STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume \mathbf{LV} , Number 2, June 2010

THE ORDER OF CONVEXITY OF TWO INTEGRAL OPERATORS

BASEM A. FRASIN AND ABU-SALEEM AHMAD

Abstract. In this paper, we obtain the order of convexity of the integral operators $\int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\beta_i}} dt$ and $\int_0^z \left(te^{f(t)}\right)^{\gamma} dt$, where f_i and f satisfy the condition $\left|f'(z)\left(\frac{z}{f(z)}\right)^{\mu} - 1\right| < 1 - \alpha$.

1. Introduction

Let ${\mathcal A}$ denote the class of functions of the form :

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U} . A function f(z) belonging to \mathcal{S} is said to be starlike of order α if it satisfies

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \qquad (z \in \mathcal{U})$$
(1.2)

for some $\alpha(0 \leq \alpha < 1)$. We denote by $\mathcal{S}^*(\alpha)$ the subclass of \mathcal{A} consisting of functions which are starlike of order α in \mathcal{U} . Also, a function f(z) belonging to \mathcal{S} is said to be convex of order α if it satisfies

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha \qquad (z \in \mathcal{U})$$
(1.3)

for some $\alpha(0 \leq \alpha < 1)$. We denote by $\mathcal{K}(\alpha)$ the subclass of \mathcal{A} consisting of functions which are convex of order α in \mathcal{U} . A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{R}(\alpha)$ iff

$$\operatorname{Re}\left(f'(z)\right) > \alpha, \qquad (z \in \mathcal{U}). \tag{1.4}$$

It is well known that $\mathcal{K}(\alpha) \subset \mathcal{S}^*(\alpha) \subset \mathcal{S}$.

Received by the editors: 13.03.2009.

 $^{2000\} Mathematics\ Subject\ Classification.\ 30C45.$

 $[\]mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases}.$ Analytic, convex and starlike functions, integral operator.

Very recently, Frasin and Jahangiri [4] define the family $\mathcal{B}(\mu, \alpha)$, $\mu \ge 0$, $0 \le \alpha < 1$ so that it consists of functions $f \in \mathcal{A}$ satisfying the condition

$$\left| f'(z) \left(\frac{z}{f(z)} \right)^{\mu} - 1 \right| < 1 - \alpha \qquad (z \in \mathcal{U}).$$

$$(1.5)$$

The family $\mathcal{B}(\mu, \alpha)$ is a comprehensive class of analytic functions which includes various new classes of analytic univalent functions as well as some very wellknown ones. For example, $\mathcal{B}(1, \alpha) \equiv \mathcal{S}^*(\alpha)$, and $\mathcal{B}(0, \alpha) \equiv \mathcal{R}(\alpha)$. Another interesting subclass is the special case $\mathcal{B}(2, \alpha) \equiv \mathcal{B}(\alpha)$ which has been introduced by Frasin and Darus [3](see also [1, 2]).

In this paper, we will obtain the order of convexity of the following integral operators:

$$\int_{0}^{z} \left(\frac{f_1(t)}{t}\right)^{\frac{1}{\beta_1}} \dots \left(\frac{f_n(t)}{t}\right)^{\frac{1}{\beta_n}} dt$$
(1.6)

and

$$\int_{0}^{z} \left(t e^{f(t)} \right)^{\gamma} dt \tag{1.7}$$

where the functions $f_1(t), f_2(t), ..., f_n(t)$ and f(t) are in $\mathcal{B}(\mu, \alpha)$.

In order to prove our main results, we recall the following lemma:

Lemma 1.1. (Schwarz Lemma). Let the analytic function f(z) be regular in the unit disc \mathcal{U} , with f(0) = 0. If $|f(z)| \leq 1$, for all $z \in \mathcal{U}$, then

$$|f(z)| \le |z|, \quad \text{for all } z \in \mathcal{U}$$

and equality holds only if $f(z) = \varepsilon z$, where $|\varepsilon| = 1$.

2. Main results

Theorem 2.1. Let $f_i(z) \in \mathcal{A}$ be in the class $\mathcal{B}(\mu, \alpha)$, $\mu \geq 1$, $0 \leq \alpha < 1$ for all $i = 1, 2, \dots, n$. If $|f_i(z)| \leq M$ $(M \geq 1; z \in \mathcal{U})$ then the integral operator

$$\int_{0}^{z} \prod_{i=1}^{n} \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\beta_i}} dt \tag{2.1}$$

is in $\mathcal{K}(\delta)$, where

$$\delta = 1 - \sum_{i=1}^{n} \frac{1}{|\beta_i|} \left((2 - \alpha) M^{\mu - 1} + 1 \right)$$
(2.2)

and
$$\sum_{i=1}^{n} \frac{1}{|\beta_i|} \left((2-\alpha) M^{\mu-1} + 1 \right) < 1, \ \beta_i \in \mathbb{C} - \{0\} \ for \ all \ i = 1, 2, \cdots, n.$$

