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ON THE REGULARITY OF SOLUTIONS OF A BOUNDARY
VALUE PROBLEM USING DECOMPOSITION AND

LOCALIZATION TECHNIQUES IN A CORNER

HAMID BENSERIDI AND MOURAD DILMI

Abstract. The subject of this work is the study of the singular behaviour

of solutions for the Lamé system with Dirichlet, mixed and Neumann con-

ditions in a bounded domain. A technique of localization of the problem

in a corner is presented. The method is an adaptation of that of Kon-

dratiev [8] extended to the weighted Sobolev spaces. This method have

been considered by many authors.

1. Introduction

Questions of existence and uniqueness have been considered in Grisvard [6]
for the Lamé system in the classical framework of weighted Sobolev spaces with weight
in a polygon. The Sobolev spaces with double weight have been introduced in Dauge
[3] for the Stokes system in a polygon.

In [1], Benseridi and Dilmi have used the complex Fourier transform with
respect to the first variable in an infinite sector for a class of double weighted Sobolev
spaces, to study problems of existence, unicity, regularity, and singularity of solutions
of the Lamé system.

In their paper, Benseridi and Merouani [2], have studied some transmission
problems related to the Lamé system in a polyhedron for a class of double weighted
Sobolev spaces. They have given an explicit description of singularities of the vari-
ational solutions for the homogeneous case, by the same they have shown that the
singular behaviour of the solutions is governed by a sequence of transcendental equa-
tions.

Here, we give an extension for some results previously obtained by the above
mentioned authors. This paper is organized as follows: In section 1 we give some
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basic tools and properties related to the weighted Sobolev spaces which will be useful
for the next. Section 2 is concerned with the notations and the formulation of our
problem (P1), while section 3, we study the regularity of the weak solution of the
mixed problem (P1) by using the technique of localization in a corner and this is done
by means of the weighted Sobolev spaces. The solution is expressed as a some of a
regular and a singular part. Finally, we state our main result by giving an explicit
calculus of the singular functions that appear in the singular part of the solutions
of the three problems (Dirichlet, Neumann and mixed). To do this, we compute the
eigenvalues and the corresponding eigenvectors.

2. Overview on the weighted Sobolev spaces

In this section we give some basic tools and properties related to the weighted
Sobolev spaces which will be useful in the next.

In what follows Ω is an infinite plane-sector of an opening ω

Ω = {(x, y) : x + iy = reiθ , r > 0, 0 < θ < ω}.

B is the strip defined by: B = R×]0 , ω[, θ0, θ∞ are two reals: θ0 ≤ θ∞.

Definition 2.1. Let Ω be an open bounded set of Rn with closure Ω, and boundary
Γ. Let ρ ∈ C∞ (Rn) , ρ > 0 on Ω, ρ = 0 on Γ and gradiant(ρ) is nonnull on Γ. For
a positive integer l, α and p two real numbers such that p > 1, W l,p

α (Ω) is the Banach
space of the distributions u on Ω such that ραDβu ∈ Lp (Ω) , for |β| ≤ l, equipped
with the norm

‖u‖W l,p
α (Ω) =

∑
|β|≤l

∥∥ραDβu
∥∥p

Lp(Ω)

 1
p

.

Definition 2.2. Let s ∈ N, we define the space V s(B) by

V s(B) ={u ∈ L2(B) / (1 + ξ2)
k
2 u ∈ L2(R Hs−k(]0, ω[) ), k = 0, ..., s}.

V s(B) is a Hilbert space for which the scalar product is given by

〈u, v〉 =
s∑

k=0

∫ ∫
B

(1 + ξ2)k
∣∣Ds−k

θ u
∣∣ ∣∣Ds−k

θ v
∣∣ dθdξ.

Lemma 2.3. ([5, 8]). Let η1, η2 ∈ R such that, η1 ≤ η2. If f ∈ L2
η1,η2

(B) , then

1) ∀η ∈ [η1, η2] , eη tf ∈ L2 (B) , and
∥∥eη tf

∥∥
L2(B)

≤ ‖f‖L2
η1,η2

(B) ;

2) ∀η ∈ ]η1, η2[ , eη tf ∈ L1 (B) , and
∥∥eη tf

∥∥
L1(B)

≤ c ‖f‖L2
η1,η2

(B) .
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Definition 2.4. We denote by T the partial Fourier transform with respect to the
first variable on B, then

T (f) (ϕ, θ) = T
(
eη tf

)
(ξ, θ), with ϕ = ξ + iη,

where T (eη tf) denotes the real Fourier transform of eη tf with respect to the first
variable.

