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ON THE STABILITY OF DISTRIBUTIONS OF THE COMPOSED
RANDOM VARIABLE BASED ON THE STABILITY OF THE

SOLUTION OF THE DIFFERENTIAL EQUATIONS FOR
CHARACTERISTIC FUNCTIONS

PHAM VAN CHUNG

Abstract. In this paper we give some conditions for the stability of the

distribution functions of composed random variables by considering the

stability of the solutions of differential equations for characteristic func-

tions.

1. Introduction

We consider a random variable (r.v.)

η =
ν∑
k=1

ξk, (1.1)

where ξ1, ξ2, ... are i.i.d. random variables possessing the same distribution function

F (x) with the corresponding characteristic function ϕ(t), ν is a positive valued r.v.

independent of all ξk (k = 1, 2, ...) and has the moment generating function a(z).

The r.v. η is called the composed random variable of ξj , η has the character-

istic function defined by

ψ(t) = a[ϕ(t)].

In [2], [3] and [4], we obtained the following results.

1. Suppose that ν follows the Poisson law with the parameter λ and ξ follows

the exponential law with the parameter θ. If the statistic T1 is zero-regression w.r.t
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the statistic λ1 (T1 and λ1 were showed in [2]), then the characteristic function ψ1(t)

of η satisfies the following equation

3[ψ
′′

1 (t)]2ψ2
1(t)− 2ψ

′

1(t)ψ
′′′

1 (t)ψ2
1(t)− [ψ

′

1(t)]
4 = 0 (1.2)

where ψ1(0) = 0;ψ
′

1(0) = iλθ;ψ
′′

1 (0) = −λθ2(2 + λ).

2. Assume that ν follows the Poisson law with the parameter λ, ξ follows the

negative binomial distribution function with the parameters p and q. If the statistic

T2 is zero-regression with the statistic λ1 (T2 and λ1 were showed in [2]) then the

characteristic function ψ2(t) of η satisfies the following equation

[ψ
′

2(t)]
4 + 2ψ

′′′

2 (t)ψ
′

2(t)ψ
2
2(t)− 3[ψ

′′

2 (t)]2ψ2
2(t)− ψ

′

2(t)ψ
2
2(t) = 0, (1.3)

where ψ2(0) = 1;ψ
′

2(0) = iλ
q

p
;ψ

′′

2 (0) = −λ
2q2

p2
− 2λq2

p2
.

3. If ν follows the Poisson law with the paramater λ, ξ follows the Normal

law N(0, 1) and if the statistic T3 is zero-regression with the statistic λ1 (T3 and λ1

were showed in [2]) then the characteristic function ψ3(t) of η satisfies the following

equation

ψ
(4)
3 (t)ψ

′′

3 (t)ψ4
3(t)− ψ

(4)
3 (t)[ψ

′

3(t)]
2ψ3

3(t) + 2ψ
′

3(t)ψ
′′

3 (t)ψ
′′′

3 (t)ψ3
3(t)

−3[ψ
′′

3 (t)]2ψ3
3(t) + 6ψ

′′

3 (t)[ψ
′

3(t)]
2ψ2

3(t) + 6ψ
′′

3 (t)[ψ
′

3(t)]
4ψ3(t)

+2ψ
′′

3 (t) + 2[ψ
′′

3 (t)]2ψ4
3(t)− [ψ

′

3(t)]
4ψ2

3(t)− [ψ
′′′

3 (t)]2ψ2
3(t)

−2ψ
′

3(t)ψ
′′

3 (t)ψ4
3(t) = 0,

where

ψ3(0) = 1;ψ
′

3(0) = 0;ψ
′′

3 (0) = −λ;ψ
′′′

3 (0) = 0. (1.4)

4. If ν follows the binomial law with the parameters p and q, ξ follows the

exponential law with the parameter θ, and if the statistic T4 is zero-regression with

the statistic λ1 (T4 and λ1 were showed in [2]) then the characteristic function ψ4(t)

of η satisfies the following equation

3n2[ψ
′′

4 (t)]2ψ2
4(t)− 2n2ψ

′

4(t)ψ
′′′

4 (t)ψ2
4(t)− (n2 − 1)[ψ

′

4(t)]
4 = 0, (1.5)

where ψ4(0) = 1;ψ
′

4(0) = inpθ;ψ
′′

4 (0) = −n2θ2p2 − nθ2p2.
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5. If ν follows the negative binomial law with the parameters p and q, ξ follows

the exponential law with the parameter θ, and if the statistic T5 is zero-regression

with the statistic λ1 (T5 and λ1 were showed in [2]) then the characteristic function

