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AN INVERSION OF ONE CLASS OF INTEGRAL OPERATOR
BY L. A. SAKHNOVICH’S OPERATOR IDENTITY METHOD

RAED HATAMLEH, AHMAD QAZZA, AND MOHAMMAD AL-HAWARI

Abstract. An inversion problem of integral operator in the form

Sf =
d3

dx3

ω∫
0

S(x, t)f(t)dt

under the condition that the kernel S(x, t) satisfies the equation

(∂3
x + ∂3

t )S(x, t) = 0

is investigated. It was proved that the operator A0S − SA∗
0 is finite if

A0 = J3, where Jf = i

x∫
0

f(t)dt. Presentation for the inverse operator

T = S−1 is obtained and it’s structure is studied.

1. Introduction

An inversion of some classes of the integral operators S is based on use of
operator identities in the form A0S−SA∗

0 or S−T0ST ∗
0 . The main idea of the operator

identity method lies in the fact, that, if the operator B = A0S−SA∗
0 is a projector on a

finite-dimensional subspace, then the inversion of the integral operator reduced to the
inversion on a finite number of specific functions, the number of function is equal to
the dimension of the finite-dimensional subspace, mentioned above. Thus, in general
case the inversion of the integral operator is reduced to the selection of the operator A0

and is determined by the finite number of partial solutions of corresponding integral
equation.

The concept, first, was realized by V. A. Ambartzumyan. However, as the
operator A0, for the integral equation with kernel, depending on the difference, he
used the operator of differentiation that leads to some difficulties in verification of
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the operator identity method. For the kernel, depending on the difference, L. A.
Sakhnovich [3] proposed to use

A0 = i

x∫
0

f(t)dt,

the integral operator acting in L2[0, ω] space.
The significant point here is the fact that the integral equation kernel, depending on
the difference, satisfies the equation

∂

∂x
S(x, t) = − ∂

∂t
S(x, t),

that allows to use the operator identity method effectively and to find the structure
of the inverse integral operator.
Later Sakhnovich’s idea was generalized in different directions [4]-[2].

The problem, concerning the inversion of the integral operator in the form

Sf =
d3

dx3

ω∫
0

S(x, t)f(t)dt,

is investigated in this article under the condition that the kernel S(x, t) satisfies the
equation

∂3

∂x3
S(x, t) +

∂3

∂t3
S(x, t) = 0.

It was proved that if the operator A0 is in the form

A0f = −i

x∫
0

y∫
0

z∫
0

f(t)dtdzdy = − i

2

x∫
0

(x− t)2f(t)dt,

then the operator

A0S − SA∗
0,

is finite-dimensional.
The representation of the inverse operator is obtained and it is structure is

investigated.

2. The operator identity

The general idea of this method can be summarized as follows. Consider an
operator kernel S such that, S(x, t) ∈ L2([0, ω] × [0, ω]) and satisfying the equation
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(Dx ±Dt)S(x, t) = 0, where Dx is differential or integro-differential operator. Then,
if

Sf = Dx

ω∫
0

S(x, t)f(t)dt

and the corresponding form of the operator A is chosen (often the operator D−1
x may

be used as operator A) so that A0S −SA0 is finite-dimensional. Then the evaluation
of the inverse operator S−1 is reduced to the inversion of the operator S on the finite
numbers of functions.

Currently, we suppose that,

f(x) ∈ L2[0, ω],

S(x, t) ∈ L2([0, ω]× [0, ω]),

and that

g(x) =

ω∫
0

f(t)S(x, t) dt,

is absolutely continuous on the segment [0, ω] .
Let

Jf = i

x∫
0

f(t)dt,

then

J∗f = −i

ω∫
x

f(t) dt, J2f =

x∫
0

(t− x) f(t) dt,

J∗2
f =

ω∫
x

(x− t) f(t) dt, J3f = − i
2

x∫
0

(x− t)2 f(t) dt, and

J∗3
f = i

2

ω∫
x

(x− t)2 f(t) dt.

