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SIMPSON, NEWTON AND GAUSS TYPE INEQUALITIES

MIHÁLY BENCZE

Abstract. In this paper using the Simpson’s quadrature formula, the

Newton quadrature formula and the Gauss quadrature formula, we present

new inequalities between means.

1. Introduction

This papers deals with the comparison of means. If s and t are two real

parameters and a and b are positive numbers, then we may consider the following two

families of means:

- the Gini means,

Gs,t(a, b) =


(

as+bs

at+bt

)1/(s−t)

, if s 6= t

exp
(

as log a+bs log b
as+bs

)
, if s = t

;

- the Stolarski means,

Ss,t(a, b) =



(
t(as−bs)
s(at−bt)

)1/(s−t)

, if (s− t) st 6= 0, a 6= b

exp
(
− 1

s + as log a−bs log b
as−bs

)
, if s = t 6= 0, a 6= b(

as−bs

s(log a−log b)

)1/s

, if s 6= 0, t = 0, a 6= b
√

ab, if s = t = 0

a, if a = b.

Some particular cases are important in themselves.
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Gs,0(a, b) coincides with the Hölder mean of order s > 0,

As (a, b) =
(

as + bs

2

)1/s

=

(
s

bs − as

∫ b

a

x2s−1dx

)1/s

(A1 (a, b) is precisely the arithmetic mean of a and b, also denoted A (a, b)).

G0,0(a, b) coincides with the geometric mean,

G (a, b) =
√

ab =

(
1

b− a

∫ b

a

1
x2

dx

)−1/2

;

S1,0(a, b) coincides with the logarithmic mean,

L (a, b) =
b− a

ln b− ln a
=

(
1

b− a

∫ b

a

dx

x

)−1

while S1,1(a, b) coincides with the identric mean,

I (a, b) =
1
e

(
bb

aa

) 1
b−a

= exp

(
1

b− a

∫ b

a

lnxdx

)
.

We will be concerned with the problem of comparing the different means. Our

approach is based on certain inequalities satisfied by the 4-convex functions. Recall

that in the differentiable case these are precisely those 4-time differentiable functions

f such that f (4)(x) ≥ 0 for all x.

Lemma 1.1. If f ∈ C4([a, b]) and f (4) ≥ 0, then the mean value of f,

M(f) =
1

b− a

∫ b

a

f (x) dx,

does not exceed any of the following three sums:

i) 1
6

[
f (a) + 4f

(
a+b
2

)
+ f (b)

]
;

ii) 1
8

[
f (a) + 3f

(
2a+b

3

)
+ 3f

(
a+2b

3

)
+ f (b)

]
;

iii)
[
f
(

a+b
2 − b−a

6

√
3
)

+ f
(

a+b
2 + b−a

6

√
3
)]

.

Proof. According to Simpson’s quadrature formula,

1
b− a

∫ b

a

f (x) dx =
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− (b− a)4

2880
f (4) (ξ1) ,

for some ξ1 ∈ (a, b), whence i). The cases ii) and iii) are motivated by the Newton

quadrature formula,
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1
b− a

∫ b

a

f (x) dx =
1
8

[
f (a) + 3f

(
2a + b

3

)
+ 3f

(
a + 2b

3

)
+ f (b)

]
− (b− a)4

648
f (4) (ξ2) ,

and respectively by the Gauss quadrature formula

1
b− a

∫ b

a

f (x) dx =
1
2

[
f

(
a + b

2
− b− a

6

√
3
)

+ f

(
a + b

2
+

b− a

6

√
3
)]

+
(b− a)4

4320
f (4) (ξ3) ,

where ξ2 and ξ3 are suitable points in (a, b). �

2. Applications

Theorem 2.1. If a, b > 0 then holds the following inequality

G2 (a, b) ≥ 6a2b2 (a + b)2

(a2 + b2) (a + b)2 + 16a2b2

or, in an equivalent form,

A
(
a2, b2

)
A2 (a, b) + 2G4 (a, b) ≥ 3G2 (a, b) A2 (a, b) .

