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COVERING SUBGROUPS IN FINITE PRIMITIVE
π-SOLVABLE GROUPS

RODICA COVACI

Abstract. Let π be an arbitrary set of primes and let X be a π-closed

Schunck class. The paper deals with the study of X-covering subgroups

in finite primitive π-solvable groups, connecting them with complements,

stabilizers and X-maximal subgroups. Some characterization theorems

for X-covering subgroups in finite primitive π-solvable groups by means

of complements of appropriate minimal normal subgroups, by means of

stabilizers and by means of some X-maximal subgroups are given.

1. Preliminaries

All groups considered in this paper are finite. Let π be a set of primes and

π′ the complement to π in the set of all primes.

We first remind some definitions and theorems which will be useful for our

considerations.

Definition 1.1. a) Let G be a group, M and N two normal subgroups of G such

that N ⊆ M . The factor M/N is called a chief factor of G if M/N is a minimal

normal subgroup of G/N .

b) A group G is said to be π-solvable if every chief factor of G is either a

solvable π-group or a π′-group. In particular, for π the set of all primes we obtain

the notion of solvable group.

Definition 1.2. a) Let G be a group and W a subgroup of G. We define

coreGW = ∩{W g | g ∈ G},
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where W g = g−1Wg.

b) W is a stabilizer of G if W is a maximal subgroup of G and coreGW = 1.

c) A group G is said to be primitive if there exists a stabilizer W of G.

In the formation theory are well-known the following notions:

Definition 1.3. a) A class X of groups is a homomorph if X is closed under homo-

morphisms, i.e. if G ∈ X and N is a normal subgroup of G, then G/N ∈ X.

b) A homomorph X is a Schunck class if X is primitively closed, i.e. if any

group G, all of whose primitive factor groups are in X, is itself in X.

Definition 1.4. a) A class X of groups is called π-closed if

G/Oπ′(G) ∈ X ⇒ G ∈ X,

where Oπ′(G) denotes the largest normal π′-subgroup of G.

b) We shall call π-homomorph, respectively π-Schunck class, a π-closed ho-

momorph, respectively a π-closed Schunck class.

Definition 1.5. Let X be a class of groups, G a group and H a subgroup of G.

a) H is an X-maximal subgroup of G if:

(i) H ∈ X;

(ii) H ≤ H∗ ≤ G, H∗ ∈ X ⇒ H = H∗.

b) H is an X-covering subgroup of G if:

(i) H ∈ X;

(ii) H ≤ K ≤ G, K0 E K, K/K0 ∈ X ⇒ K = HK0.

Remark 1.6. If X is a class of groups, G is a group and H is an X-covering subgroup

of G, then H is X-maximal in G.

The following results will be used in the paper:

Theorem 1.7. ([1]) A solvable minimal normal subgroup of a finite group is abelian.

Theorem 1.8. ([2], [3]) Let G be a primitive π-solvable group. If G has a minimal

normal subgroup which is a solvable π-group, then G has one and only one minimal

normal subgroup.
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Theorem 1.9. ([3]) If G is a primitive π-solvable group, V < G, such that there

exists a minimal normal subgroup M of G which is a solvable π-group and MV = G,

then V is a stabilizer of G.

Theorem 1.10. ([5]) Let X be a π-homomorph. The following conditions are equiv-

alent:

(1) X is a Schunck class;

(2) if G is a π-solvable group, G 6∈ X and N is a minimal normal subgroup

of G such that G/N ∈ X, then N has a complement in G;

(3) any π-solvable group G has X-covering subgroups.

Theorem 1.11. ([5]) Let X be a π-Schunck class, G a π-solvable group, G 6∈ X, N

a minimal normal subgroup of G such that G/N ∈ X and H an X-covering subgroup

of G. Then H is a complement of N in G, i.e. G = HN and H ∩N = 1.

