SIMPLE CRITERIA FOR STARLIKENESS OF ORDER β

DENISA FERICEAN

Abstract

In this paper we obtain a new criterion for starlikeness of order β for an analytic function $f \in \mathcal{A}_{n}$. This criterion involves only the second derivative of the given function and generalizes a well-known result due to P. T. Mocanu.

1. Introduction

Let $\mathcal{H}=\mathcal{H}(U)$ denote the class of functions analytic in the unit disc

$$
U=\{z \in \mathbb{C}:|z|<1\}
$$

For n a positive integer and $a \in \mathbb{C}$ let

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}: f(z)=a+a_{n} z^{n}+\ldots\right\} .
$$

Let \mathcal{A}_{n} denote the class of functions

$$
f(z)=z+a_{n+1} z^{n+1}+\ldots, n \geq 1
$$

that are analytic on the unit disc and let $\mathcal{A}_{1}=\mathcal{A}$.
Let \mathcal{D} be a domain in \mathbb{C}. A function $f: \mathcal{D} \rightarrow \mathbb{C}$ is called univalent on \mathcal{D} if $f \in \mathcal{H}(\mathcal{D})$ and f is injective on \mathcal{D}.

The analytic function f, with $f(0)=0$ and $f^{\prime}(0) \neq 0$ is starlike on U (i.e. f is univalent on U and $f(U)$ is starlike with respect to origin) if and only if $\Re\left[\frac{z f^{\prime}(z)}{f(z)}\right]>0$, for $z \in U$.

An analytic function f with $f(0)=0$ and $f^{\prime}(0) \neq 0$ is starlike of order β, $\beta \geq 0$ if and only if $\Re\left[\frac{z f^{\prime}(z)}{f(z)}\right]>\beta$, for $z \in U, \beta \geq 0$.

Let denote S^{*} and $S^{*}(\beta)$ the subclasses of \mathcal{A} consisting of functions f which are starlike and starlike of order β.

Let \mathcal{D} be a domain in \mathbb{C}. A function $f: \mathcal{D} \rightarrow$ is convex on \mathcal{D} if f is univalent on \mathcal{D} and $f(\mathcal{D})$ is a convex domain in \mathbb{C}.

Received by the editors: 01.07.2009.
2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Convex function, starlike function, subordination, univalent function.

If f and g are analytic functions in U, then we say that f is subordinate to g, written $f \prec g$,or $f(z) \prec g(z)$, if there is a function w analytic in U with $w(0)=0$, $|w(z)|<1$, for all $z \in U$ such that $f(z)=g[w(z)]$, for $z \in U$. If g is univalent, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subset g(U)$.

We shall use the following results to prove our main results.
Lemma 1.1. [8] Let h be a starlike function with $h(0)=0$. If the function $p \in \mathcal{H}[a, n]$ satisfies the differential subordination

$$
\begin{equation*}
z p^{\prime}(z) \prec h(z) \tag{1.1}
\end{equation*}
$$

then

$$
p(z) \prec q(z)=a+\frac{1}{n} \int_{0}^{z} \frac{h(t)}{t} d t .
$$

Function q is the best (a, n)-dominant of subordination.
Lemma 1.2. [3] Let h be a convex function with $h(0)=a$ and let $\gamma \in \mathbb{C}^{*}$ with $\Re \gamma \geq 0$. If the function $p \in \mathcal{H}[a, n]$ and

$$
\begin{equation*}
p(z)+\frac{1}{\gamma} z p^{\prime}(z) \prec h(z) \tag{1.2}
\end{equation*}
$$

then

$$
p(z) \prec q(z) \prec h(z)
$$

where

$$
\begin{equation*}
q(z)=\frac{\gamma}{n z^{\frac{\gamma}{n}}} \int_{0}^{1} h(t) t^{\frac{\gamma}{n}-1} d t \tag{1.3}
\end{equation*}
$$

Lemma 1.3. [4] Let be a function $p \in \mathcal{H}[a, n]$.