Clearly f admits a complex Fourier transform, if and only if, eη tf admits a
real Fourier transform.

For simplicity we write: T (f) (ϕ, θ) = f̂ (ϕ, θ).

Property 2.5. Let f ∈ Hs
η1,η2

(B), then, for every k, j ∈ N such that k + j ≤ s, we
have

T

(
∂k+j f

∂ tk ∂ θj

)
= (iϕ)k ∂j

∂θj
T (f) (ϕ, θ), (i2 = −1),

for every ϕ in C and Imϕ ∈ [η1, η2].

3. Notations and formulation of the problem

Ω denotes an homogeneous body, elastic and isotrope, occupying a bounded
domain of R2 with a polygonal rectilignal boundary Γ = ∪

j∈J
Γj , where Γj are open

piecewise lines. {J1, J2} is a partition of J , sj will be the origin of Γj+1, and sj+1 its
extremity according to the usual orientation.

The opening of the angle formed by Γj and Γj+1 towards the interior of Ω
will be denoted ωj , with 0 < ωj < 2π for all j ∈ J. Ω then defined is consequently
an open bounded domain with Lipschitz boundary. All results on this kind of domain
are valid here.

It is more convenient to work at the origin with polar coordinates. Therefore
by a translation first and then by a rotation, we can bring back sj , Γj , Γj+1 to O,

OX, Oω (ω is the angle formed by OX and Oω towards the interior of Ω).
Our interest is to study the properties of regularity for a weak solution of the

following mixed problem (Dirichlet-Neumann)
µ∆u + (λ + µ)∇ (divu) = f in Ω
u = 0 on ∪

j∈J1
Γj

σ (u) .τ = 0 on ∪
j∈J2

Γj

(P1)

where λ and µ are the elasticity coefficients with λ > 0 and λ + µ ≥ 0, (u),
(f) designate respectively the displacement vector and the density of external powers.
σ denote the stress tensor with σ = (σhk), h, k = 1, 2. The σhk elements are given by
the Hooke’s law
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σhk(u) = 2µεhk(u) + λ div(u)δhk,

where εhk(u) = 1
2 (∂kuh + ∂huk) the symmetric deformation velocity tensor. τ is the

normal vector.

Definition 3.1. We denote by V the closure of the set{
v ∈ C∞ (Ω)2 , v/Γj = 0 for every j ∈ J1

}
in H1 (Ω)2 .

In order to define a weak solution, we introduce a symmetric bilinear form on V 2 by
considering the scalar product of system (P1) . More explicitly

l : V 2 −→ R

(u, v) 7−→ l (u, v) = −
∫
Ω

2∑
h=1

2∑
k=1

σhk (u) εhk (v) dx.

Definition 3.2. The function u ∈ V is a weak solution for problem (P1) if

l (u, v) =
∫
Ω

2∑
h=1

fhvhdx, ∀v ∈ V.

There is no particular problem to apply the variational method for the res-
olution of (P1) because the Korn inequality is still valid in a polygon, moreover it is
known that there exists a unique weak solution u ∈ V, if the bilinear form is bounded
in V 2 and coercive. These conditions are verified if mes ( ∪

j∈J1
Γj) > 0. When it is the

Neumann problem (J1 = ∅), we suppose that the necessary condition of existence is

verified, the orthogonality of the rigid displacements data, i.e.
∫
Ω

2∑
h=1

fhvhdx = 0, for

every v of the form v(x, y) = (a + cy, b− cx), with a, b, c arbitrary reals.

4. Localization of the problem in a corner

The analysis of the existence, the unicity and the regularity for the boundary
value problem (P1) is more developed when the domain Ω is sufficiently smooth. Many
results has been obtained by many authors. The principal regularity is in the interior
of the domain Ω and on Γ/ ∪

j∈J
Vj , where Vj is a closed neighbourhood of a vertex sj .

(sj), j ∈ J, are called singular points.
In the sequel, we only envisage the singular behaviour of the solution of (P1)

in a neighbourhood of a singular point, then we transpose the results to the weak
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solution; for this aim we consider the function ρ (r) such that

0 ≤ ρ (r) ≤ 1, ρ (r) ∈ C∞ (]0, ω[)

ρ (r) =

{
1 , if 0 ≤ r ≤ δ

0 , if r ≥ 2δ
,

where δ is the smallest positive real for which no singular point of Γ is in the circle
{x : |x| ≤ 3δ}. We denote by K an infinite plane sector.