Proof. In Lemma 1.1, we take f (x) = 1
x2 , from which f (4) (x) = 120

x6 > 0, therefore

1
G2 (a, b)

=
1

b− a

∫ b

a

1
x2

dx ≤ 1
6

(
1
a2

+
16

(a + b)2
+

1
b2

)
.

After calculus we obtain:

G2 (a, b) ≥ 6a2b2 (a + b)2

(a2 + b2) (a + b)2 + 16a2b2
,

that is,

A
(
a2, b2

)
A2 (a, b) + 2G4 (a, b) ≥ 3G2 (a, b) A2 (a, b) .

�
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Theorem 2.2. If a, b, t > 0 then the following inequality holds

G2
t (a, b) ≥ (bt − at) (ab (a + b))t+1

t (b− a)
(
(at+1 + bt+1) (a + b)t+1 + 2t+3 (ab)t+1

)
or, in an equivalent form,

A
(
at+1, bt+1

)
At+1 (a + b) + 2G2t+2 (a, b) ≥ 3 (bt − at)

t (b− a)
· G2t+2 (a, b)

G2
t (a, b)

·At+1 (a, b) .

Proof. In Lemma 1.1, we take f (x) = 1
xt+1 , from which f (4) (x) > 0 and so the

proof follows easily. �

Theorem 2.3. If a, b > 0 then the following inequality holds

I6 (a, b) ≥ ab

(
a + b

2

)4

or, in an equivalent form,

I (a, b) ≥ G1/3 (a, b)A2/3 (a, b) .

Proof. In Lemma 1.1, we take f (x) = lnx for which f (4) (x) < 0, therefore

I (a, b) = exp
(

1
b−a

∫ b

a
lnxdx

)
≥ exp 1

6

(
ln a + 4 ln

(
a+b
2

)
+ ln b

)
= 6
√

ab
(

a+b
2

)4
. �

Exercise 2.1. If a, b > 0 then

A (a, b)
L (a, b)

≥ 1 +
2
3

ln
A (a, b)
G (a, b)

.

Proof. From the definitions of identric and logarithmic mean, we have

ln I (a, b) =
a

L (a, b)
+ ln b− 1

and

ln I (a, b) =
b

L (a, b)
+ ln a− 1.

After addition, we obtain:

a + b

L (a, b)
+ ln ab− 2 = 2 ln I (a, b)

or, equivalently,
A (a, b)
L (a, b)

+ lnG (a, b)− 1 = ln I (a, b) . (2.1)
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Using the statement of the Theorem 2.3 we obtain:

A (a, b)
L (a, b)

+ lnG (a, b)− 1 ≥ ln
(
G2 (a, b) A4 (a, b)

) 1
6 .

�

Theorem 2.4. If a, b > 0 then the following inequality holds:

L (a, b) ≥ (a + b)2 + 8ab

6ab (a + b)

or, in an equivalent form,

3L (a, b) ≥ A (a, b)
G2 (a, b)

+
2

A (a, b)
.

Proof. In Lemma 1.1 we take f (x) = 1
x for which f (4) (x) > 0, therefore

1
L (a, b)

=
1

b− a

∫ b

a

dx

x
≤ 1

6

(
1
a

+
8

a + b
+

1
b

)
or, equivalently,

L (a, b) ≥ 6ab (a + b)
(a + b)2 + 8ab

.

�

Theorem 2.5. If a, b > 0 and t ∈
(
−∞, 1

2

]
∪
[
1, 3

2

]
∪ [2,+∞) , then

At
t (a, b) ≤

t (b− a)
(
22t−1

(
a2t−1 + b2t−1

)
+ 4 (a + b)2t−1

)
3 · 22t (bt − at)

or, in an equivalent form,

At
t (a, b) ≤ t (b− a)

3 (bt − at)
(
A
(
a2t−1, b2t−1

)
+ 2A2t−1 (a, b)

)
.

If t ∈
(

1
2 , 1
)
∪
(

3
2 , 2
)
, then the reverse inequality holds.

Proof. In Lemma 1.1 we take f (x) = x2t−1 for which

f (4) (x) = (2t− 1) (2t− 2) (2t− 3) (2t− 4) x2t−5.

