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SINGULARITY OF A BOUNDARY VALUE PROBLEM
OF THE ELASTICITY EQUATIONS IN A POLYHEDRON

BENABDERRAHMANE BENYATTOU

Abstract. In this work we study the regularity of a boundary value prob-

lem governed by the Lamé equations in a cylindrical domain. By studying

the longitudinal displacement singularity along an edge and the perpen-

dicular displacement singularity to the same edge, we arrive to describe

the behavior singular of solutions of the Lamé equations in a polyhedron.

1. Introduction

Let Ω be homogeneous, elastic and isotropic medium occupying a bounded

domain in R2, limited by straight polygonal boundary Γ which is supposed to be

regular, Γ =
N⋃

j=1

Γj , Γi∩Γj = ∅,∀i 6= j, where Γj =]Sj , Sj+1[, and Sj are the different

corners of Ω. ωj , 0 < ωj ≤ 2π, j = 0, ..., N represent the opening of the angle that

makes Γj and Γj+1 toward the interior of Ω, ηj and τ j represent the unit outward

normal vector and the tangent vector on Γj , respectively.

L is the Lamé operator defined by:

Lu = µ∆u + (λ + µ)∇.divu,

where u, f represent the displacement vector, and external forces density respec-

tively. Σ(u) is the stress tensor given by Hook ’s law using Lamé coefficients λ and µ

(λ > 0 and λ + µ ≥ 0)

Σ(u) = (σij(u))ij , where σij(u) = 2µεij(u) + λtr(ε(u))δij ,
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where δij is the Kronecker symbol and εij(u) = 1
2 (∂ixj +∂jxi) is the linearized tensor

of deformation. We will suppose ν0 = 1
2−ν , where ν designates the Poisson coefficient

such as 0 < ν < 1
2 .

In the case of a polyhedron, we consider a domain Q of R3, limited by straight

polyhedral boundary Σ. It is considered a particular edge, denoted A, of Σ. It is

assumed to fix ideas that A is carried by the axis z
′
Oz, the adjacent faces Γ0 and Γω

are carried by the plans {y = 0} and {y = ax}, respectively. The dihedral so definite

has for measure ω toward the interior of Q.

It is indispensable to signal that the results that will be demonstrated in

this work are not verified to the corners neighborhood. That’s why, we fix an opened

interval I, whose closure is interior to A. Besides we fix a neighborhood U of the origin

O in Q ∩ {z = 0} , such as U × I doesn’t have any corners of Q. η
′
= (η1, η2, η3)

t =

(η, η3)
t and τ

′
= (τ1, τ2, τ3)

t = (τ, τ3)
t represent the unit outward normal vector and

the tangent vector on Σ respectively.

We consider the corresponding cylinder Q = Ω× R which has an edge along

z
′
Oz.

For f ∈ L2 (Q)3, the problem considered here consists of finding the displace-

ment field u : Ω −→ R3, if possible in H2 (Q)3 , satisfying:

(P )

 Lu + f = 0 in Q(
u.η

′
,
(
Σ(u).η

′
)

.τ
′
)

= 0, on Σ
,

Or equivalent variational form:

(PV )

 Find u ∈ V such as

a(u, v) = `(v), for all v ∈ V

where

a(u, v) =
3∑

i,j=1

∫
Q

σij(u)εij(v)dx, `(v) =
3∑

i=1

∫
Q

fividx,

V =
{

v ∈ H1 (Q)3 ; u.η = 0, in Σ
}
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It is assumed that u, therefore as f , is to bounded support in the direction

of z.