We set w = ρu, the problem (P1) will be

µ4 w + (λ + µ)5 (divw) = F in K (4.1),
w = 0, on Γ0 ∪ Γω (4.2),

or{
w = 0 on Γ0 and σ (w) .τ = 0 , on Γω (4.3),
σ (w) .τ = 0 on Γ0 ∪ Γω (4.4),

(P2)

where F is depending on f, ρ and u.
Since we are interested with the solution in a neighbourhood of the vertex

(ρ = 1) , we can suppose for simplicity, that F is an arbitrary given data (which does
not depend on the solution u ). Under this hypothesis, we have F = ρf .

5. The regularity in the weighted Sobolev spaces

This section is concerned with the decomposition of the solution in a reg-
ular part and a singular part. We denote by A(Dx) the differential operator for
system (4.1)

A(Dx) =

(
(λ + 2µ) ∂2

∂x2 + µ ∂2

∂y2 (λ + µ) ∂2

∂x∂y

(λ + µ) ∂2

∂x∂y (λ + 2µ) ∂2

∂y2 + µ ∂2

∂x2

)
,

and B(Dx) the boundary operator (4.2), (4.3), (4.4).
For (4.4) we have

B(Dx) =

(
(2µ + λ)τ1

∂
∂x + µτ2

∂
∂y λτ1

∂
∂y + µτ2

∂
∂x

µτ1
∂
∂y + λτ2

∂
∂x µτ1

∂
∂x + (2µ + λ)τ2

∂
∂y

)
.

Let a(Dx) = [A(Dx), B(Dx)] be the operator defined by

a(Dx) : H2
β,β(K)2 −→ L2

β,β(K)2 ×H
2−m− 1

2
β,β (Γ0)2 ×H

2−m− 1
2

β,β (Γω)2,

where m represents the order of the trace operator, m = 0 for the Dirichlet condition
and m = 1 for the Neumann condition.
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By passing to the polar coordinates, and we apply the complex Fourier trans-
form with respect to the first variable, the boundary value problem a (DX) w = F

will be

a(z,Dθ)ŵ = F̂ ,

where

a(z,Dθ) = [A(z,Dθ), B(z,Dθ)] : H2 (]0, ω[)2 −→ L2 (]0, ω[)2 × C2 × C2,

with A(z,Dθ) = (Ahk), i2 = −1 and

A11 = −µz2 + (λ + µ)
((

−z2

2
− iz

)
cos 2θ − −z2

2

)
+

(λ + µ) (1− iz) sin 2θ
d

dθ
+
(

µ + (λ + µ)
(

1
2
− 1

2
cos 2θ

))
d2

dθ2
.

A12 = A21 = (λ + µ)
((

−z2

2
− iz

)
sin 2θ + (iz − 1) cos 2θ

d

dθ
− 1

2
d2

dθ2

)
.

A22 = −µz2 + (λ + µ)
((

z2

2
+ iz

)
cos 2θ − z2

2

)
+

(λ + µ) (iz − 1) sin 2θ
d

dθ
+ (λ + µ)

(
1
2

+
1
2

cos 2θ

)
d2

dθ2
.

B(z,Dθ) is the boundary operator.
For condition (4.2) and θ = 0, we get

B(z,Dθ) =

 d

dθ
iz

2νiz 2(1− ν)
d

dθ

 ,

where

ν =
λ

2 (λ + µ)
.

Definition 5.1. The complex number z = z0 is called an eigenvalue of a(z,Dθ) if
there exists a nontrivial solution e0 (z0, θ) ∈ H2 (]0, ω[)2 for the equation

a(z,Dθ)e (z, θ) |z=z0 = 0.

e0 (z0, θ) is called the eigenvector of a(z,Dθ) corresponding to z0. The function
e1 (z0, θ) is an associated vector to z0 if

−i
da(z,Dθ)

dz
|z=z0 e0 (z0, θ) + a(z0, Dθ)e1 (z0, θ) = 0.

Theorem 5.2. The operator A(Dx) is an isomorphism if and only if a(z,Dθ) has no
eigenvalue with imaginary part β − 1.
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Theorem 5.3. Let θ0, θ∞ two reals such that θ0 ≤ θ∞ . We suppose that the operator
a(z,Dθ) has no eigenvalue on the lines R + i(θ0 − 1), R + i(θ∞ − 1), then for every
F ∈ L2

θ0,θ∞
(K)2 the solution w ∈ H2

θ∞,θ∞
(K)2 of problem (P2) is written in the

following form

w(r, θ) =
N∑

l=1

Il∑
σ=1

δσ l∑
k=0

Cσklu
(σ)
k,l (r, θ) + V (r, θ),

where V ∈ H2
θ0,θ0

(K)2, z1, z2, .., zN are the eigenvalues of a(z,Dθ) such that θ0 − 1 ≤
Imzl ≤ θ∞ − 1,

Il = dim
(
span

{
e0
1 (z0, θ) , e0

2 (z0, θ) , ...
})

,

δσ l =

{
1, if an associated vector exists for zland e0 (z0, θ) ,

0, otherwise.