ψ5(t) of η satisfies the following equation

3[ψ
′′

5 (t)]2 − 2ψ
′

5(t)ψ
′′′

5 (t) = 0, (1.6)

where ψ5(0) = 1;ψ
′

5(0) = iθ
q

p
;ψ

′′

5 (0) = −2θ2q
p2

.

6. If ν follows geometric law with the parameters α and β, ξ follows the

exponential law with the parameter θ and if the statistic T6 is zero-regression with

the statistic λ1 (T6 and λ1 were showed in [4]) then the characteristic function ψ6(t)

of η satisfies the following equation

3[ψ
′′

6 (t)]2 − 2ψ
′

6(t)ψ
′′′

6 (t) = 0, (1.7)

where ψ6(0) = 1;ψ
′

6(0) = i
θ

α
;ψ

′′

6 (0) = −2(
θ

α
)2.

7. If ν follows the Geometric law with the parameters α and β, ξ follows the

negative binomial law with the parameters p and q, and if the statistic T7 is zero-

regression with the statistic λ1 (T7 and λ1 were showed in [4]) then the characteristic

function ψ7(t) of η satisfies the equation

{[ψ
′′

7 (t)]2 − ψ
′

7(t)ψ
′′′

7 (t)}ψ2
7(t) + 2[ψ

′

7(t)]
2ψ

′′

7 (t)ψ7(t)− 2[ψ
′

7(t)]
4 = 0, (1.8)

where ψ7(0) = 1;ψ
′

7(0) =
iq

pα
;ψ

′′

7 = −q(1− βp+ q)
α2p2

.

In [2] and [4] we have considered also the stability of the composed random

variables and we showed that if the condition that the statistics Ti (i = 1, 5, 6, 7) are

zero-regression with the statistic λ1 (Ti and λ1 were showed in [2], [4]) is replaced by

the condition that Ti(i = 1, 5, 6, 7) are ε-zero regression with the statistic λ1 (for some

small enough number ε) then the characteristic functions ψi(t) of η have to satisfy

the differential equations which have the same left sides of the differential equations

(1.2), (1.3),...,(1.8) but their right sides are functions ri(t) which are small enough for

all t.
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Let us consider the following differential equations

F (ψ(t), ψ
′
(t), ψ

′′
(t), ..., ψ(n)(t)) = 0 (1.9)

and

F (ψ(t), ψ
′
(t), ψ

′′
(t), ..., ψ(n)(t)) = r(t), (1.10)

where r(t) = r(t), r(0) = 0, |r(t)| 6 ε (for some small enough number ε). If the

function F in equations (1.9) and (1.10) satisfies the condition ∂F
∂ψ(n)

6= 0 then from

(1.9) we can represent ψ(t) in the form

ψ(n)(t) = f [ψ(t), ψ
′
(t), ..., ψ(n−1)(t)], (1.11)

where the solution ψε(t) of equation (1.10) can be represented in the form

ψ(n)
ε (t) = f [ψε(t), ψ

′

ε(t), ..., ψ
(n−1)
ε (t)] + a(t), (1.12)

where |a(t)| < ε.

A problem arisen is that under which condition imposing on the function

f(x1, x2, ..., xn), the solution of the differential equation (1.9), is stable in the following

sense: there exist T = T (ε) such that T (ε) →∞ when ε→ 0, and δ = δ(ε), such that

δ(ε) → 0 when ε→ 0 such that

|ψε(t)− ψ(t)| < Cδ(ε), for all t, |t| 6 T (ε),

where C is a constant independent of ε.

2. Stability theorem of the solution of the differential equations

Let us consider the differential equations (1.9) and (1.10) with solutions sat-

isfying the equations (1.11) and (1.12).