114

Proof. Define the function F(z) by

$$F(z) = \int_{0}^{z} \prod_{i=1}^{n} \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\beta_i}} dt$$

for $f_i(z) \in \mathcal{B}(\mu, \alpha)$. Since

$$F'(z) = \prod_{i=1}^{n} \left(\frac{f_i(z)}{z}\right)^{\frac{1}{\beta_i}}$$

we see that

$$\frac{zF''(z)}{F'(z)} = \sum_{i=1}^{n} \frac{1}{\beta_i} \left(\frac{zf'_i(z)}{f_i(z)} - 1 \right).$$
(2.3)

It follows from (2.3) that

$$\frac{zF''(z)}{F'(z)} \leq \sum_{i=1}^{n} \frac{1}{|\beta_i|} \left(\left| \frac{zf'_i(z)}{f_i(z)} \right| + 1 \right) \\
= \sum_{i=1}^{n} \frac{1}{|\beta_i|} \left(\left| f'_i(z) \left(\frac{z}{f_i(z)} \right)^{\mu} \right| \left| \left(\frac{f_i(z)}{z} \right)^{\mu-1} \right| + 1 \right). \quad (2.4)$$

Since $|f_i(z)| \leq M$ $(z \in U)$, applying the Schwarz lemma, we have

$$\left|\frac{f_i(z)}{z}\right| \le M \quad (z \in \mathcal{U}).$$

Therefore, from (2.4), we obtain

$$\left|\frac{zF''(z)}{F'(z)}\right| \le \sum_{i=1}^{n} \frac{1}{|\beta_i|} \left(\left| f_i'(z) \left(\frac{z}{f_i(z)}\right)^{\mu} \right| M^{\mu-1} + 1 \right).$$
(2.5)

From (2.5) and (1.5), we see that

$$\begin{aligned} \left| \frac{zF''(z)}{F'(z)} \right| &\leq \sum_{i=1}^{n} \frac{1}{|\beta_i|} \left(\left(\left| f_i'(z) \left(\frac{z}{f_i(z)} \right)^{\mu} - 1 \right| + 1 \right) M^{\mu - 1} + 1 \right) \\ &\leq \sum_{i=1}^{n} \frac{1}{|\beta_i|} \left((2 - \alpha) M^{\mu - 1} + 1 \right) \\ &= 1 - \delta. \end{aligned}$$

This completes the proof.

Corollary 2.2. Let
$$f_i(z) \in \mathcal{A}$$
 be in the class $\mathcal{B}(\mu, \alpha), \mu \geq 1, 0 \leq \alpha < 1$
for all $i = 1, 2, \dots, n$. If $|f_i(z)| \leq M$ $(M \geq 1; z \in \mathcal{U})$ then the integral
operator $\int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\beta_i} dt$ is convex function in \mathcal{U} , where
 $\sum_{i=1}^n \frac{1}{|\beta_i|} = 1/((2-\alpha)M^{\mu-1}+1), \quad \beta_i \in C - \{0\}$

115

for all $i = 1, 2, \dots, n$.

Letting $\mu = 1$ in Theorem 2.1, we have

Corollary 2.3. Let $f_i(z) \in \mathcal{A}$ be in the class $\mathcal{S}^*(\alpha)$, $0 \leq \alpha < 1$ for all $i = 1, 2, \cdots, n$. If $|f_i(z)| \leq M$ $(M \geq 1; z \in \mathcal{U})$ then the integral operator $\int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\beta_i} dt \in \mathcal{K}(\delta)$, where

$$\delta = 1 - \sum_{i=1}^{n} \frac{1}{|\beta_i|} (3 - \alpha)$$
(2.6)

where $\sum_{i=1}^{n} \frac{1}{|\beta_i|} (3-\alpha) < 1$, $\beta_i \in \mathbb{C} - \{0\}$ for all $i = 1, 2, \cdots, n$. Letting n = 1 and $\alpha = \delta = 0$ in Corollary 2.3, we have