Cσkl are constants,

u
(σ)
k,l (r, θ) = rizl

k∑
s=0

(log r)sek−s
σ (zl, θ)

are called singular functions.

Proof. See A. M. Sandig, U. Richter, R. Sandig [10]. �

We consider a weak solution u ∈ V of problem (P1).

Lemma 5.4. Let f ∈ L2
1+ε ,1+ε(Ω)2, where ε is a small positive real, then

ρu ∈ H2
1+ε ,1+ε(K)2.

Proof. We consider a sequence of domains Ωh, h = 1, 2, ... where Ωh = Ω∩Rh, with

Rh =
{

x :
δ

2h+1
≤ |x| ≤ δ

2h

}
.

For δ̂ = 2δ, we consider the function ρ̂(r) such that

ρ̂(r) ∈ C∞ (]0,∞[) , 0 ≤ ρ̂(r) ≤ 1

ρ̂(r) =

{
1 if 0 ≤ r ≤ δ̂

0 if r ≥ 2δ̂

we have

∪
h
Ωh = K0 ⊂ K.

The standard theorems of regularity give, for |γ| = 2

∫∫
Ωh

|Dγu|2 dx ≤ c


∫∫

Ωh−1∪ Ωh∪ Ωh+1

|f |2 dx +
∫∫

Ωh−1∪ Ωh∪ Ωh+1

r−4 |u|2 dx

 . (5.1)
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Multiplying by (
δ̂

2h
)2(1+ε) , we obtain∫∫

Ωh

r2(1+ε) |Dγu|2 dx ≤ c(
∫∫

Ωh−1∪ Ωh∪ Ωh+1

r2(1+ε) |f |2 dx +

+
∫∫

Ωh−1∪ Ωh∪ Ωh+1

r2(−1+ε) |u|2 dx)

and by summing with respect to h, from 0 to ∞, the inequality (5.1 ) becomes

∫∫
K0

r2(1+ε) |Dγu|2 dx ≤ c


∫∫
K0

r2(1+ε) |f |2 dx +
∫∫
K0

r2(−1+ε) |u|2 dx

 .

Clearly ∫∫
K0

r2(−1+ε) |u|2 dx =
∫∫
K0

r2(−1+ε) |ρu|2 dx.

Now, passing to polar coordinates and using Hardy inequality, we get
∞∫
0

|f(t)|2 t(ε′−2)dt ≤
(

2
|ε′ − 1|

)2
∞∫
0

|f ′(t)|2 tε
′
dt,

for ε′ > 1 and lim
t→∞

f(t) = 0. We get for u(r, θ) = u(x, y)

∫∫
K0

r−2+2ε+1 |ρ̂u|2 drdθ ≤
ω∫
0

∞∫
0

r−2+2ε+1 |ρ̂u|2 drdθ

≤
ω∫
0

(
2
2ε

)2
∞∫
0

r2ε

∣∣∣∣ ∂

∂r
ρ̂u

∣∣∣∣2 rdrdθ ≤ c

∫∫
Ω ∩ sup p η̂

r2ε |u|2 dx

+c

∫∫
Ω ∩ sup p η̂

r2ε(|gradiantu1|2 + |gradiantu2|2)dx ≤ c ‖u‖H1(Ω)2 .

For |γ| = 2 we have∫∫
K0

r2(1+ε) |Dγρu|2 dx ≤ c
∑

|γ′|≤ 2

∫∫
K0

r2(1+ε)
∣∣∣Dγ′ρu

∣∣∣2 dx,

therefore, ρu ∈ H2
1+ε ,1+ε(K)2. �

We can now give the following theorem.
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Theorem 5.5. ([10]) Let u ∈ V a weak solution of problem (P1). Let ε a real positive
small number such that the operator a(z,Dθ) has no eigenvalue with imaginary part
ε or (−1). We suppose that ρf ∈ L2 (K)2 , then

ρ2u(r, θ) = ρ
N∑

l=1

Il∑
σ=1

δσ l∑
k=0

Cσklu
(σ)
k,l (r, θ) + ρV (r, θ),

where ρV ∈ H2(K)2.