Lemma 2.1. (On representation of a linear bounded operator in L2[0, ω] ) Any
bounded operator S ∈ [L2[0, ω]× L2[0, ω]] is representable in the form

Sf =
d3

dx3

ω∫
0

S(x, t)f(t)dt,

where S(x, t) ∈ L2[0, ω] at any fixed x.
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Proof. Consider the function

`x(t) =

{
(x−t)2

2 , when t ≤ x

0, when t > x.

Then for the scalar product we have

〈Sf, `x〉 =

x∫
0

(Sf)dt = 〈f, S∗`x〉 .

Let us denote S(x, t) by S∗`x at any fixed x.

Then

〈f, S∗`x〉 =

ω∫
0

S(x, t)f(t)dt.

On the other hand, denoting g(x) by Sf , we get

〈Sf, `x〉 = 〈g, `x〉 =
1
2

x∫
0

(x− t)2g(t)dt.

So that,

1
2

x∫
0

(x− t)2g(t)dt =

ω∫
0

S(x, t)g(t)dt.

And differentiating by x three times we get the representation

g(x) = Sf =
d3

dx3

ω∫
0

S(x, t)f(t)dt. �

Let Df = d
dxf(x), A0f = J3f. Consider the operator

Sf =
d3

dx3

ω∫
0

S(x, t)f(t)dt. (2.1)

Then the next theorem holds.

Theorem 2.2. For a bounded operator of the form (2.1) with the kernel S(x, t),
satisfying the equation (

D3
x + D3

t

)
S(x, t) = 0, (2.2)

there holds an equality (operator identity)

(A0S − SA∗
0) f = i

ω∫
0

f(t)(
x2

2
N ′′(t)− t2

2
M ′′(t) + xN ′(t)

−tM ′(x) + N(t)−M(x))dt, (2.3)
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where,

M(x) = S(x, 0), N(t) = S(0, t),
M ′

x(x) = S′
t(x, 0), N ′(t) = S′

t(0, t),
M ′′

x (x) = S′′
t (x, 0), N ′′(t) = S′′

t (0, t).

Proof. Integrating by parts and using the equation for the kernel we obtain

A0Sf = i

x∫
0

(
xt− x2

2
− t2

2

)
d3

dt3

ω∫
0

S(t, y)f(y)dydt

= i

ω∫
0

f(t)
(

x2

2
S′′

xx(0, t) + xS′
x(0, t) + S(0, t)− S(x, t)

)
dt.

Similarly,

SA∗
0f = i

d3

dx3

ω∫
0

 ω∫
t

(
y2

2
+

t2

2
− ty

)
f(y)dy

 S(x, t)dt

= i

ω∫
0

f(t)
(

t2

2
S′′

tt(x, 0) + tS′
t(x, 0)− S(x, t)

)
dt.

And subtracting the equalities obtained above and using (2.3) we get the
assertion of the Theorem 2.2. �

From the above Theorem it follows that the operator A0S−SA∗
0 maps L2[0, ω]

onto six-dimensional space, stretched on the functions

1, x,
x2

2
,M(x),M ′(x),M ′′(x).

Really,

(AS − SA∗
0)f = i

{(
f,N ′′

) x2

2
−

(
f,

t2

2

)
M ′′ +

(
f,N ′

)
x

−(f, t)M ′(x) +
(
f,N

)
1− (f, 1) M(x)

}
.

Corollary 2.3. If there exists a bounded operator T, which is the inverse to the
operator S, then the following equality holds

(TA0 −A∗
0T ) f = i

ω∫
0

f(t)
6∑

i=1

Mi(t)Ni(t)dt, (2.4)
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where,

S∗M1(t) = N ′′(x), SN1(t) = x2

2

S∗M2(t) = −x2

2 , SN2(t) = M ′′(x)
S∗M3(t) = N ′(x), SN3(t) = x

S∗M4(t) = −x, SN4(t) = M ′(x)
S∗M5(t) = N(x), SN5(t) = 1
S∗M6(t) = −1, SN6(t) = M(x).

(2.5)

Proof.