1. If $\Psi \in \Psi_{n}\{\Omega, a\}$ then

$$
\Psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \in \Omega \Rightarrow \Re p(z)>0, z \in U
$$

2. If $\Psi \in \Psi_{n}\{\Omega, a\}$ then

$$
\Re \Psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right)>0, z \in U \Rightarrow \Re p(z)>0, z \in U
$$

Lemma 1.4. [7] Let n be a positive integer and

$$
\begin{equation*}
\alpha_{n}=\frac{n+2}{C_{n}} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}=2\left[1+\frac{n+2}{n} \ln 2-\int_{0}^{1} \frac{t^{\frac{1}{n}}}{1+t} d t\right] \tag{1.5}
\end{equation*}
$$

If $f \in \mathcal{A}_{n}$ and

$$
\begin{equation*}
\Re\left[z f^{\prime \prime}(z)\right]>-\alpha_{n}, z \in U \tag{1.6}
\end{equation*}
$$

then $f \in S^{*}$.
108

In this paper we obtain a new criterion for starlikeness of order β for an analytic function $f \in \mathcal{A}_{n}$. This criterion involves only the second derivative of the given function and generalizes a well-known result due to P.T. Mocanu.

2. Main results

Theorem 2.1. Let n be a positive integer, $\beta \in\left[0, \frac{1}{2}\right]$ and

$$
\alpha_{n}(\beta):=\frac{(n+2)-(n+4) \beta}{2\left[\frac{n+2}{n} \ln 2-\frac{n+4}{n} \beta \ln 2-(1-\beta) \int_{0}^{1} \frac{t^{\frac{1}{n}}}{1+t} d t+1\right]} .
$$

If $f \in \mathcal{A}_{n}$ and

$$
\Re\left[z f^{\prime \prime}(z)\right]>-\alpha_{n}(\beta), z \in U, n \in \mathbb{N}
$$

then $f \in S^{*}(\beta)$.
Proof. We will show first that f is univalent on U. From the definition of $\alpha_{n}=\alpha_{n}(\beta)$ we have that $\alpha_{n}(\beta)>0$. If $\alpha \in\left[0, \alpha_{n}\right]$ the inequality $\Re\left[z f^{\prime \prime}(z)\right]>-\alpha, z \in U$ is equivalent with the following subordination

$$
z f^{\prime \prime}(z) \prec-\frac{2 \alpha z}{1+z}=h(z) .
$$

Since the function f is starlike and $f^{\prime} \in \mathcal{H}[1, n]$ by applying Lemma 1.1 we obtain that

$$
f^{\prime \prime}(z) \prec 1+\frac{1}{n} \int_{0}^{z} \frac{h(t)}{t} d t=1-\frac{2 \alpha}{n} \log (1+z)=q(z)
$$

where the function q is convex.
Due to the fact that the function q is convex and has real coefficients we get that:

$$
\begin{equation*}
\Re f^{\prime}(z)>\gamma=\gamma(\alpha)=q(1)=1-\frac{2 \alpha}{n} \ln 2, z \in U \tag{2.1}
\end{equation*}
$$

We prove the following inequality:

$$
\begin{equation*}
\alpha_{n} \leq \frac{n}{\ln 4} . \tag{2.2}
\end{equation*}
$$

We have:

$$
\begin{aligned}
\alpha_{n} & =\frac{(n+2)-(n+4) \beta}{2\left[\frac{n+2}{n} \ln 2-\frac{n+4}{n} \beta \ln 2-(1-\beta) \int_{0}^{1} \frac{t^{\frac{1}{n}}}{1+t} d t+1\right]} \\
& \leq \frac{n+2}{2 \frac{n+2}{n} \ln 2}=\frac{n}{2 \ln 2}=\frac{n}{\ln 4},
\end{aligned}
$$

as desired.
Since $\alpha_{n} \leq \frac{n}{\ln 4}$ then

$$
\begin{equation*}
\Re f^{\prime}(z)>\gamma(\alpha) \geq 0, z \in U . \tag{2.3}
\end{equation*}
$$

So f is univalent on U .
Next, we prove that $f \in S^{*}(\beta)$. If

$$
\begin{equation*}
P(z):=\frac{f(z)}{z} \tag{2.4}
\end{equation*}
$$

then P satisfies the differential subordination

$$
z P^{\prime}(z)+P(z)=f^{\prime}(z) \prec q(z) .
$$

From the previous relation, by using Lemma 1.2 for $\gamma=1$ we obtain the exact subordination $P(z) \prec Q(z)$, where the function Q is convex and is defined by

$$
\begin{equation*}
Q(z)=\frac{1}{n z^{\frac{1}{n}}} \int_{0}^{z} q(t) t^{\frac{1}{n}-1} d t=1-\frac{2 \alpha}{n^{2} t^{\frac{1}{n}}} \int_{0}^{1} t^{\frac{1}{n}-1} \log (1+t) d t \tag{2.5}
\end{equation*}
$$