6. Computation of the singular functions

Our goal is to compute the functions u
(σ)
k,l (r, θ) for the three problems (Dirich-

let, Neumann, and mixed). To do this, we have to know the eigenvalues zl of a(z,Dθ),
the corresponding eigenvectors, and the associated vectors.

6.1. Dirichlet problem.

Lemma 6.1. If zl is an eigenvalue of a(z,Dθ), for the angle ω, ω /∈ {π, 2π}, we get
Il = 1 and

e0
1(zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ),

where

Y3(zl, θ) =

(
− cosh(zlθ) + cosh(zl + 2i)θ

(1− 2(3−4ν)
izl

)i sinh(zlθ)− i sinh(zl + 2i)θ

)
.

Y4(zl, θ) =

(
−(1 + 2(3−4ν)

izl
)i sinh(zlθ) + i sinh(zl + 2i)θ

− cosh(zlθ) + cosh(zl + 2i)θ

)
.

C3(zl) = − cosh(zlω) + cosh(zl + 2i)ω.

C4(zl) = −
(

1− 2(3− 4ν)
izl

)i sinh(zlω

)
+ i sinh(zl + 2i)ω.

For ω = π or ω = 2π we have

zl = −il or zl = − il
2 , l = 1, 2, ...

For the two cases Il = 2 and e0
1(zl, θ) = Y3(zl, θ), e0

2(zl, θ) = Y4(zl, θ) are two eigen-
vectors linearly independent.
Proof. Note that the eigenvectors of a(z,Dθ) are the zeros of the transcendental
function D1(z) defined by

D1(z) = 4 sin2 ω +
(

2(3−4ν)
iz

)2

sinh2(zω).
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The general solution for the equation A(z,Dθ)e (z, θ) = 0 is given by

e (z, θ) = C1(z)

(
cosh(zθ)
−i sinh(zθ)

)
+ C2(z)

(
i sinh(zθ)
cosh(zθ)

)
+

C3(z)

(
cosh(z + 2i)θ

−i sinh(z + 2i)θ − 2(3−4ν)
iz i sinh(zθ)

)
+

C4(z)

(
i sinh(z + 2i)θ

cosh(z + 2i)θ + 2(3−4ν)
iz cosh(zθ)

)
.

The condition B(zl, Dθ)e (zl, θ) = 0 for θ = 0 shows that C1(zl) = −C3(zl) and
C2(zl) = −C4(zl)(1 + 2(3−4ν)

izl
). From the condition B(zl, Dθ)e (zl, θ) = 0 for θ = ω, it

comes that M(zl, ω)C(zl) = 0, where

M(zl, ω) =

(
− cosh(zlω) −(1 + 2(3−4ν)

izl
)i sinh(zlω)

− 2(3−4ν)
izl

i sinh(zlω) − cosh(zlω)

)
+(

cosh(zl + 2i)ω i sinh(zl + 2i)ω
0 i cosh(zl + 2i)ω

)
,

C(z) =

(
C3(zl)
C4(zl)

)
.

The determinant of the matrix M(zl, ω) is equal to D1(zl) which is null, we can then
choose C3(zl), C4(zl) such that

C4(zl) = −(1− 2(3− 4ν)
izl

)i sinh(zlω) + i sinh(zl + 2i)ω,

C3(zl) = − cosh(zlω) + cosh(zl + 2i)ω.

Replacing C3(zl), C4(zl) by their values in the expression of solution e (z, θ), we obtain

e0
1(zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ).

Now if ω = π or ω = 2π, the rank of the matrix of the system which results
from the boundary condition B(zl, Dθ)e (zl, θ) = 0 for θ = 0, θ = ω, is equal to 2,
consequently Il = 2 , we can choose C3(zl) = 0, C4(zl) = 1 or C3(zl) = 1, C4(zl) = 0,
which proves that e0

1(zl, θ), e0
2(zl, θ) are the linearly independant eigenvectors. �

Remark 6.2. For z = 0 we have D1 (0) = 2− 2 cos 2ω − 4 (3− 4ν)2 ω2, then D1 (0)
is null if and only if ω = 0, consequently z = 0 is not an eigenvalue of a(z,Dθ).

In the sequel, we are going to study the correlation between the order of mul-
tiplicity of an eigenvalue zl of the operator a(z,Dθ) and the existence of an associated
vector. For this, we denote by m(zl) the order of multiplicity of zl.