Theorem 1.12. ([5]) If X is a π-Schunck class, G is a π-solvable group, G 6∈ X and

N is a minimal normal subgroup of G such that G/N ∈ X, then:

a) N has a complement H in G;

b) H is X-maximal in G;

c) H is conjugate to any X-maximal subgroup S of G with NS = G.

2. On stabilizers in finite primitive π-solvable groups

Lemma 2.1. If G is a group and W a stabilizer of G, then:

a) for any normal subgroup K 6= 1 of G, we have KW = G;

b) for any minimal normal subgroup M of G, we have MW = G.

Proof. a) Let K 6= 1 be a normal subgroup of G. Since W is maximal in G and

W ≤ KW ≤ G, we have KW = W or KW = G. Suppose that KW = W . It follows

that K ≤ W and so Kg ≤ W g for any g ∈ G. But K being normal in G, Kg = K

for any g ∈ G. Then K ≤ W g for any g ∈ G, hence K ≤ coreGW = 1. So K = 1, in

contradiction to our hypothesis. So KW = G.

b) Follows immediately from a). �
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Theorem 2.2. Let G be a π-solvable group, W a stabilizer of G and M a minimal

normal subgroup of G such that M is a solvable π-group. Then W is a complement

of M in G, i.e. MW = G and M ∩W = 1.

Proof. MW = G follows from Lemma 2.1. Let us now prove that M ∩ W = 1.

Since M is normal in G and W ≤ G, we have that M ∩W is normal in W . By 1.7,

M is abelian. In order to prove that M ∩ W is normal in G, consider g ∈ G and

m ∈ M ∩W . Since G = MW , we have g = nw, where n ∈ M and w ∈ W . So

g−1mg = (nw)−1m(nw) = w−1n−1mnw = w−1n−1nmw = w−1mw ∈ M ∩W,

where we used that M is abelian and that M ∩ W E W . It follows that M ∩ W is

normal in G. From this and from the fact that M is a minimal normal subgroup of

G, we deduce that M ∩W = 1 or M ∩W = M . But M ∩W = M leads to M ⊆ W ,

hence G = MW = W , in contradiction with the hypothesis that W is a stabilizer of

G. So M ∩W = 1. �

Theorem 2.3. Let G be a primitive π-solvable group such that there exists a minimal

normal subgroup M of G, M solvable π-group. Let W < G. The following two

conditions are equivalent:

(1) W is a stabilizer of G;

(2) MW = G.

Proof. By 1.8, M is the unique minimal normal subgroup of G.

(1) ⇒ (2): Let W be a stabilizer of G. Applying 2.2, we obtain that

MW = G.

(2) ⇒ (1): Let MW = G. Then, by 1.9, W is a stabilizer of G. �

3. Covering subgroups and complements in finite primitive π-solvable

groups

In preparation for the main result of this section, we first prove a lemma.

Lemma 3.1. Let X be a π-homomorph, G a π-solvable group, G 6∈ X and N a

minimal normal subgroup of G such that G/N ∈ X. Then:

a) N is a solvable π-group;
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b) N is abelian.

Proof. a) Since G is a π-solvable group and N is a minimal normal subgroup of G,

we conclude that N is either a solvable π-group or a π′-group. Suppose that N is a

π′-group. Then N ≤ Oπ′(G) ≤ G, hence

G/Oπ′(G) ' (G/N)/(Oπ′(G)/N).

But G/N ∈ X. Then by the above isomorphism and X being a homomorph,

G/Oπ′(G) ∈ X. It follows by the π-closure of X that G ∈ X, a contradiction.

This shows that N is a solvable π-group.

b) We apply 1.7 and a) and obtain that N is abelian. �

Theorem 3.2. Let X be a π-Schunck class, G a finite primitive π-solvable group,

G 6∈ X, N a minimal normal subgroup of G such that G/N ∈ X and let H ≤ G. The

following two conditions are equivalent:

(1) H is an X-covering subgroup of G;

(2) H is a complement of N in G, i.e. HN = G and H ∩N = 1.

Proof. (1) ⇒ (2): Let H be an X-covering subgroup of G. By applying 1.11, H is

a complement of N in G.