Corollary 2.4. Let $f(z) \in \mathcal{A}$ be starlike function in \mathcal{U} . If $|f(z)| \leq M$ $(M \geq 1; z \in \mathcal{U})$ then the integral operator $\int_0^z \left(\frac{f(t)}{t}\right)^{\frac{1}{\beta}} dt$ is convex in \mathcal{U} where $|\beta| = 3, \beta \in \mathbb{C}$. **Theorem 2.5.** Let $f \in \mathcal{A}$ be in the class $\mathcal{B}(\mu, \alpha), \mu \geq 0, 0 \leq \alpha < 1$. If $|f(z)| \leq M$ $(M \geq 1; z \in \mathcal{U})$ then the integral operator

$$G(z) = \int_{0}^{\tilde{z}} \left(t e^{f(t)} \right)^{\gamma} dt$$
(2.7)

is in $\mathcal{K}(\delta)$, where

$$\delta = 1 - |\gamma| \left((2 - \alpha) M^{\mu} + 1 \right)$$
(2.8)

and $|\gamma| < \frac{1}{(2-\alpha)M^{\mu}+1}, \ \gamma \in \mathbb{C}.$

Proof. Let $f \in \mathcal{A}$ be in the class $\mathcal{B}(\mu, \alpha), \mu \ge 0, \ 0 \le \alpha < 1$. It follows from (2.7) that

$$\frac{G''(z)}{G'(z)} = \gamma \left(\frac{1}{z} + f'(z)\right)$$

and hence

$$\left| \frac{zG''(z)}{G'(z)} \right| = |\gamma| \left(|1 + zf'(z)| \right)$$

$$\leq |\gamma| \left(1 + \left| f'(z) \left(\frac{z}{f(z)} \right)^{\mu} \right| \left| \left(\frac{f(z)}{z} \right)^{\mu} \right| |z| \right).$$

$$(2.9)$$

Applying the Schwarz lemma once again, we have

$$\left|\frac{f(z)}{z}\right| \le M \quad (z \in \mathcal{U})$$

Therefore, from (2.9), we obtain

$$\frac{zG''(z)}{G'(z)} \le |\gamma| \left(1 + \left|f'(z)\left(\frac{z}{f(z)}\right)^{\mu}\right| M^{\mu}\right) \qquad (z \in \mathcal{U}).$$

$$(2.10)$$

116

THE ORDER OF CONVEXITY OF TWO INTEGRAL OPERATORS

From (2.5) and (2.10), we see that

$$\left|\frac{zG''(z)}{G'(z)}\right| \leq |\gamma| \left((2-\alpha) M^{\mu} + 1\right)$$
$$= 1-\delta.$$

Letting $\mu = 0$, in Theorem 2.5, we have

Corollary 2.6. Let $f \in \mathcal{A}$ be in the class $\mathcal{R}(\alpha)$, $0 \leq \alpha < 1$. Then the integral operator $\int_0^z (te^{f(t)})^{\gamma} dt \in \mathcal{K}(\delta)$, where

$$\delta = 1 - |\gamma| \left(3 - \alpha\right) \tag{2.11}$$

and $|\gamma| < \frac{1}{3-\alpha}, \ \gamma \in \mathbb{C}.$

Letting $\mu = 1$, in Theorem 2.5, we have

Corollary 2.7. Let $f \in \mathcal{A}$ be in the class $\mathcal{S}^*(\alpha)$, $0 \leq \alpha < 1$. If $|f(z)| \leq M$ $(M \geq 1; z \in \mathcal{U})$ then the integral operator $\int_{0}^{z} (te^{f(t)})^{\gamma} dt \in \mathcal{K}(\delta)$, where

$$\delta = 1 - |\gamma| \left((2 - \alpha) M + 1 \right)$$
(2.12)

and $|\gamma| < \frac{1}{(2-\alpha)M+1}, \ \gamma \in \mathbb{C}.$

Letting $\alpha = \delta = 0$ in Corollary2.7, we have

Corollary 2.8. Let $f(z) \in \mathcal{A}$ be starlike function in \mathcal{U} . If $|f(z)| \leq M$ $(M \geq 1; z \in \mathcal{U})$ then the integral operator $\int_{0}^{z} (te^{f(t)})^{\gamma} dt$ is convex in \mathcal{U} where $|\gamma| = \frac{1}{2M+1}, \gamma \in \mathbb{C}$.

References

- B. A. Frasin, A note on certain analytic and univalent functions, Southeast Asian J. Math., 28(2004), 829-836.
- B. A. Frasin, Some properties of certain analytic and univalent functions, Tamsui Oxford J. Math. Sci., 23(1)(2007), 67-77.
- [3] B. A. Frasin, M. Darus, On certain analytic univalent functions, Internat. J. Math. and Math. Sci., 25(5)(2001), 305-310.
- B. A. Frasin, J. Jahangiri, A new and comprehensive class of analytic functions, Anal. Univ. Ordea Fasc. Math., XV(2008), 59-62.

DEPARTMENT OF MATHEMATICS, AL AL-BAYT UNIVERSITY P. O. Box 130095 MAFRAQ, JORDAN *E-mail address*: bafrasin@yahoo.com

DEPARTMENT OF MATHEMATICS, AL AL-BAYT UNIVERSITY P. O. Box 130095 MAFRAQ, JORDAN *E-mail address*: abusaleem2@yahoo.com