The two following propositions are similar to [10].
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Proposition 6.3. Denote by m(zl) the order of multiplicity of (zl), then

m(zl) =
Il∑

σ=1
(δσl + 1) ≥ Il.

Proposition 6.4. If m(zl) = 2 and Il = 1, then there exists an associated unique
vector and if ω = π or ω = 2π if there is any associated vector.

Lemma 6.5. Suppose that

(H)


tanh(zlω) = ωzl,(

sinω

ω

)2

= [(3− 4ν) cosh(zlω)]2 ,

sinh(zlω) cosh(zlω) is nonnull.

Then m(zl) = 2 and moreover the associated vector to the eigenvalue zl is

e1
1(zl, θ) = −i

de0
1(z, θ)
dz

∣∣∣
z=zl

,

e0
1(zl, θ) is the eigenvector as defined in Lemma 6.1 by substituting zl by z.

Proof. The hypothesis (H) is verified if and only if

D1(zl) = 0 and D′
1(zl) = 0.

Then m(zl) = 2; which insures the existence of an associated vector.
We know that the associated vectors are the solutions of the equation

−i
da(z,Dθ)

dz

∣∣∣
z=zl

e0
1 (zl, θ) + a(zl, Dθ)e1

1 (zl, θ) = 0 (6.1)

i.e., for z = zl

−i
dA(z,Dθ)

dz
e0
1 (z, θ) + A(z,Dθ)e1

1 (z, θ) = 0 (6.2)

and

−i
dB(z, θ)

dz
+ B(z,Dθ)e1

1 (z, θ) = 0 for θ = 0, θ = ω.

A(z,Dθ)e0
1 (z, θ) = 0, for all z in a neighbourhood of zl, then

d

dz

[
A(z,Dθ)e0

1 (z, θ)
]

= 0.

But
d

dz

[
A(z,Dθ)e0

1 (z, θ)
]

= A(z,Dθ)
de0

1 (z, θ)
dz

+
dA(z,Dθ)

dz
e0
1 (z, θ) . (6.3)

We multiply (6.2) by i, and then we compare it with (6.3) , we find

e1
1(zl, θ) = −i

de0
1(z, θ)
dz

∣∣∣
z=zl

.

In a similar way we prove that θ = 0

−i
dB(z,Dθ)

dz

∣∣∣
z=zl

+ B(zl, Dθ)e1
1 (zl, θ) = 0.

For θ = ω, we have
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B(z,Dθ)e0
1(z, θ) =

(
D1(zl)

0

)
,

then
dB(z,Dθ)e0

1(z, θ)
dz

∣∣∣
z=zl

=

(
D′

1(zl)
0

)
.

On the other hand
dB(z,Dθ)e0

1(z, θ)
dz

∣∣∣
z=zl

=
dB(z,Dθ)

dz

∣∣∣
z=zl

e0
1(zl, θ) + B(zl, Dθ)

de0
1(zl, θ)
dz

∣∣∣
z=zl

= i

[
−i

dB(z,Dθ)
dz

∣∣∣
z=zl

+ B(zl, Dθ)e1
1 (zl, θ)

]
= 0.

The proof is complete. �

The following theorem gives a summary for the results concerning the singular
functions.

Theorem 6.6. The singular functions of the weak solution u ∈ V of the Dirichlet
problem are given as follows:
(1) If ω /∈ {π, 2π}and zl is a simple nonnull zero of D1(z), then there exists a unique
singular function

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ).

(2) If ω /∈ {π, 2π} and zl is a nonnull double zero of D1(z), then there exist two
singular functions

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ) ,

u
(1)
1,l (r, θ) = rizl

[
e1
1(zl, θ) + (log r)e0

1 (zl, θ)
]
.

(3) If ω = π, then zl = −il, l = 1, 2, ...

u
(1)
0,l (r, θ) = rle0

1 (zl, θ) ,

u
(2)
0,l (r, θ) = rle0

2 (zl, θ) .

(4) If ω = 2π, then zl = − il
2 , l = 1, 2, ...

u
(1)
0,l (r, θ) = r

l
2 e0

1 (zl, θ) ,

u
(2)
0,l (r, θ) = r

l
2 e0

2 (zl, θ) .

Remark 6.7. Notice that in (1) and (2)

e0
1 (zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ),

and in (3) and (4)

e0
1 (zl, θ) = Y3(zl, θ), e0

2 (zl, θ) = Y4(zl, θ).
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6.2. The mixed problem. We have previously found the expression for the general
solution of equation A(z,Dθ)e (z, θ) = 0.

