STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LV, Number 1, March 2010

COVERING SUBGROUPS IN FINITE PRIMITIVE π -SOLVABLE GROUPS

RODICA COVACI

Abstract. Let π be an arbitrary set of primes and let X be a π -closed Schunck class. The paper deals with the study of X-covering subgroups in finite primitive π -solvable groups, connecting them with complements, stabilizers and X-maximal subgroups. Some characterization theorems for X-covering subgroups in finite primitive π -solvable groups by means of complements of appropriate minimal normal subgroups, by means of stabilizers and by means of some X-maximal subgroups are given.

1. Preliminaries

All groups considered in this paper are finite. Let π be a set of primes and π' the complement to π in the set of all primes.

We first remind some definitions and theorems which will be useful for our considerations.

Definition 1.1. a) Let G be a group, M and N two normal subgroups of G such that $N \subseteq M$. The factor M/N is called a *chief factor* of G if M/N is a minimal normal subgroup of G/N.

b) A group G is said to be π -solvable if every chief factor of G is either a solvable π -group or a π' -group. In particular, for π the set of all primes we obtain the notion of solvable group.

Definition 1.2. a) Let G be a group and W a subgroup of G. We define

$$core_G W = \cap \{ W^g \mid g \in G \},\$$

Received by the editors: 01.12.2008.

 $^{2000\} Mathematics\ Subject\ Classification.\ 20D10.$

Key words and phrases. Schunck class, covering subgroup, primitive group, π -solvable group.

where $W^g = g^{-1}Wg$.

b) W is a stabilizer of G if W is a maximal subgroup of G and $core_G W = 1$.

c) A group G is said to be *primitive* if there exists a stabilizer W of G.

In the formation theory are well-known the following notions:

Definition 1.3. a) A class X of groups is a homomorph if X is closed under homomorphisms, i.e. if $G \in X$ and N is a normal subgroup of G, then $G/N \in X$.

b) A homomorph X is a Schunck class if X is primitively closed, i.e. if any group G, all of whose primitive factor groups are in X, is itself in X.

Definition 1.4. a) A class X of groups is called π -closed if

$$G/O_{\pi'}(G) \in X \Rightarrow G \in X_{\pi}$$

where $O_{\pi'}(G)$ denotes the largest normal π' -subgroup of G.

b) We shall call π -homomorph, respectively π -Schunck class, a π -closed homomorph, respectively a π -closed Schunck class.

Definition 1.5. Let X be a class of groups, G a group and H a subgroup of G.

a) *H* is an *X*-maximal subgroup of *G* if:
(i) *H* ∈ *X*;
(ii) *H* ≤ *H*^{*} ≤ *G*, *H*^{*} ∈ *X* ⇒ *H* = *H*^{*}.
b) *H* is an *X*-covering subgroup of *G* if:
(i) *H* ∈ *X*;
(ii) *H* ≤ *K* ≤ *G*, *K*₀ ≤ *K*, *K*/*K*₀ ∈ *X* ⇒ *K* = *HK*₀.

Remark 1.6. If X is a class of groups, G is a group and H is an X-covering subgroup of G, then H is X-maximal in G.

The following results will be used in the paper:

Theorem 1.7. ([1]) A solvable minimal normal subgroup of a finite group is abelian.

Theorem 1.8. ([2], [3]) Let G be a primitive π -solvable group. If G has a minimal normal subgroup which is a solvable π -group, then G has one and only one minimal normal subgroup.

Theorem 1.9. ([3]) If G is a primitive π -solvable group, V < G, such that there exists a minimal normal subgroup M of G which is a solvable π -group and MV = G, then V is a stabilizer of G.

Theorem 1.10. ([5]) Let X be a π -homomorph. The following conditions are equivalent:

(1) X is a Schunck class;

(2) if G is a π -solvable group, $G \notin X$ and N is a minimal normal subgroup of G such that $G/N \in X$, then N has a complement in G;

(3) any π -solvable group G has X-covering subgroups.

Theorem 1.11. ([5]) Let X be a π -Schunck class, G a π -solvable group, $G \notin X$, N a minimal normal subgroup of G such that $G/N \in X$ and H an X-covering subgroup of G. Then H is a complement of N in G, i.e. G = HN and $H \cap N = 1$.

Theorem 1.12. ([5]) If X is a π -Schunck class, G is a π -solvable group, $G \notin X$ and N is a minimal normal subgroup of G such that $G/N \in X$, then:

- a) N has a complement H in G;
- b) H is X-maximal in G;
- c) H is conjugate to any X-maximal subgroup S of G with NS = G.