Because the function Q is convex, from differential subordination $P \prec Q$ we have that

$$
\begin{equation*}
\Re P(z)>\delta=\delta(\alpha)=Q(1)=1-\frac{2 \alpha}{n}\left[\ln 2-\int_{0}^{1} \frac{t^{\frac{1}{n}}}{1+t} d t\right] . \tag{2.6}
\end{equation*}
$$

If we denote by

$$
\begin{equation*}
p(z):=\frac{\frac{z f^{\prime}(z)}{f(z)}-\beta}{1-\beta} \tag{2.7}
\end{equation*}
$$

then

$$
z f^{\prime}(z)=(1-\beta) p(z) f(z)+\beta f(z)
$$

By differentiating the previous equality we get that:

$$
z f^{\prime \prime}(z)+(1-\beta) f^{\prime}(z)=(1-\beta) p^{\prime}(z) f(z)+(1-\beta) p(z) f^{\prime}(z)
$$

and hence

$$
z f^{\prime \prime}(z)+(1-\beta) f^{\prime}(z)=\frac{f(z)}{z}\left[(1-\beta) z p^{\prime}(z)+(1-\beta) p(z) \frac{z f^{\prime}(z)}{f(z)}\right]
$$

The previous equality can also be written as

$$
\begin{equation*}
z f^{\prime \prime}(z)+(1-\beta) f^{\prime}(z)=P(z)\left[(1-\beta) z p^{\prime}(z)+(1-\beta)^{2} p^{2}(z)+\beta(1-\beta) p(z)\right] \tag{2.8}
\end{equation*}
$$

where by P we denoted the function $P(z)=\frac{f(z)}{z}$.
Since

$$
\begin{equation*}
\beta(1-\beta) p(z) P(z)=\beta f^{\prime}(z)-\beta^{2} P(z) \tag{2.9}
\end{equation*}
$$

the equality (2.8) becomes

$$
\begin{equation*}
z f^{\prime \prime}(z)+(1-2 \beta) f^{\prime}(z)=P(z)\left[(1-\beta) z p^{\prime}(z)+(1-\beta)^{2} p^{2}(z)-\beta^{2}\right] \tag{2.10}
\end{equation*}
$$

It is obvious that

$$
\begin{align*}
\Re\left[z f^{\prime \prime}(z)+(1-2 \beta) f^{\prime}(z)\right] & =\Re\left[z f^{\prime \prime}(z)\right]+(1-2 \beta) \Re f^{\prime}(z) \\
& >-\alpha+(1-2 \beta) \gamma(\alpha) . \tag{2.11}
\end{align*}
$$

By using the first part of Lemma 1.3 and the inequality (2.11) we will show that $\Re p(z)>0, z \in U$.

In order to do that it is sufficient to show that the function

$$
\Psi(r, s, z)=P(z)\left[(1-\beta) s+(1-\beta)^{2} r^{2}-\beta^{2}\right]
$$

is an admissible function.
We have that

$$
\begin{align*}
\Re \Psi(\delta i, \sigma, z) & =\Re\left\{P(z)\left[(1-\beta) \sigma-(1-\beta)^{2} \delta^{2}-\beta^{2}\right]\right\}= \\
& =\left[(1-\beta) \sigma-(1-\beta)^{2} \delta^{2}-\beta^{2}\right] \Re P(z) \\
& \leq-\alpha+(1-2 \beta) \gamma(z) \tag{2.12}
\end{align*}
$$

By using Lemma 1.3 we want to show that $\Re P(z)>0, z \in U$.
Since,

$$
\begin{equation*}
\sigma \leq-\frac{n\left(1+\delta^{2}\right)}{2}, \delta, \sigma \in \mathbb{R} \tag{2.13}
\end{equation*}
$$

