λx + λx2(1− e−λ/n)(
1 + x(1− e−λ/n)

)n+1

≤ −nx(1− e−λ/n) + λx + λx2(1− e−λ/n)

1 + (n + 1)x(1− e−λ/n) + n(n+1)
2 x2(1− e−λ/n)2

.

Because 1− e−λ/n ≥ λ/n− λ2/(2n2), we get from the above inequality

sup
x≥0

|Vn(e−λt, x)− e−λx| ≤ 2λ

n(n + 1)(1− e−λ/n)
.
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Using the same inequality, we obtain

bn = sup
x≥0

|Vn(e−t, x)− e−x| ≤ 2
n(n + 1)

(
1
n −

1
2n2

) ≤ 2
n

, for n ≥ 1

and using 1− e−2/n ≥ 2/n− 2/n2 + 4/(3n3)− 2/(3n4), we have

cn = sup
x≥0

|Vn(e−2t, x)− e−2x| ≤ 4
n(n + 1)

(
2
n −

2
n2 + 4

3n3 − 2
3n4

) =
h(n)

n
,

where h(t) = 6t4/((t + 1)(3t3 − 3t2 + 2t− 1)). Because

h′(t) =
6t3

(t + 1)2(3t3 − 3t2 + 2t− 1)
(−2t2 + 3t− 4) < 0, t ≥ 1,

we obtain h(n) ≤ h(2) = 32/15, for n ≥ 2. Finally, we obtain√
an + 2bn + cn ≤

1√
n

√
4 +

32
15

≤ 5
2
√

n
.

Because Vn(t, x) = x and Vn(t2, x) = x2 + x(1 + x)/n, we obtain

dn = sup
x≥0

|Vn(t2, x)− x2|
(1 + x)2

= sup
x≥0

x

n(1 + x)
=

1
n

.

�

Corollary 3.4. For the Bernstein-Chlodovsky operators Cn : C∗[0,∞) → C∗[0,∞)
defined by

Cnf(x) =
n∑

k=0

f

(
k

n
βn

)(
n

k

)(
x

βn

)k (
1− x

βn

)n−k

,

for 0 ≤ x ≤ βn and Cnf(x) = f(x), for x > βn, where βn is a sequence of positive
numbers such that

lim
n→∞

βn = ∞ and lim
n→∞

βn

n
= 0,

we have for f ∈ C∗[0,∞), the estimations

||Cnf − f ||∞ ≤ 2 · ω∗
(

f,

√
βn

n

)
, n ≥ 1,

and

||Cnf − f ||∞ ≤ 2 · ω#

(
f,

√
βn

4n

)
, n ≥ 1.

Proof. From the identity Cn(1, x) = 1, we deduce an = 0. Computing

Cn(e−λt, x) =
n∑

k=0

(
n

k

)(
x

βn
e−λβn/n

)k (
1− x

βn

)n−k

=
(

e−λβn/n x

βn
+ 1− x

βn

)n

,
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we obtain

|Cn(e−λt, x)− e−λx| =

∣∣∣∣∣
(

1− λx
1− e−λβn/n

λβn

)n

− e−λx

∣∣∣∣∣
=

∣∣∣en ln(1− x
βn

(1−e−λβn/n)) − e−λx
∣∣∣

≤ e−λx 1−e−λβn/n

λβn/n − e−λx,

because ln(1− t) ≤ −t, for every t ∈ (0, 1). Using Lemma 3.1, we obtain

|Cn(e−λt, x)− e−λx| ≤ λβn

2en
.

This gives the estimations

bn ≤
βn

2en
and cn ≤

βn

en
, so an + 2bn + cn ≤

βn

n
.

Because Cn(t, x) = x and Cn(t2, x) = x2 + x(βn−x)
n , we obtain

dn = sup
x≥0

|Cn(t2, x)− x2|
(1 + x)2

= sup
x∈[0,βn]

x(βn − x)
n(1 + x)2

=
β2

n

4n(1 + βn)
≤ βn

4n
.

�

Corollary 3.5. For the Bleimann-Butzer-Hahn operators Ln : C∗[0,∞) → C∗[0,∞)
defined by

Ln(f, x) =
n∑

k=0

(
n

k

)
xk(1 + x)−nf

(
k

n− k + 1

)
we have

‖Lnf − f‖∞ ≤ 2 · ω#

(
f,

2√
n + 1

)
, n ≥ 1, f ∈ C∗[0,∞).

Proof. For the proof, we use the argument from Theorem 2.1 for the test functions
xk/(x + 1)k instead of e−kx and the modulus ω# (f, δ) instead of ω∗ (f, δ).

Because Ln(1, x) = 1 we have an = ‖Ln1− 1‖∞ = 0. From the equalities
(see [5])

Ln

(
t

1 + t
, x

)
=

nx

(1 + n)(1 + x)

Ln

((
t

1 + t

)2

, x

)
=

n2x2

(1 + n)2(1 + x)2
+

nx

(1 + n)2(1 + x)2

we obtain

bn = sup
x≥0

∣∣∣∣Ln

(
t

1 + t
, x

)
− x

1 + x

∣∣∣∣ = 1
n + 1
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and

cn = sup
x≥0

∣∣∣∣∣Ln

((
t

1 + t

)2

, x

)
−
(

x

1 + x

)2
∣∣∣∣∣ = sup

x≥0

∣∣nx− x2(2n + 1)
∣∣

(1 + n)2(1 + x)2
.

After some computations cn = 2n+1
(n+1)2 , which gives

an + 2bn + cn ≤
4

n + 1
,

and so the corollary is proved. �

Remark 3.6. In the papers [5] and [4], it is defined the space Hw: for a function w

of the type of modulus of continuity, having the properties:
(i) w is non-negative increasing function on [0,∞),
(ii) limδ→0 w(δ) = 0,

the space Hw consists of all real-valued functions f defined on the semiaxis [0,∞),
satisfying the following condition:

|f(x)− f(y)| ≤ w

(∣∣∣∣ x

1 + x
− y

1 + y

∣∣∣∣) , for all x, y ≥ 0.

It is proved that Hw ⊂ C[0,∞) ∩ B[0,∞) and ‖Lnf − f‖∞ → 0, for f ∈ Hw. But,
let us notice that Hw ⊂ C∗[0,∞). Indeed, considering ϕ(x) = x/(1 − x), x ∈ [0, 1),
the inverse of the function t 7→ t/(1 + t) and considering f ∈ Hw, we have∣∣∣∣f ( u

1− u

)
− f

(
v

1− v

)∣∣∣∣ ≤ w(|u− v|), for all u, v ∈ [0, 1).

Using the property (ii) of w, we deduce that f ◦ ϕ is uniformly continuous on [0, 1).
From this, it follows that f ◦ϕ has finite limit at x = 1, which proves that f has finite
limit at infinity.

So, the result obtained in Corollary 3.5 for the space C∗[0,∞) is more general
than the results obtained in the papers mentioned above.
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