2. On stabilizers in finite primitive π -solvable groups

Lemma 2.1. If G is a group and W a stabilizer of G, then:

- a) for any normal subgroup $K \neq 1$ of G, we have KW = G;
- b) for any minimal normal subgroup M of G, we have MW = G.

Proof. a) Let $K \neq 1$ be a normal subgroup of G. Since W is maximal in G and $W \leq KW \leq G$, we have KW = W or KW = G. Suppose that KW = W. It follows that $K \leq W$ and so $K^g \leq W^g$ for any $g \in G$. But K being normal in G, $K^g = K$ for any $g \in G$. Then $K \leq W^g$ for any $g \in G$, hence $K \leq core_G W = 1$. So K = 1, in contradiction to our hypothesis. So KW = G.

b) Follows immediately from a). $\hfill \square$

Theorem 2.2. Let G be a π -solvable group, W a stabilizer of G and M a minimal normal subgroup of G such that M is a solvable π -group. Then W is a complement of M in G, i.e. MW = G and $M \cap W = 1$.

Proof. MW = G follows from Lemma 2.1. Let us now prove that $M \cap W = 1$. Since M is normal in G and $W \leq G$, we have that $M \cap W$ is normal in W. By 1.7, M is abelian. In order to prove that $M \cap W$ is normal in G, consider $g \in G$ and $m \in M \cap W$. Since G = MW, we have g = nw, where $n \in M$ and $w \in W$. So

$$g^{-1}mg = (nw)^{-1}m(nw) = w^{-1}n^{-1}mnw = w^{-1}n^{-1}nmw = w^{-1}mw \in M \cap W,$$

where we used that M is abelian and that $M \cap W \leq W$. It follows that $M \cap W$ is normal in G. From this and from the fact that M is a minimal normal subgroup of G, we deduce that $M \cap W = 1$ or $M \cap W = M$. But $M \cap W = M$ leads to $M \subseteq W$, hence G = MW = W, in contradiction with the hypothesis that W is a stabilizer of G. So $M \cap W = 1$.

Theorem 2.3. Let G be a primitive π -solvable group such that there exists a minimal normal subgroup M of G, M solvable π -group. Let W < G. The following two conditions are equivalent:

(1) W is a stabilizer of G;
 (2) MW = G.

Proof. By 1.8, M is the unique minimal normal subgroup of G.

(1) \Rightarrow (2): Let W be a stabilizer of G. Applying 2.2, we obtain that MW = G.

(2) \Rightarrow (1): Let MW = G. Then, by 1.9, W is a stabilizer of G.

3. Covering subgroups and complements in finite primitive π -solvable groups

In preparation for the main result of this section, we first prove a lemma. **Lemma 3.1.** Let X be a π -homomorph, G a π -solvable group, $G \notin X$ and N a minimal normal subgroup of G such that $G/N \in X$. Then:

a) N is a solvable π -group;

b) N is abelian.

Proof. a) Since G is a π -solvable group and N is a minimal normal subgroup of G, we conclude that N is either a solvable π -group or a π' -group. Suppose that N is a π' -group. Then $N \leq O_{\pi'}(G) \leq G$, hence

$$G/O_{\pi'}(G) \simeq (G/N)/(O_{\pi'}(G)/N).$$

But $G/N \in X$. Then by the above isomorphism and X being a homomorph, $G/O_{\pi'}(G) \in X$. It follows by the π -closure of X that $G \in X$, a contradiction. This shows that N is a solvable π -group.

b) We apply 1.7 and a) and obtain that N is abelian. \Box

Theorem 3.2. Let X be a π -Schunck class, G a finite primitive π -solvable group, $G \notin X$, N a minimal normal subgroup of G such that $G/N \in X$ and let $H \leq G$. The following two conditions are equivalent:

(1) H is an X-covering subgroup of G;

(2) H is a complement of N in G, i.e. HN = G and $H \cap N = 1$.

Proof. (1) \Rightarrow (2): Let *H* be an *X*-covering subgroup of *G*. By applying 1.11, *H* is a complement of *N* in *G*.

(2) \Rightarrow (1): Let *H* be a complement of *N* in *G* (according to 1.10, *H* exists), i.e. we have HN = G and $H \cap N = 1$. By lemma 3.1, *N* is a solvable π -group, hence *N* is abelian. We will prove that *H* is an *X*-covering subgroup of *G* by verifying conditions (i) and (ii) from 1.5.b).