Theorem 2.1. If the function f(x1, x2, ..., xn) is continuous, differentiable in vari-

ables and satisfies the Lipschitz’s condition, that means there exists a positive constant

N , such that

|f(x1, x2, ..., xn)− f(y1, y2, ..., yn)| 6 N
n∑
i=1

|xi − yi|
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for all (x1, x2, ..., xn) ∈ Rn and (y1, y2, ..., yn) ∈ Rn and if ψ(t) is a bounded function

and satisfies the conditions:

∃M ∈ R1, 0 < M < +∞, |ψ(k)(t)| < M, for all k = 1, 2, ..., n; for all t,

then, for every small enough positive number ε, there exists a positive number T =

T (ε), T (ε) →∞ when ε→ 0 and a positive number δ, 0 < δ < 1, such that

|ψε(t)− ψ(t)| < Cε1−δ, for all t, |t| 6 T (ε),

where C is a constant independent of ε.

Lemma 2.1. Suppose that all eigenvalues of a constant matrix A have negative real

parts, then there exist constants α > 0 and β > 0, such that

||eAt|| 6 βe−αt. (2.1)

where ||·|| denotes the norm in the space of the square matrics and eAt =
∑∞
k=0

(At)k

k!
.

Lemma 2.2. Suppose that u(t) and f(t) are integrable nonegative real functions on

[t0, t0 + T ] and K(t, s) is a nonegative real function, bounded on [t0, t0 + T ].

If the following inequality holds:

u(t) 6 f(t) +
∫ t

t0

K(t, s)u(s)ds, (2.2)

then

u(t) 6 h(t), for all t, t0 6 t 6 t0 + T, (2.3)

where h(t) is the solution of the equation

h(t) = f(t) +
∫ t

t0

K(t, s)h(s)ds. (2.4)

Proof of the theorem 2.1. At first, we consider t ≥ 0, (the case t 6 0 is carried

out similarly).
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Putting x1 = ψ(t), x2 = ψ
′
(t), ..., xn = ψ(n−1)(t), then the differential equa-

tion (1.11) can be written in the form

dx1

dt
= x2

dx2

dt
= x3

· · ·
dxn
dt

= f(x1, x2, ..., xn).

(2.6)

Let us denote X = (x1, x2, ..., xn)T ∈ Rn

A =


−n 1 1 · · · 1

1 −n 1 · · · 1

. . . · · · .

1 1 1 · · · −n



G(X) =



+nx1 − x3 · · · − xn

−x1 + nx2 · · · − xn

.. · · ·

−x1 − x2 · · ·+ nxn−1

−x1 − x2 · · · − xn−1 + nxn + f(x1, x2, ..., xn)


.

Then the differential equation (2.6) reduces to the equation:

dX

dt
= AX +G(X). (2.7)

By a similar way, the differential equation (1.10) can be rewritten as follows

dY

dt
= AY +G(Y ) + a(t), (2.8)

where Y = (y1, y2, ..., yn)T ∈ Rn, y1 = ψε(t), ..., yn = ψ
(n−1)
ε (t) and a(t) is given in

(1.12).

Since f(x1, x2, ..., xn) is continuous and differentiable function in variables

and satisfies the Lipshitz condition, there exists a positive constant l, such that

||G(X)−G(Y )|| 6 l||X − Y || for all X,Y ∈ Rn. (2.9)
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On the other hand, we have

det(A− λE) = (λ+ 1)(λ+ n+ 1)n−1, (2.10)

so, the eigenvalues of matrix A are

λ1 = −1, λ2 = −(n+ 1) = λ3 = ... = λn.

We see that the eigenvalues of matrix A have negative real parts.

According to the Lemma 2.1, there exists constants α, β > 0, such that

||eAt|| 6 βe−αt. (2.11)

From (2.7) and (2.8) we get

X(t) = eAtX(0) +
∫ t

0

eA(t−s)G[X(s)]ds (2.12)

Y (t) = eAtY (0) +
∫ t

0

eA(t−s)G[Y (s)]ds+
∫ t

0

eA(t−s)a(s)ds. (2.13)

Since X(0) = Y (0),

||X(t)− Y (t)|| 6
∫ t

0

||eA(t−s)||.||G[X(s)]−G[Y (s)]||ds+
∫ t

0

||eA(t−s)||.|a(s)|ds.

Using the estimations (2.9), (2.11) and by (1.12) we have

||X(t)− Y (t)|| 6 βe−αt
∫ t

0

leαs||X(s)− Y (s)||ds+ βe−αtε

∫ t

0

eαsds.