(2) ⇒ (1): Let H be a complement of N in G (according to 1.10, H exists),

i.e. we have HN = G and H ∩N = 1. By lemma 3.1, N is a solvable π-group, hence

N is abelian. We will prove that H is an X-covering subgroup of G by verifying

conditions (i) and (ii) from 1.5.b).

(i) H ∈ X. Indeed, we have:

H ' H/1 = H/H ∩N ' HN/N = G/N ∈ X.

(ii) Let H ≤ K ≤ G, K0 E K, K/K0 ∈ X. We prove that K = HK0. For

this, we first prove that H is a maximal subgroup of G. Indeed, H 6= G (since H ∈ X

and G 6∈ X) and let now H ≤ H∗ < G. In order to show that H = H∗, suppose

H < H∗. Then there exists an element h∗ ∈ H∗ \H ⊂ G = HN and so

h∗ = hn, with h ∈ H, n ∈ N
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hence

n = h−1h∗ ∈ H∗ ∩N.

Let us show that H∗ ∩ N = 1. For this, we notice that from N E G and H∗ ≤ G

follows that H∗ ∩N E H∗. Furthermore, H∗ ∩N E G, since for any g ∈ G and any

n ∈ H∗ ∩N , we have that g−1ng ∈ H∗ ∩N , as we show below:

g ∈ G = HN = H∗N = NH∗ ⇒ g = mh∗, m ∈ N, h∗ ∈ H∗

⇒ g−1ng = (mh∗)−1n(mh∗) = (h∗)−1m−1nmh∗

= (h∗)−1m−1mnh∗ = (h∗)−1nh∗ ∈ H∗ ∩N,

where we used that N is abelian and that H∗ ∩ N E H∗. So H∗ ∩ N E G. But N

is a minimal normal subgroup of G, hence H∗ ∩ N = 1 or H∗ ∩ N = N . Suppose

H∗ ∩N = N . Then N ⊆ H∗, hence G = H∗N = H∗, a contradiction. It follows that

H∗ ∩N = 1. Then

n = h−1h∗ ∈ H∗ ∩N = 1 ⇒ n = 1 ⇒ h−1h∗ = 1 ⇒ h = h∗ ∈ H∗ \H,

in contradiction with h ∈ H. It follows that H is a maximal subgroup of G. Hence

from H ≤ K ≤ G, we have only two possibilities: K = H or K = G.

If K = H, the hypotheses of (ii) become H ≤ H ≤ G, K0 E H, H/K0 ∈ X

and clearly K = H = HK0.

If K = G, the hypotheses of (ii) become H ≤ G ≤ G, K0 E G, G/K0 ∈ X.

We have to prove that G = HK0. Observe that K0 6= 1. Indeed, supposing that

K0 = 1, we have G ' G/1 = G/K0 ∈ X, a contradiction with G 6∈ X. Furthermore,

by 1.8, N is the unique minimal normal subgroup of G. Hence for K0 E G, K0 6= 1

follows that N ⊆ K0. So G = HN ⊆ HK0, which leads to K = G = HK0. �

Theorems 1.12 and 3.2 have the following consequence:

Corollary 3.3. Let X be a π-Schunck class, G a finite primitive π-solvable group,

G 6∈ X and N a minimal normal subgroup of G such that G/N ∈ X. Then:

a) N has a complement H in G;

b) H is an X-covering subgroup of G;

c) H is X-maximal in G;
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d) H is conjugate to any X-maximal subgroup S of G with SN = G;

e) conditions a) and b) are equivalent.

4. Covering subgroups and stabilizers in finite primitive π-solvable groups

In this section we will establish a connection between covering subgroups and

stabilizers in finite primitive π-solvable groups.

Theorem 4.1. Let X be a π-Schunck class, G a finite primitive π-solvable group,

G 6∈ X, N a minimal normal subgroup of G such that G/N ∈ X and let H ≤ G. The

following two conditions are equivalent:

(1) H is an X-covering subgroup of G;

(2) H is a stabilizer of G.