The Dirichlet-Neumann condition B(z,Dθ)e (z, θ) = 0 for θ = 0 and θ = ω

gives a system of Cramer of order 4 with determinant

D2(z) = −16µ
[
z2 sin2 ω + 4 (1− ν)2 + (3− 4ν) sinh2 (zω)

]
, ∀ z, z 6= 0.

Therefore the eigenvalues of the operator a(z,Dθ) are the zeros of the tran-
scendental equation

z2 sin2 ω + 4 (1− ν)2 + (3− 4ν) sinh2 (zω) = 0.

Remark 6.8. If z = 0, then the determinant D2 (0) is given by

D2(0) = 4(1− (3− 4ν)2)(λ + 2µ).

In this case there is no eigenvalue.

Lemma 6.9. If zl is a zero of D2 (z) then Il = 1 and

e0
1(zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ)

is an eigenvector, where

Y3(zl, θ) =

 (
−4(1−ν)

izl
− 1
)

cosh(zlω) + cosh(zl + 2i)ω(
−2(1−2ν)

izl
+ 1
)

i sinh(zlω)− i sinh(zl + 2i)ω

 ,

Y4(zl, θ) =

 (
−2(1−2ν)

izl
− 1
)

i sinh(zlω) + i sinh(zl + 2i)ω(
4(1−ν)

izl
− 1
)

cosh(zlω) + cosh(zl + 2i)ω

 ,

C3(zl) =
(

4(1− ν)
izl

− 1
)

cosh(zlω) + cosh(zl + 2i)ω,

C4(zl) =
(

2(1−2ν)
izl

− 1
)

i sinh(zlω) + i sinh(zl + 2i)ω.

Proof. The rank of the matrix of D2 (z) is equal to 3, consequently Il=1. We use the
same idea for the proof as in Lemma 6.1. We consider the general solution e(zl, θ) of
equation A(zl, Dθ)e (zl, θ) = 0, and we determine the constants C1(zl), C2(zl), C3(zl)
and C4(zl) such that they verify the boundary condition B(zl, Dθ)e (zl, θ) = 0 for
θ = 0 and θ = ω .
Finally, we obtain the result e0

1(zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ).
Now we seek for the associated vectors.

Lemma 6.10. Let zl be a zero of D2 (z) .

(1) If m (zl) = 2, then the associated vectors exist.
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(2) The equalities

(4ν − 3)
sinh(zlω) cosh(zlω)

zlω
=

sin2 ω

ω2
,

(zlω) sinh(zlω) cosh(zlω) = sinh2(zlω) +
4(1− ν)2

(3− 4ν)
,

are necessary and sufficient so that m (zl) = 2.

(3) The associated vectors are given by

e1
1(zl, θ) = −i

de0
1(z, θ)
dz

∣∣∣
z=zl

,

where e0
1(z, θ) is the eigenvector defined in the previous lemma by replacing zl by z.

Proof. (1) From proposition (1).
(2) The two equations are verified if and only if D2 (zl) = D′

2 (zl) = 0.
(3) The proof is similar to that of Lemma 6.5.
The following theorem is similar to Theorem 6.6 for the mixed problem.

Theorem 6.11. The singular functions of the weak solution u ∈ V for the mixed
problem have the following forms
(1) If zl is a simple zero of D2 (z) , then there exists only one singular function

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ) .

(2) If zl is a double zero of D2 (z), then there exist two singular functions

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ) ,

u
(1)
1,l (r, θ) = rizl

[
e1
1(zl, θ) + (log r)e0

1 (zl, θ)
]
,

where e0
1 (zl, θ) is the eigenvector defined in Lemma 6.9 and e1

1(zl, θ) is the associated
vector defined in Lemma 6.10.

6.3. Neumann problem. In this case we consider the boundary conditions of Neu-
mann B(z,Dθ)e (z, θ) = 0. These conditions give a system of four equations with
determinant is

D3(z) = −32µ2z2
[
−z2 sin2 ω + sinh2(zω)

]
, ∀ z, z 6= 0.

Therefore the boundary problem have a nontrivial solution, if and only if D3(z) = 0,

consequently the eigenvalues of the operator a(z,Dθ) are the zeros of D3(z).

Remark 6.12. For z = 0, we have D3(0) = 0 for all ω.