To describe the behavior of u along an edge, it is necessary to introduce, as

in P. Grisvard [5], the following three convolution kernels, in z :

Kλ,µ,r (r, z) =
r
√

1 + ν

π [r2 + (1 + ν) z2]
,

Kλ,µ,θ (r, z) =
r

π [r2 + z2]
,

Kλ,µ,z (r, z) =
r
√

1 + ν

π [(1 + ν) r2 + z2]

1.1. Singular solutions. In B. Benabderrahmane [1] and P. Grisvard [8], there was

found that the solutions of the problem (P ), (in the case f = 0) are characterized by

the following transcendent equation (1.1) :

sin2 αω = sin2 ω, α 6= 0, 6= ±1 (1.1)

where Re α ∈ ]0, 1[ .

It is easy to verify that the solutions of the transcendent equation (1.1) are

given by

α` =
`π

ω
± 1, ` ∈ N∗.

Besides they are simple if ω 6= kπ
2 , k ∈ Z∗, else they are double. By the

simple calculations we find that:

∗ If ω < π
2 , then u ∈ H2 (Ω)2 ;

∗ If ω = π
2 , π, it was a simple poles α = 0,±1;

∗ If ω = 3π
2 , then α = 1

3 is a double root.

In the other cases, there is only one simple real root when ω ∈
]
π, 3π

2

[ ⋃]
3π
2 , 2π

[
; and no solution when ω ∈

]
π
2 , π

[
.

It is known in B. Benabderrahmane [2] that there are linearly independent

functions Sα and S
′

α ∈ V , such as Sα, S
′

α /∈ H2 (Ω)2 and LSα, LS
′

α ∈ L2 (Ω)2 and as
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the Lamé operator is an isomorphism of

Sp
(
H2 (Ω)2 , Sα, S

′

α

)
∩ V on L2 (Ω)2 ,

where the Sp symbol designates the vector space generated by elements that are

contained in parentheses that follow. These functions are given explicitly, in B. Ben-

abderrahmane [2], by Sα (r, θ) = rαΨα (θ) such as

Ψα (θ) =



[(ρ0 − ρ1) sin (α + 1) ω − 2ρ1 sin(α− 1)ω] cos αθ+

(ρ0 + ρ1) sin (α + 1) ω cos (α− 2) θ,

[(−ρ1 + ρ0) sin (α + 1) ω − 2ρ1 sin(α− 1)ω] sinαθ

−(ρ0 + ρ1) sin (α + 1)ω sin (α− 2) θ

(1.2)

where ρ0 = ν0 (α− 1)− 2, ρ0 = ν0 (α + 1) + 2.

2. Singularity in a polyhedron

The behavior of the singular solutions of Lamé equations in a polyhedron is

described by the following theorem:

Theorem 2.1. Let ω < 2π, u ∈ V. For f ∈ L2 (Q)3, there are functions Cα, C
′

α, Cα′

and C
′

α′
such as Cα, C

′

α ∈ H1−α (R) , Cα′ , C
′

α′
∈ H1−α

′

(R) verifying
ur −

∑
α, 0<Re α<1

(Kλ,µ,r (r, z) ∗ Cα) rαΨα,r (θ)−

−
∑

α, 0<Re α<1

(
Kλ,µ,r (r, z) ∗ C

′

α

)
rαΦα,r (θ)

∈ H2 (U × R) (1.3)


uθ −

∑
α, 0<Re α<1

(Kλ,µ,θ (r, z) ∗ Cα) rαΨα,θ (θ)−∑
α, 0<Re α<1

(
Kλ,µ,θ (r, z) ∗ C

′

α

)
rαΦα,θ (θ)

∈ H2 (U × R) (1.4)


u3 −

∑
α′ , 0<Re α′<1

(Kλ,µ,z (r, z) ∗ Cα′ ) rαΨα′ (θ)−∑
α′ , 0<Re α′<1

(
Kλ,µ,z (r, z) ∗ C

′

α′

)
rαΦα′ (θ)

∈ H2 (U × R) (1.5)

where the functions

Ψα (θ) = (Ψα,r (θ) ,Ψα,θ (θ))
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are given by (1.2) and

Φα =
∂Ψα (θ)

∂α
=

[
log rΨα (θ) +

∂

∂r
Ψα (θ)

]
.