Proof. By lemma 3.1, N is a solvable π-group.

(1) ⇒ (2): Let H be an X-covering subgroup of G. Then H ∈ X. This

implies H 6= G, since G 6∈ X. Applying Theorem 3.2, we obtain that HN = G. This

and H < G show that we are in the hypotheses of Theorem 1.9. It follows that H is

a stabilizer of G.

(2) ⇒ (1): Let H be a stabilizer of G. Then, by 2.2, H is a complement

of N in G. Now by applying Theorem 3.2, we conclude that H is an X-covering

subgroup of G. �

Theorems 3.2 and 4.1 have the following corollary:

Corollary 4.2. Let X be a π-Schunck class, G a finite primitive π-solvable group,

G 6∈ X, N a minimal normal subgroup of G such that G/N ∈ X and let H ≤ G. The

following three conditions are equivalent:

(1) H is an X-covering subgroup of G;

(2) H is a complement of N in G;

(3) H is a stabilizer of G.

5. X-maximal subgroups and complements in finite π-solvable groups

In this last section of the paper, we show that there is a connection between

some particular X-maximal subgroups and the complements of some special minimal
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normal subgroups in finite π-solvable groups. This connection allows us to characterize

the X-covering subgroups in finite primitive π-solvable groups by means of these

particular X-maximal subgroups.

Theorem 5.1. Let X be a π-Schunck class, G a finite π-solvable group, G 6∈ X and

let N be a minimal normal subgroup of G such that G/N ∈ X. Then:

a) N has a complement H in G; furthermore, H is X-maximal in G and H

is conjugate to any X-maximal subgroup S of G with SN = G;

b) the following two conditions on H ≤ G are equivalent:

(i) H is an X-maximal subgroup of G such that HN = G;

(ii) H is a complement of N in G;

c) any two complements H1 and H2 of N in G are conjugate in G.

Proof. a) Immediately follows from Theorem 1.12.

b) (i) ⇒ (ii): Let H be X-maximal in G such that HN = G. We have to

prove that H ∩ N = 1. Observe first that H 6= G, since H ∈ X and G 6∈ X. From

H ≤ G and N E G follows that H ∩ N E H. Lemma 3.1 implies that N is abelian.

Let us now prove that H ∩N is normal in G. Let g ∈ G and n ∈ H ∩N . Then:

g ∈ G = HN = NH ⇒ g = mh, where m ∈ N, h ∈ H,

hence

g−1ng = (mh)−1n(mh) = h−1m−1nmh

= h−1m−1mnh = h−1nh ∈ H ∩N,

where we used that H ∩N E H. In order to prove that H ∩N = 1, we consider the

normal subgroup H ∩ N of G and observe that H ∩ N ⊆ N , where N is a minimal

normal subgroup of G. It follows that H ∩N = 1 or H ∩N = N . If we suppose that

H ∩N = N , we obtain N ⊆ H, hence G = HN = H, in contradiction with H 6= G.

So H ∩N = 1.

(ii) ⇒ (i): Let H be a complement of N in G. Hence, by 1.12, H is

X-maximal in G. Obviously HN = G, H being a complement of N in G.
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c) Let H1 and H2 be two complements of N in G. Applying b) to H2, we

obtain that H2 is X-maximal in G and H2N = G. But H1 is a complement of N in

G. Now applying Theorem 1.12.c) it follows that H1 is conjugate with H2 in G. �

From Theorem 5.1.b) and Corollary 4.2 follows:

Corollary 5.2. Let X be a π-Schunck class, G a finite primitive π-solvable group,

G 6∈ X, N a minimal normal subgroup of G such that G/N ∈ X and let H ≤ G. The

following four conditions are equivalent:

(1) H is a complement of N in G;

(2) H is X-maximal in G and HN = G;

(3) H is an X-covering subgroup of G;

(4) H is a stabilizer of G.
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