(i) $H \in X$. Indeed, we have:

$$H \simeq H/1 = H/H \cap N \simeq HN/N = G/N \in X.$$

(ii) Let $H \leq K \leq G$, $K_0 \leq K$, $K/K_0 \in X$. We prove that $K = HK_0$. For this, we first prove that H is a maximal subgroup of G. Indeed, $H \neq G$ (since $H \in X$ and $G \notin X$) and let now $H \leq H^* < G$. In order to show that $H = H^*$, suppose $H < H^*$. Then there exists an element $h^* \in H^* \setminus H \subset G = HN$ and so

$$h^* = hn$$
, with $h \in H$, $n \in N$

hence

$$n = h^{-1}h^* \in H^* \cap N$$

Let us show that $H^* \cap N = 1$. For this, we notice that from $N \trianglelefteq G$ and $H^* \le G$ follows that $H^* \cap N \trianglelefteq H^*$. Furthermore, $H^* \cap N \trianglelefteq G$, since for any $g \in G$ and any $n \in H^* \cap N$, we have that $g^{-1}ng \in H^* \cap N$, as we show below:

$$g \in G = HN = H^*N = NH^* \implies g = mh^*, \ m \in N, \ h^* \in H^*$$
$$\implies g^{-1}ng = (mh^*)^{-1}n(mh^*) = (h^*)^{-1}m^{-1}nmh^*$$
$$= (h^*)^{-1}m^{-1}mnh^* = (h^*)^{-1}nh^* \in H^* \cap N,$$

where we used that N is abelian and that $H^* \cap N \leq H^*$. So $H^* \cap N \leq G$. But N is a minimal normal subgroup of G, hence $H^* \cap N = 1$ or $H^* \cap N = N$. Suppose $H^* \cap N = N$. Then $N \subseteq H^*$, hence $G = H^*N = H^*$, a contradiction. It follows that $H^* \cap N = 1$. Then

$$n = h^{-1}h^* \in H^* \cap N = 1 \implies n = 1 \implies h^{-1}h^* = 1 \implies h = h^* \in H^* \setminus H,$$

in contradiction with $h \in H$. It follows that H is a maximal subgroup of G. Hence from $H \leq K \leq G$, we have only two possibilities: K = H or K = G.

If K = H, the hypotheses of (ii) become $H \leq H \leq G$, $K_0 \leq H$, $H/K_0 \in X$ and clearly $K = H = HK_0$.

If K = G, the hypotheses of (ii) become $H \leq G \leq G$, $K_0 \leq G$, $G/K_0 \in X$. We have to prove that $G = HK_0$. Observe that $K_0 \neq 1$. Indeed, supposing that $K_0 = 1$, we have $G \simeq G/1 = G/K_0 \in X$, a contradiction with $G \notin X$. Furthermore, by 1.8, N is the unique minimal normal subgroup of G. Hence for $K_0 \leq G$, $K_0 \neq 1$ follows that $N \subseteq K_0$. So $G = HN \subseteq HK_0$, which leads to $K = G = HK_0$.

Theorems 1.12 and 3.2 have the following consequence:

Corollary 3.3. Let X be a π -Schunck class, G a finite primitive π -solvable group, $G \notin X$ and N a minimal normal subgroup of G such that $G/N \in X$. Then:

- a) N has a complement H in G;
- b) H is an X-covering subgroup of G;
- c) H is X-maximal in G;

COVERING SUBGROUPS IN FINITE PRIMITIVE $\pi\text{-}\mathrm{SOLVABLE}$ GROUPS

- d) H is conjugate to any X-maximal subgroup S of G with SN = G;
- e) conditions a) and b) are equivalent.

4. Covering subgroups and stabilizers in finite primitive π -solvable groups

In this section we will establish a connection between covering subgroups and stabilizers in finite primitive π -solvable groups.

Theorem 4.1. Let X be a π -Schunck class, G a finite primitive π -solvable group, $G \notin X$, N a minimal normal subgroup of G such that $G/N \in X$ and let $H \leq G$. The following two conditions are equivalent:

(1) H is an X-covering subgroup of G;

(2) H is a stabilizer of G.

Proof. By lemma 3.1, N is a solvable π -group.

(1) \Rightarrow (2): Let H be an X-covering subgroup of G. Then $H \in X$. This implies $H \neq G$, since $G \notin X$. Applying Theorem 3.2, we obtain that HN = G. This and H < G show that we are in the hypotheses of Theorem 1.9. It follows that H is a stabilizer of G.

(2) \Rightarrow (1): Let *H* be a stabilizer of *G*. Then, by 2.2, *H* is a complement of *N* in *G*. Now by applying Theorem 3.2, we conclude that *H* is an *X*-covering subgroup of *G*.

Theorems 3.2 and 4.1 have the following corollary:

Corollary 4.2. Let X be a π -Schunck class, G a finite primitive π -solvable group, $G \notin X$, N a minimal normal subgroup of G such that $G/N \in X$ and let $H \leq G$. The following three conditions are equivalent:

(1) H is an X-covering subgroup of G;

- (2) H is a complement of N in G;
- (3) H is a stabilizer of G.