Next, we will verify that $0 \leq \alpha \leq \alpha_{n}, \Re P(z)>0, z \in U$. By using the relation (2.13) we obtain that

$$
\begin{aligned}
& {\left[(1-\beta) \sigma-(1-\beta)^{2} \delta^{2}-\beta^{2}\right] \Re P(z) \leq\left[-\frac{(1-\beta) n}{2}\left(1+\delta^{2}\right)-(1-\beta)^{2} \delta^{2}-\beta^{2}\right]} \\
& \Re P(z)=-\frac{(1-\beta) n}{2} \Re P(z)-\left[\frac{n(1-\beta)}{2} \delta^{2}+(1-\beta)^{2} \delta^{2}+\beta^{2}\right] \\
& \Re P(z) \leq-\frac{(1-\beta) n}{2} \Re P(z)=\frac{n(1-\beta)}{2}[-\Re P(z)] \leq-\frac{n(1-\beta)}{2} \delta(\alpha) .
\end{aligned}
$$

In order that the relation (2.12) to be satisfied it is sufficient that the following inequality to be true:

$$
-\frac{n(1-\beta)}{2} \delta(z) \leq-\alpha+(1-2 \beta) \gamma(\alpha)
$$

If $\alpha \leq \alpha_{0}$ then the previous inequality is satisfied.
By using Lemma 1.3 and the relation (2.11) we obtain that $\Re p(z)>0, z \in U$.
Hence, applying the analytical characterization for starlike functions of order β we proved that $f \in S^{*}(\beta)$.

If we take $\beta=0$ in Lemma 2.1 we obtain a well-known result, due to P.T. Mocanu [7].

Next, for $n=1$, we obtain the following particular result.

Corolarry 2.2. Let $\beta \in\left[0, \frac{1}{2}\right]$ and $\alpha_{1}(\beta):=\frac{3-5 \beta}{2[4 \ln 2-6 \beta \ln 2+\beta]}$. If $f \in \mathcal{A}_{1}$ and $\Re\left[z f^{\prime \prime}(z)\right]>-\alpha_{1}(\beta), z \in U$ then $f \in S^{*}(\beta)$.

Proof. We put $n=1$ in the previous result and obtain:

$$
\left\{\begin{array}{l}
\delta(1)=1-2 \alpha\left[\ln 2-\int_{0}^{1} \frac{t}{1+t} d t\right]=1-2 \alpha[2 \ln 2-1] \\
\gamma(1)=1-2 \alpha \ln 2
\end{array}\right.
$$

We have that:

$$
\left\{\begin{array}{l}
\delta(1)=1-2 \alpha[2 \ln 2-1] \\
\gamma(1)=1-2 \alpha \ln 2
\end{array}\right.
$$

By using the following equality: $-\frac{1-\beta}{2} \delta(1)=-\alpha+(1-2 \beta) \gamma(1)$ we obtain

$$
-\frac{1-\beta}{2}+2 \alpha(1-\beta) \ln 2-\alpha(1-\beta)=-\alpha+1-2 \alpha \ln 2-2 \beta+4 \alpha \beta \ln 2
$$

and hence

$$
\alpha=\frac{3-5 \beta}{2[4 \ln 2-6 \beta \ln 2+\beta]}, \alpha=\alpha_{1}(\beta)
$$

where

$$
\alpha_{1}(\beta)=\frac{3-5 \beta}{2[4 \ln 2-6 \beta \ln 2+\beta]} \leq \frac{1}{2 \ln 2} .
$$

References

[1] V. Anisiu, P. T. Mocanu, On a simple sufficient condition for starlikeness, Mathematica (Cluj), 31(54)(1989), no. 2, 97-101.
[2] I. Graham, G. Kohr, Geometric function theory in one and higher dimensions, Marcel Dekker Inc., New York, 2003.
[3] D. J. Hallenbeck, S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc., 52(1975), 191-195.
[4] S. S. Miler, P. T. Mocanu, Differential subordinations and univalent functions, Michig. Math. J., 28(1981), 157-171.
[5] P. T. Mocanu, T. Bulboacă, G. Sălăgean, Teoria Geometrică a Funcţiilor Univalente, Casa Cărţii de Ştiinţă, Cluj-Napoca, 1999.
[6] P. T. Mocanu, Some starlikeness conditions for analytic functions, Rev. Roumaine. Math. Pures Appl., 33(1988), no. 1-2, 117-124.
[7] P. T. Mocanu, Two simple sufficient conditions for starlikeness, Mathematica (Cluj), 34(57)(1992), no. 2, 175-181.
[8] T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J., 37(1970), 775-777.

Babes-Bolyai University

Faculty of Mathematics and Informatics
Str. Kogalniceanu, nr. 1, 400084 Cluj-Napoca, Romania
E-mail address: frdeni@yahoo.com