(TA0 −A∗
0T ) f = T (A0S − SA∗

0) Tf

= iT

ω∫
0

Tf
[x2

2
N ′′(t)− t2

2
M ′′(x) + xN ′(t)− tM ′(x) + N(t)−M(x)

]
dt

= iT
{(

Tf,N ′′
) x2

2
− (Tf,

t2

2
)M ′′ + (Tf,N ′)x− (Tf, t)M ′(x)

+(Tf,N)− (Tf, 1)M(x)
}

= iT
{(

f, T ∗N ′′
) x2

2
− (f, T ∗x2

2
)M ′′(x) + (f, T ∗N ′)x

−(f, T ∗x)M ′(x) + (f, T ∗N)− (f, T ∗1)M(x)
}

= iT

ω∫
0

f(t)
[
T ∗N ′′x

2

2
− T ∗x2

2
M ′′(x) + T ∗N ′x− T ∗xM ′(x)

+T ∗N − T ∗1M(x)
]
dt

= i

ω∫
0

f(t)
[
T

x2

2
T ∗N ′′ − TM ′′(x)T ∗x2

2
+ TxT ∗N ′

−TM ′(x)T ∗x + T1T ∗N − TM(x)T ∗1
]
dt

= i

ω∫
0

f(t)
6∑

i=1

Mi(t) Ni(t) dt. �
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3. Representation for the inverse operator

Let Nk(x), Mk(x) (k = 1, 6) be functions in L2[0, ω].
Let us introduce the function

Q(x, t) =
6∑

i=1

Mi(t)Ni(x), (3.1)

then

Qf =

ω∫
0

f(t)Q(x, t)dt.

Theorem 3.1. If a bounded operator T, acting in L2[0, ω], satisfies the operator
equation TA0 −A∗

0T = iQ, then

Tf =
d3

dx3

ω∫
0

f(t)
∂3

∂t3
Φ(x, t) dt, (3.2)

holds, where ∂3

∂t3 Φ(x, t) is the solution of the equation

∂3F (x, t)
∂x3

− ∂3F (x, t)
∂t3

=
∂6q(x, t)
∂t3∂x3

.

Proof. The operator T may be represented in the form

Tf =
d3

dx3

ω∫
0

f(t)F (x, t)dt.

The operator equation TA0 −A∗
0T = iQ means, that

i

ω∫
0

t∫
0

y∫
0

z∫
0

f(s)F (x, t)dsdzdydt + i

ω∫
x

ω∫
y

ω∫
x

ω∫
0

f(t)F (x, t)dtdsdzdy

= i

ω∫
0

f(t)q(x, t)dt.

Consequently,

∂3F (x, t)
∂x3

− ∂3F (x, t)
∂t3

=
∂6q(x, t)
∂t3∂x3

.

Then the solution is

F (x, t) = H(t, x, q(x, t)) =
∂3

∂t3
Φ(x, t). �
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4. Relation between Nk(x) and Mk(x)

Let us define the involution operator Uf by

Uf = f(ω − x).

Lemma 4.1. USU = S∗.

Proof. Let

g(x) ∈ C3 (0, ω) ,

g(0) = g(ω) = 0,

g′(0) = g′(ω) = 0,

g′′(0) = g′′(ω) = 0,

since

(Sf, g) =

ω∫
0

d3

dt3

ω∫
0

f(y)S(t, y)dyg(t)dt =


g(t) = U,

ω∫
0

f(y)S′′′
ttt(t, y)dy = V ′

t

g′(t) = U ′,

ω∫
0

f(y)S′′
tt(t, y)dy = V



= −

ω∫
0

ω∫
0

f(y)S′′
tt(t, y)dyg′(t)dt =


g′(t) = U,

ω∫
0

f(y)S′′
tt(t, y)dy = V ′

t

g′′(t) = U ′,

ω∫
0

f(y)S′
t(t, y)dy = V



=

ω∫
0

ω∫
0

f(y)S′
t(t, y)dyg′′(t)dt =


g′′(t) = U,

ω∫
0

f(y)S′
t(t, y)dy = V ′

t

g′′′(t) = U ′,

ω∫
0

f(y)S(t, y)dy = V



= −

ω∫
0

ω∫
0

f(y)S(t, y)dyg′′′(t)dt = −

ω∫
0

ω∫
0

f(y)S(t, y)g′′′(t)dtdy

= −

ω∫
0

f(y)