Hence

||X(t)− Y (t)||eαt 6 βε

∫ t

0

eαsds+
∫ t

0

βl||X(s)− Y (s)||eαsds. (2.14)

If we put ||X(t) − Y (t)||eαt = u(t), f(t) = βε
∫ t
0
eαsds,K(s, t) = lβ and t0 = 0, and

by the lemma 2.2, we have the following estimation

u(t) 6 f(t) +
∫ t

0

βlu(s)ds. (2.15)

It follows from the Lemma 2.2 that

u(t) 6 ψ(t),
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where ψ(t) is the solution of equation

ψ(t) = f(t) +
∫ t

0

βlψ(s)ds.

Therefore we have

ψ(t) = e
∫ t
0 βlds[f(0) +

∫ t

0

f
′
(s)e−

∫ s
0 βldsds]

= eβlt
∫ t

0

βεeαs−βlsds

=
βε

α− βl
(eαt − eβlt).

So we obtain

||X(t)− Y (t)|| 6 β

α− βl
ε(1− eβlt−αt). (2.16)

If α− βl > 0 then ||X(t)− Y (t)|| 6 β

α− βl
ε for all t.

If α− βl < 0, then

β

α− βl
ε(1− eβlt−αt) 6

β

|α− βl|
εe(βl−α)t.

Now if we choose T (ε) =
1

βl − α
ln(

1
ε
)δ, where 0 < δ < 1, then

T (ε) →∞, when ε→ 0.

So, for all t, 0 < t 6 T (ε) we get the estimation:

||X(t)− Y (t)|| 6 β

|α− βl|
ε1−δ = Cε1−δ,

where C is a constant independent of ε.

3. Stability theorems for the distribution of the composed random variable

Let us consider the composed random variable η in (1.1)

η =
ν∑
k=1

ξk.

Suppose that (X1, X2, ..., Xn) is n independent observations on η and that the absolute

moments E(|η|k) for k = 1, 2, 3, 4 are finite.
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We put

λk =
n∑
i=1

Xk
i (k = 1, 2, 3, 4).

• T1 = A1λ4 + 3B1λ
2
2 + 2C1λ1λ3 + 6λ2λ

2
1 − λ4

1, where

A1 = n(5− n);B1 = n2 − 5n+ 5;C1 = (n2 − 5n+ 10) (3.1)

• T2 = A2λ4 + 3B2λ
2
2 − C2λ1λ3 + 6λ2λ

2
1 − λ4

1 + (n− 2)(n− 3)(λ2
1 − λ2)

A2 = n(5− n);B2 = n2 − 5n+ 5;C2 = n2 − 5n+ 10 (3.2)

• T3 = A3λ6 +B3λ3λ1 + C3λ4λ2 + E3λ1 + F3λ3 +G3λ1λ2λ3 + 2λ6
1

+(n− 4)(n− 5)[M3λ4 +N3λ1λ2 + P3λ
2
1 + λ1λ2 − λ4

1]

+H3λ3λ
2
1 +K3λ2λ

2
1 + L3λ2λ

4
1,

where

A3 = −4n(n− 1)(n− 2);B3 = 24(n2 − 3n+ 2)

C3 = n4 − 6n3 − 5n2 − 60n− 120

D3 = −n3 + 6n2 − 65n+ 1;F3 = 3(−n3 + 10n2 − 35n+ 40)

E3 = −n4 + 12n2 − 35n+ 20;G3 = 5(n2 − 3n+ 5), L3 = −6n

M3 = n(5− n);N3 = 2(−n2 + 5n− 13);P3 = 3(n2 − 5n+ 7) (3.3)

• T4 = A4λ4 + 3B4λ
2
2 + 2C4λ1λ3 + 6λ2λ

2
1 − λ4

1, where

A4 =
−n4 + 5n3 − 6

n2 − 1
;B4 =

n4 − 5n3 + 5n2 + 1
n2 − 1

;C4 =
−n4 + 5n3 − 10n2 + 4

n2 − 1
(3.4)

• T5 = 3λ2
2 − 2λ1λ3 − λ4 (3.5)

• T6 = 3λ2
2 − 2λ1λ3 − λ4 (3.6)