The functions Ψα,r (θ) ,Ψα,θ (θ) represents the radial part, angular part of

Ψα (θ), respectively. The functions Ψα′ (θ) are the first singular functions of the

Laplace operator in a polygon.

The first sums in (1.3) and (1.4) are extended to all α; Re α ∈ ]0, 1[ simple

roots of the equation (1.1), while the second sums are extended to all the double roots

of the same equation. In (1.5) , the first sums are extended to all α
′

simple roots of

the corresponding transcendent equation to the Laplace operator with the boundary

conditions associated and the second sums are extended to all α
′
double roots of the

same equation.

The symbol ∗ represents the convolution in relation to z. The Indices r, θ

and z in the relations (1.3) , (1.4) and (1.5) are, respectively, the radial component,

angular and longitudinal vector by using cylindrical coordinates.

For more details, we are given the similar of the Theorem 2.1, in the following

cases:

• Case of simple roots such as 0 < Re α < 1;

• Case of double roots such as 0 < Re α < 1;

• Case of the fissure (ω = 2π) .

Theorem 2.2. We assume that ω ∈
]
π, 3π

2

[⋃ ]
3π
2 , 2π

[
. Let u ∈ V be a variational

solution, is to bounded support in the direction of z. For all f ∈ L2 (Q)3 , there are

functions C and Cα such as

C ∈ H1− π
ω (R) , Cα ∈ H1−α (R) and

ur −
∑

α, 0<α<1
(Kλ,µ,r (r, z) ∗ Cα) rαΨα,r (θ) ∈ H2 (U × R)

uθ −
∑

α, 0<α<1
(Kλ,µ,θ (r, z) ∗ Cα) rαΨα,θ (θ) ∈ H2 (U × R)

u3 − (Kλ,µ,z (r, z) ∗ C) r
π
ω cos

(
π
ω θ

)
∈ H2 (U × R)

where α = `π
ω ± 1, ` ∈ N∗ are the simple roots of the equation (1.1) .
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For ω = 3π
2 , α = 1

3 is a double root of the equation (1.1). Therefore, it is

necessary to modify the result of the Theorem 2.2 as follows: there are two constants

C and C
′
such as

C ∈ H
2
3 (R) , C

′
∈ H

1
3 (R) and

ur − (Kλ,µ,r (r, z) ∗ C) r
1
3 Φ 1

3 ,r (θ) ∈ H2 (U × R)

uθ − (Kλ,µ,θ (r, z) ∗ C) r
1
3 Φ 1

3 ,θ (θ) ∈ H2 (U × R)

u3 −
(
Kλ,µ,z (r, z) ∗ C

′
)

r
2
3 cos

(
2θ
3

)
∈ H2 (U × R)

In the case ω = 2π, we obtain the existence of the functions C and C
′
of H

1
2 (R) such

as 
ur − (Kλ,µ,r (r, z) ∗ C)

√
rΦ 1

2 ,r (θ) ∈ H2 (U × R)

uθ − (Kλ,µ,θ (r, z) ∗ C)
√

rΦ 1
2 ,θ (θ) ∈ H2 (U × R)

u3 −
(
Kλ,µ,z (r, z) ∗ C

′
)√

r cos
(

θ
2

)
∈ H2 (U × R) .

The demonstration is essentially based on the study of the following points:

• Decompose every problem in plane part, u and uθ, and in longitudinal

part, u3.

• Study of the longitudinal displacement singularity along an edge.

• Study of the perpendicular displacement singularity along an edge.

2.1. Problem decomposition. We start by studying the Lamé solutions in the

tridimensional domain Q = Ω× R, who present an edge along z
′
Oz.

For f ∈ L2 (Q)3 , let u ∈ V be a variational solution of (P ) , then we have

a(u, v) = `(v), where

a(u, v) =
3∑

i,j=1

∫
Q

σij(u)εij(v)dx1dx2dx3, `(v) =
3∑

i=1

∫
Q

fividx1dx2dx3.