ω∫
0

S(t, y)g′′′(t)dtdy,
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it follows that

S∗g = −

ω∫
0

S(t, x)g′′′(t)dt =

[
S(t, x) = U, g′′′(t) = V ′

S′
t(t, x) = U ′

t , g′′(t) = V

]

=

ω∫
0

S′
t(t, x)g′′(t)dt =

[
S′

t(t, x) = U, g′′(t) = V ′

S′′
tt(t, x) = U ′

t , g′(t) = V

]

= −

ω∫
0

S′′
tt(t, x)g′(t)dt =

[
S′′

tt(t, x) = U, g′(t) = V ′

S′′′
ttt(t, x) = U ′

t , g(t) = V

]

=

ω∫
0

S′′′
ttt(t, x)g(t)dt = − d3

dx3

ω∫
0

g(t)S(t, x)dt.

Then it is easy to see, that

USUg = − d3

dx3

ω∫
0

g(t)S(t, x)dt. �

In what follows, for simplicity, we restrict our study to those solution of
equation for the kernel S(x, t) which depends only on the difference x − t. More
general case, require cumbersome computations while the reasoning is the same as for
the case when the kernel depends only on the difference.

Theorem 4.2. Suppose that there exists such Ni (i = 1, 6) from L2[0, ω] such that

SN1(t) = x2

2 ,

SN2(t) = M ′′(x),
SN3(t) = x,

SN4(t) = M ′(x),
SN5(t) = 1,

SN6(t) = M(x),

holds, then

S∗M1(t) = N ′′(t),
S∗M2(t) = −x2

2 ,

S∗M3(t) = N ′(t),
S∗M4(t) = −x,

S∗M5(t) = N(x),
S∗M6(t) = −1,
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are valid, where

M(x) = S(x), N(t) = S(−t),
M ′(x) = S′

t(x), N ′(t) = S′
x(−t),

M ′′(x) = S′′
tt(x), N ′′(t) = S′′

xx(−t),

and

M1(x) = N2(ω − x)− 1,

M2(x) = N1(ω − x) + ωN3(ω − x) + ω2

2 N6(ω − x),
M3(x) = ωN2(ω − x) + N4(ω − x) + x,

M4(x) = ωN5(ω − x)−N3(ω − x),

M5(x) = N6(ω − x)− (ω−x)2

2 + (ω2

2 + ω)(ωN2(ω − x) + N4(ω − x) + x),
M6(x) = −N5(ω − x).

Proof. By direct integration by parts we verify, that

S1 =
d3

dx3

ω∫
0

S(x− t)dt = −ωS′′
tt(x− ω) + S′

t(x− ω)− S′
t(x)

= −ωUN ′′(x)− UN ′(x)−M ′(x).

Similarly,

S
t2

2
=

d3

dx3

ω∫
0

t2

2
S(x− t)dt = −

ω∫
0

t2

2
S′′′

ttt(x− t)dt

= −ω2

2
UN ′′(x)− ωUN ′(x)− UN(x) + M(x).

That is

S1 = SN2 − UN ′′(x),

St = −SN4 − ωUN ′′(x)− UN ′(x),

S
t2

2
= −

(
ω2

2
+ ω

)
UN ′(x)− UN(x) + SN6.

Consequently,

UN ′′(x) = S[N2 − 1],

UN ′(x) = −S[t + N4]− ω
(
UN(x)

)′′
= S[ω − ωN2 −N4 − t],

UN(x) = S[N6 −
t2

2
]−

(
ω2

2
+ ω

) (
UN(x)

)′
= S

[
N6 −

t2

2
−

(
ω2

2
+ ω

)
(ω − ωN2 −N4 − t)

]
.
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Then,
1)

M1(x) = N2(ω − x)− 1,

M1(x) = U [N2(x)− 1] ,
US∗M1 = US∗U [N2 − 1] ,
US∗M1 = S [N2 − 1] ,
US∗M1 = UN ′′(x),
S∗M1 = N ′′(x).