• T7 = A7λ3λ1 +B7λ
2
2 + C7λ

2
1λ2 +H7λ4 + 2λ4

1, where

A7 = n2 − n+ 10;B7 = −n2 + 7n− 6;C7 = −2(n+ 3);H7 = −4n (3.7)

(notice that the statistics T1, T5 are considered in [2] and the statistics T6, T7 are

considered in [4]).
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Definition 3.1. Let X and Y be two random variables with EY < ∞. Y is said to

be ε- zero regression with respect to X if

|E(Y/X)| 6 ε. (3.8)

Definition 3.2. The composed r.v. η with the distribution Ψε(x)) is called r.v. with

the ε− approximate distribution function Ψ0(t) if λ(Ψε; Ψ0) 6 ε, where metric λ(.; .)

is defined as follows

λ(Ψε;Ψ0) = min
T>0

max{max
|t|6T

1
2
|(ψε(t)− ψ0(t))|; 1

T
}, (3.9)

where ψ0(t), ψε(t) are the characteristic functions corresponding to the distributions

Ψ0(x),Ψε(x) respectively.

Now we obtain the following stability theorems:

Theorem 3.1. If the statistic Ti(i = 1, 2, 3, 4, 5, 6, 7) is ε-zero regression with respect

to the λ1 then the ψiε(i = 1, 2, 3, 4, 5, 6, 7) satisfies the following differential equations

with the same left sides as in (1.2), (1.3), (1.4), (1.5), (1.6), (1.7) but their right sides

are the following functions:

r(t)
i4(n− 1)(n− 2)(n− 3)n

, for(1.2) (3.10)

where r(0) = 0, r(t) = r(−t), |r(t)| 6 ε ∀t,

r(t)
i4(n− 1)(n− 2)(n− 3)n

, for(1.3) (3.11)

where r(0) = 0, r(t) = r(−t), |r(t)| 6 ε ∀t,

r(t)
i4n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

, for(1.4) (3.12)

where r(0) = 0, r(t) = r(−t), |r(t)| 6 ε ∀t,

(n+ 1)r(t)
(n− 2)(n− 3)n

, for(1.5) (3.13)

where r(0) = 0, r(t) = r(−t), |r(t)| 6 ε ∀t,

r(t)
i4(n− 1)n

, for(1.6) (3.14)
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where r(0) = 0, r(t) = r(−t), |r(t)| 6 ε ∀t,

r(t)
i4(n− 1)n

, for(1.7) (3.15)

where r(0) = 0, r(t) = r(−t), |r(t)| 6 ε ∀t,

r(t)
i4n(n− 1)(n− 2)(n− 3)

, for(1.8) (3.16)

where r(0) = 0, r(t) = r(−t), |r(t)| 6 ε ∀t.

Theorem 3.2. Let Ψi(x)(i = 1, 2, 4, 5, 6, 7) be distribution functions with respect to

the characteristic functions ψi(t) of the composed ramdom variable where ψi(t) satisfy

the differential equation (1.2), (1.3), (1.5), (1.6), (1.7), (1.8).

Suppose that Ψiε(x) is distribution of the composed random variable corre-

sponding to the characteristic function ψiε(t), which is the solution of the equation

with the same left side of the equation (1.2), (1.3), (1.5), (1.6), (1.7), (1.8), respec-

tively, but with the right side defined by (3.10), (3.11), (3.13), (3.14), (3.15), (3.16),

respectively, then the distribution function of composed random variable Ψiε(x) is

Cγ(ε)-approximate Ψi(x) respectively, where γ(ε) = max{ε1−δ, 1

δ ln(
1
ε
)
} for ε is small

enough positive number and C is a constant independent of ε, (0 < δ < 1).

The proof of the theorem 3.1 is carried out similarly as in proof of the theorem

in [4] by using definition 3.1.

The conclusion of the theorem 3.2 follows directly from the above definition

3.2 and Theorem 2.1 and with notice that f(x1, x2, ..., xn) in (1.11) and (1.12) to be

continuous and piecewise smooth on its domain, therefore it satisfies the Lipschitz’s

condition.

Notice that the differential equation with the left side (1.4) and right side

(3.12) does not satisfy the condition (1.19), therefore the theorem 3.2 is not valid for

this case.
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