5. X-maximal subgroups and complements in finite π -solvable groups

In this last section of the paper, we show that there is a connection between some particular X-maximal subgroups and the complements of some special minimal

normal subgroups in finite π -solvable groups. This connection allows us to characterize the X-covering subgroups in finite primitive π -solvable groups by means of these particular X-maximal subgroups.

Theorem 5.1. Let X be a π -Schunck class, G a finite π -solvable group, $G \notin X$ and let N be a minimal normal subgroup of G such that $G/N \in X$. Then:

a) N has a complement H in G; furthermore, H is X-maximal in G and H is conjugate to any X-maximal subgroup S of G with SN = G;

b) the following two conditions on $H \leq G$ are equivalent:

(i) H is an X-maximal subgroup of G such that HN = G;

(ii) H is a complement of N in G;

c) any two complements H_1 and H_2 of N in G are conjugate in G.

Proof. a) Immediately follows from Theorem 1.12.

b) (i) \Rightarrow (ii): Let H be X-maximal in G such that HN = G. We have to prove that $H \cap N = 1$. Observe first that $H \neq G$, since $H \in X$ and $G \notin X$. From $H \leq G$ and $N \leq G$ follows that $H \cap N \leq H$. Lemma 3.1 implies that N is abelian. Let us now prove that $H \cap N$ is normal in G. Let $g \in G$ and $n \in H \cap N$. Then:

$$g \in G = HN = NH \Rightarrow g = mh$$
, where $m \in N, h \in H$,

hence

$$g^{-1}ng = (mh)^{-1}n(mh) = h^{-1}m^{-1}nmh$$

= $h^{-1}m^{-1}mnh = h^{-1}nh \in H \cap N$,

where we used that $H \cap N \leq H$. In order to prove that $H \cap N = 1$, we consider the normal subgroup $H \cap N$ of G and observe that $H \cap N \subseteq N$, where N is a minimal normal subgroup of G. It follows that $H \cap N = 1$ or $H \cap N = N$. If we suppose that $H \cap N = N$, we obtain $N \subseteq H$, hence G = HN = H, in contradiction with $H \neq G$. So $H \cap N = 1$.

(ii) \Rightarrow (i): Let *H* be a complement of *N* in *G*. Hence, by 1.12, *H* is *X*-maximal in *G*. Obviously HN = G, *H* being a complement of *N* in *G*. 104 c) Let H_1 and H_2 be two complements of N in G. Applying b) to H_2 , we obtain that H_2 is X-maximal in G and $H_2N = G$. But H_1 is a complement of N in G. Now applying Theorem 1.12.c) it follows that H_1 is conjugate with H_2 in G. \Box

From Theorem 5.1.b) and Corollary 4.2 follows:

Corollary 5.2. Let X be a π -Schunck class, G a finite primitive π -solvable group, $G \notin X$, N a minimal normal subgroup of G such that $G/N \in X$ and let $H \leq G$. The following four conditions are equivalent:

- (1) H is a complement of N in G;
- (2) H is X-maximal in G and HN = G;
- (3) H is an X-covering subgroup of G;
- (4) H is a stabilizer of G.

References

- Baer, R., Classes of finite groups and their properties, Illinois J. Math., 1 (1957), no. 2, 115-187.
- [2] Covaci, R., On primitive π-solvable groups, Studia Univ. Babeş-Bolyai, Math., XXXVIII (1993), no. 4, 3-6.
- [3] Covaci, R., A generalization of some of Ore's theorems, Studia Univ. Babeş-Bolyai, Math., XLIII (1998), no. 1, 15-21.
- [4] Covaci, R., X-maximal subgroups in finite π-solvable groups with respect to a Schunck class X, Studia Univ. Babeş-Bolyai, Math., XLVII (2002), no. 3, 53-62.
- [5] Covaci, R., A characterization of π-closed Schunck classes, Studia Univ. Babeş-Bolyai, Math., XLVIII (2003), no. 3, 63-69.
- [6] Gaschütz, W., Zur Theorie der endlichen auflösbaren Gruppen, Math. Z., 80 (1963), no. 4, 300-305.
- [7] Gaschütz, W., Selected topics in the theory of soluble groups, Australian National University, Canberra, Jan.-Feb. 1969.
- [8] Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin New York, 1967.

BABEŞ-BOLYAI UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE STR. KOGĂLNICEANU NR. 1 400084 CLUJ-NAPOCA, ROMANIA *E-mail address*: rcovaci@math.ubbcluj.ro