2)

M2(x) =
[
N1(ω − x) + ωN3(ω − x) + ω2

2 N5(ω − x)
]

M2(x) = U
[
N1(x) + ωN3(x) + ω2

2 N5(x)
]

US∗M2 = US∗U
[
N1 + ωN3 + ω2

2 N5

]
US∗M2 = S

[
N1 + ωN3 + ω2

2 N5

]
US∗M2 = −x2+2xω−ω2

2

US∗M2 = − (ω−x)2

2

S∗M2 = −x2

2 .

3)

M3(x) = ωN2(ω − x) + N4(ω − x) + x

M3(x) = U [ω − ωN2(x)−N4(x)− x]
US∗M3 = US∗U [ω − ωN2 −N4 − t]
US∗M3 = S [ω − ωN2 −N4 − t]
US∗M3 = UN ′(x)
S∗M1 = N ′(x).

4)

M4(x) = ωN5(ω − x)−N3(ω − x)
M4(x) = U [ωN5(x)−N3(x)]
US∗M4 = US∗U [ωN5 −N3]
US∗M4 = S [ωN5 −N3]
US∗M4 = ω − x

S∗M4 = x.
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5)

M5(x) = N6(ω, t)− (ω−x)2

2 +
(

ω2

2 + ω
) (

ωN2(ω − x) + N4(ω − x) + x
)

M5(x) = U
[
N6(x)− x2

2 −
(

ω2

2 + ω
)

(ω − ωN2 −N4 − t)
]

US∗M5 = US∗U
[
N6 − t2

2 −
(

ω2

2 + ω
)

(ω − ωN2 −N4 − t)
]

US∗M5 = S
[
N6 − t2

2 −
(

ω2

2 + ω
)

(ω − ωN2 −N4 − t)
]

US∗M5 = UN(x)
S∗M5 = N(x).

6)
M6(x) = −N5(ω − x)
M6(x) = −UN5(x)
US∗M6 = −US∗UN5

US∗M6 = −SN5

S∗M6 = −1.

�

If the operator S is invertible then from formula (3.1) it follows that

Q(x, t) =
6∑

i=1

Mi(t)Ni(t)

= [N2(ω − t)− 1]N1(x) + [N1(ω − t) + ωN3(ω − t)

+
ω2

2
N6(ω − t)]N2(x) + [ωN2(ω − t) + N4(ω − t) + t]N3(x)

+ [ωN5(ω − t)−N3(ω − t)]N4(x) + [N6(ω − t)− (ω − t)2

2

+
(

ω2

2
+ ω

)
(ωN2(ω − t) + N4(ω − t) + t)]N5(x)

− [N5(ω − t)]N6(x).

Using Q(x, t) one may construct the operator T.

Thus to construct operator T = S−1 it is sufficiently to know it’s action upon

1, x,
x2

2
,M(x),M ′(x),M ′′(x).

Thus, a method, proposed by L. A. Sakhnovich, and it’s generalizations are
analogs of construction of the general solution for the linear differential equation by it’s
particular solutions.However, in the theory of differential equations there exist general
methods for solutions representation by partial solutions for any linear differential
equation with variable coefficients of any finite order, while it was not possible to
extend Sakhnovich’s method for linear integral equations with any arbitrary kernel,
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i.e, it was not possible to prove that the operator A0S − SA∗
0 is finite dimensional,

where Sf = Dx

ω∫
0

S(x, t)f(t)dt, and A0 = (Dx)−1
, such that f(x) ∈ L2[0, ω], Dx is

a linear integro-differential operator, and the kernel S(x, t) satisfies the equation

(Dx + Dt) S(x, t) = 0.

As it is obvious from the results obtained, Sakhnovich’s method can be ex-
tended to include a case where Dx is a general linear differential operator of the order
3 as in the form

Dx =
3∑

k=0

ak
dk

dxk
.

Sakhnovich’s method may be also applied when Dx = d4

dx4 .
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