Lemma 6.13. (1) We suppose that zl is a zero of D3(z), zl /∈ {0,−i} , ω /∈ {π, 2π} ,

then Il = 1 and

e0
1(zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ)
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is an eigenvector, where

Y3(zl, θ) =

 (
−4(1−ν)

izl
− 1
)

cosh(zlω) + cosh(zl + 2i)ω(
−2(1−2ν)

izl
+ 1
)

i sinh(zlω)− i sinh(zl + 2i)ω

 ,

Y4(zl, θ) =

 (
−2(1−2ν)

izl
− 1
)

i sinh(zlω) + i sinh(zl + 2i)ω(
4(1−ν)

izl
− 1
)

cosh(zlω) + cosh(zl + 2i)ω

 ,

C3(zl) = µ(zl + 2i) sinh(zlω)− zl sinh(zl + 2i)ω,

C4(zl) = izl [cosh(zlω)− cosh(zl + 2i)ω] .

(2) The number zl = (−i) is an eigenvalue of a(z,Dθ) for all ω ∈ ]0, 2π] and its
eigenvector is

e0
1(−i, θ) =

(
sin θ

− cos θ

)
.

(3) If ω = π (resp. ω = 2π), then zl = −il (resp. zl = −il
2 ), l = 1, 2, ..., and Il = 2.

The eigenvectors are
(a) If zl = −i

e0
1(−i, θ) =

(
sin θ

− cos θ

)
, e0

2(−i, θ) = Y3(−i, θ).

(b) If zl is different from −i

e0
1(zl, θ) = Y4(zl, θ) , e0

2(zl, θ) = Y3(zl, θ).

Proof. (1) We consider the general solution e(z, θ) for the equation

A(z,Dθ)e(z, θ) = 0,

then using conditions B(zl, Dθ)e(zl, θ) = 0, for θ = 0 and θ = ω, we obtain (1).
(2) It is easy to check that zl = (−i) is a zero of D3(z) for all ω ∈ ]0, 2π[.

The boundary conditions B(zl, Dθ)e(zl, θ) = 0 for θ = 0, θ = ω give the
following system (

−4 sinω 0
0 0

)(
C3

C4

)
=

(
0
0

)
. (6.4)

We choose C3 = 0, C4 = −1
4(1−ν) , we obtain

e0
1(−i, θ) =

(
sin θ

− cos θ

)
.
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(3) When ω = π or ω = 2π, the matrix in (6.4) will be null, we can then choose
C3 = 1, C4 = 0 or C3 = 0, C4 = 1 thus (a). The proof of part (b) is similar to the
last part in Lemma 6.1.

The following lemma illustrates the correlation between the order of multi-
plicity of an eigenvalue and the existence of an associated vector.

Lemma 6.14. (1) If zl is different from −i, Il = 1 and m(zl) = 2, then there exists
an associated vector.
(2) The conditions

tanh(zlω) = tanh(zlω),

cosh2(zlω) =
sin2 ω

ω2
, zl 6= −i,

are necessary and sufficient to m(zl) = 2, and in this case the associated vectors are
given by

e1
1(zl, θ) = −i

de0
1(z, θ)
dz

∣∣∣
z=zl

,

where e0
1(z, θ) is the eigenvector defined in part (1) of the previous lemma by replacing

zl by z.

To prove this lemma, it suffices to compare with Lemma 6.5 and Lemma 6.10.
To close this section, we give a similar theorem as in 6.11 which corresponds

to the Neumann case.

Theorem 6.15. The singular functions of the weak solution u ∈ V/Im of the Neu-
mann problem are
(1) If ω /∈ {π, 2π} and zl is a simple zero of D3(z), then there exists a unique singular
function

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ) .

(2) If ω /∈ {π, 2π} and zl is a double zero of D3(z), then there exist two singular
functions

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ) ,

u
(1)
1,l (r, θ) = rizl

[
e1
1(zl, θ) + (log r)e0

1 (zl, θ)
]
.

(3) If ω = π, then zl = −il, l = 1, 2, ..., and

u
(1)
0,l (r, θ) = rle0

1 (−il, θ) ,

u
(2)
0,l (r, θ) = rle0

2 (−il, θ) .
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(4) If ω = 2π, then zl = −il
2 , l = 1, 2, ..., and

u
(1)
0,l (r, θ) = r

l
2 e0

1

(
−il

2
, θ

)
,

u
(2)
0,l (r, θ) = r

l
2 e0

2

(
−il

2
, θ

)
.

Remark 6.16. Note that
• In (1) and (2), e0

1 (zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ).
• In (3) and (4), e0

1 (zl, θ) = Y4(zl, θ) , e0
2 (zl, θ) = Y3(zl, θ).

• Im = span {(0, 1), (0, 1), (−x2, x1)} .
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