If t ∈
(
−∞, 1

2

]
∪
[
1, 3

2

]
∪ [2,+∞) , then

f (4) (x) > 0
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and

At
t (a, b) =

t

bt − at

∫ b

a

x2t−1dx ≤ t (b− a)
6 (bt − at)

(
a2t−1 + 4

(
a + b

2

)2t−1

+ b2t−1

)

and the proof continues in an easy manner. �

3. Newton Type Inequalities

Theorem 3.1. If a, b > 0 then the following inequality holds

G2 (a, b) ≥ 8a2b2 (2a + b)2 (a + 2b)2

(a2 + b2) (2a + b)2 (a + 2b)2 + 27a2b2 (5a2 + 8ab + 5b2)

or, in an equivalent form,

16A
(
a2, b2

)
A (2a, b)A (a, 2b) + 27G4 (a, b)

(
5A
(
a2, b2

)
+ 4G4 (a, b)

)
≥ 64G2 (a, b) A (2a, b) A (a, 2b) .

Proof. In Lemma 1.1 we take f (x) = 1
x2 for which f (4) (x) > 0, therefore

1
G2 (a, b)

=
1

b− a

b∫
a

dx

x2
≤ 1

8

(
1
a2

+
27

(2a + b)2
+

27
(a + 2b)2

+
1
b2

)
.

�

Theorem 3.2. If a, b, t > 0 then G2
t (a, b) is greater or equal to

8
(
bt − at

)
(ab)t+1 (2a + b)t+1 (a + 2b)t+1

t (b− a)
(
(at+1 + bt+1) (2a + b)t+1 (a + 2b)t+1 + 3t+2 (ab)t+1 (2a + b)t+1 + (a + 2b)t+1) .

Proof. In Lemma 1.1 ii) we take f (x) = 1
xt+1 for which f (4) (x) > 0 and so on. �

Theorem 3.3. If a, b > 0 then the following inequality holds

I8 (a, b) ≥ ab

(
2a + b

3

)3(
a + 2b

3

)3

.

Proof. In Lemma 1.1 ii), we take f (x) = lnx for where f (4) (x) < 0, therefore
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I (a, b) = exp

(
1

b− a

∫ b

a

lnxdx

)

≥ exp
(

1
8

(
ln a + 3 ln

2a + b

3
+ 3 ln

a + 2b

3
+ ln b

))

=

(
ab

(
2a + b

3

)3(
a + 2b

3

)3
) 1

8

.

�

Exercise 3.1. If a, b > 0 then

A (a, b)
L (a, b)

≥ 1 + ln

((
2
3

)6
A

3
8 (2a, b) A

3
8 (a, 2b)

G
3
4 (a, b)

)
.

Proof. Using (2.1) and the Theorem 3.3 we obtain

A (a, b)
L (a, b)

+ lnG (a, b)− 1 ≥ ln

(
ab

(
2a + b

3

)3(
a + 2b

3

)3
) 1

8

and the proof follows easily. �

Theorem 3.4. If a, b > 0 then the following inequality holds:

L (a, b) ≥ 4ab (2a + b) (a + 2b)
(a + b) (a2 + 16ab + b2)

.

Proof. In Lemma 1.1 ii) we take f (x) = 1
x for which f (4) (x) > 0, therefore

1
L (a, b)

=
1

b− a

∫ b

a

dx

x
≤ 1

8

(
1
a

+
9

2a + b
+

9
a + 2b

+
1
b

)
and so on. �

Theorem 3.5. If a, b > 0 and t ∈
(
−∞, 1

2

]
∪
[
1, 3

2

]
∪ [2,+∞) , then

At
t (a, b) ≤

t (b− a)
(
32t−1

(
a2t−1 + b2t−1

)
+ 3 (2a + b)2t−1 + 3 (a + 2b)2t−1

)
8 · 32t−1 (bt − at)

.

If t ∈
(

1
2 , 1
)
∪
(

3
2 , 2
)
, then the reverse inequality holds true.
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Proof. In Lemma 1.1 ii) we take f (x) = x2t−1 for which f (4) (x) > 0, for t ∈(
−∞, 1

2

]
∪
[
1, 3

2

]
∪ [2,+∞) , therefore

At
t (a, b) =

t

bt − at

∫ b

a

x2t−1dx

≤ t (b− a)
8 (bt − at)

(
a2t−1 + 3

(
2a + b

3

)2t−1

+ 3
(

a + 2b

3

)2t−1

+ b2t−1

)
and the proof follows. �

4. Gauss Type Inequalities

Theorem 4.1. If a, b > 0 then

G2 (a, b) ≤
(
a2 + 4ab + b2

)2
12 (a2 + ab + b2)

.

Proof. In Lemma 1.1 iii) we take f (x) = 1
x2 for which f (4) (x) > 0, therefore

1
G2 (a, b)

=
1

b− a

∫ b

a

dx

x2

≥ 1
2

 1(
a+b
2 − (b−a)

√
3

6

)2 +
1(

a+b
2 + (b−a)

√
3

6

)2


=

12
(
a2 + ab + b2

)
(a2 + 4ab + b2)2

.

�

Theorem 4.2. If a, b, t > 0 then G2
t (a, b) does not exceeds

2 (bt − at)
(
a2 + 4ab + b2

)t+1

t (b− a)
(((

3 +
√

3
)
a +

(
3−

√
3
)
b
)t+1

+
((

3−
√

3
)
a +

(
3 +

√
3
)
b
)t+1

) .

Proof. In Lemma 1.1 iii) we take f (x) = 1
xt+1 for which f (4) (x) > 0, therefore

1
G2

t (a, b)
=

t

bt − at

b∫
a

dx

xt+1

≥ t (b− a) 6t+1

2 (bt − at)

(
1((

3 +
√

3
)
a +

(
3−

√
3
)
b
)t+1 +

1((
3−

√
3
)
a +

(
3 +

√
3
)
b
)t+1

)
and the proof just follows. �
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Theorem 4.3. If a, b > 0 then

I2 (a, b) ≤ a2 + 4ab + b2

6
.

Proof. In Lemma 1.1 iii) we take f (x) = lnx for which f (4) (x) < 0, therefore

I (a, b) = exp

(
1

b− a

∫ b

a

lnxdx

)

≤ exp

(
1
2

(
ln

(
a + b

2
− (b− a)

√
3

6

)
+ ln

(
a + b

2
+

(b− a)
√

3
6

)))

=

√
a2 + 4ab + b2

6
.

�

Exercise 4.1. If a, b > 0 then

A (a, b)
L (a, b)

≤ 1 +
1
2

ln
(

1
3

+
2A2 (a, b)
3G2 (a, b)

)
.

Proof. Using (2.1) and Theorem 4.3 we obtain the desired result. �

Theorem 4.4. If a, b > 0 then

L (a, b) ≤
2
(
a2 + 4ab + b2

)
3 (a + b)

.

Proof. In Lemma 1.1 iii) we take f (x) = 1
x for which f (4) (x) > 0, therefore

1
L (a, b)

=
1

b− a

b∫
a

dx

x

≥ 1
2

(
1

a+b
2 − (b−a)

√
3

6

+
1

a+b
2 + (b−a)

√
3

6

)

=
3 (a + b)

2 (a2 + 4ab + b2)
.

�

Theorem 4.5. If a, b > 0 and t ∈
(
−∞, 1

2

]
∪
[
1, 3

2

]
∪ [2,+∞) , then

t (b− a)

2 · 62t+1 (bt − at)

(((
3 +

√
3
)

a +
(
3−

√
3
)

b
)2t+1

+
((

3−
√

3
)

a +
(
3 +

√
3
)

b
)2t+1

)
does not exceeds At

t (a, b) .
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If t ∈
(

1
2 , 1
)
∪
(

3
2 , 2
)
, then the reverse inequality holds true.

Proof. In Lemma 1.1 iii) we take f (x) = x2t−1 for which f (4) (x) > 0, if t ∈(
−∞, 1

2

]
∪
[
1, 3

2

]
∪ [2,+∞) , therefore

At
t (a, b) =

t

bt − at

∫ b

a

x2t−1dx

≥ t (b− a)
2 (bt − at)

((3 +
√

3
)
a +

(
3−

√
3
)
b

6

)2t+1

+

((
3−

√
3
)
a +

(
3 +

√
3
)
b

6

)2t+1
.

�
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