The invariance of the problems in relation to z implies the following partial

regularity result:

Lemma 2.1. We have

∂2u

∂x∂z
,

∂2u

∂y∂z
and

∂2u

∂z2
∈ L2 (Q)3 .
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Let’s decompose the fields u and f to the plane components and longitudinal

component by posing:

u = (v, u3)
t and f = (g, f3)

t
,

where v and g are vector fields of dimension 2 (also depend of z).

We will use the following notations:

• 42: Laplace in dimension 2, (variables x1, x2).

• 52 : Gradient in dimension 2, .(variables x1, x2).

• Div2 : Divergence in dimension 2, (variables x1, x2).

Using these notations the Lamé equations in dimension 3 become
µ

(
42v +

∂2v

∂z2

)
+ (λ + µ)52

(
Div2v +

∂u3

∂z

)
= g

µ

(
42u3 +

∂2u3

∂z2

)
+ (λ + µ)

∂

∂z

(
Div2v +

∂u3

∂z

)
= f3.

Thanks to Lemma 2.1, it can see that
µ

(
42v +

∂2v

∂z2

)
+ (λ + µ)52 Div2v = g − (λ + µ)52

(
∂u3

∂z

)
∈ L2 (Q)3

µ

(
42u3 +

∂2u3

∂z2

)
+ (λ + µ)

∂2u3

∂z2
= f3 − (λ + µ)

∂

∂z
(Div2v) ∈ L2 (Q)3 .

(1.6)

This formulation has the advantage to decouple v and u3. The left member

in the first equations in (1.6) concerns the plane components of u, while the right

member concerns the longitudinal component.

2.2. Study of the boundary conditions. It is assumed that

η
′
= (η1, η2, η3)

t = (η, η3)
t and τ

′
= (τ1, τ2, τ3)

t = (τ, τ3)
t
.

The condition u.η
′
= 0 becomes u3η3 = −v.η. As η3 = 0 and τ3 = 1 then

u.η
′
= 0 ⇔ v.η = 0 (no condition on u3)

Concerning the condition on
(∑

(u) .η
′
)

, we set u = (v, 0)+(0, 0, u3) . Using

the relations σij (u) = 2µεij (u) + λtr (ε (u)) δij , i, j = 1, 2, 3, it results

σ11 (v, 0) = (λ + µ)
∂u1

∂x
+ λ

∂u2

∂y
, σ12 (v, 0) = σ21 (v, 0) = µ

(
∂u1

∂y
+

∂u2

∂x

)
,
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σ13 (v, 0) = σ31 (v, 0) = µ
∂u1

∂z
, σ23 (v, 0) = σ32 (v, 0) = µ

∂u2

∂z
,

σ22 (v, 0) = (λ + µ)
∂u2

∂y
+ λ

∂u1

∂x
, σ33 (v, 0) = µ

(
∂u1

∂x
+

∂u2

∂y

)
,

σ11 (0, 0, u3) = σ22 (0, 0, u3) = λ
∂u3

∂z
, σ12 (0, 0, u3) = σ21 (0, 0, u3) = 0,

σ13 (0, 0, u3) = σ31 (0, 0, u3) = λ
∂u3

∂x
, σ23 (0, 0, u3) = σ32 (0, 0, u3) = λ

∂u3

∂y
,

σ33 (0, 0, u3) = (λ + µ)
∂u3

∂z
.

Using the fact that η3 = 0 and τ3 = 1, these last relations involve
(σ (v, 0) .η) .τ = (σ (v) .η) .τ + µ ∂

∂z (u3η3) = (σ (v) .η) .τ

(σ (0, 0, u3) .η) .τ = λ
∂u3

∂η
.

Therefore, we have the conditions that must be verified by each components

of u = (v, u3) for the considered boundary conditions :

u.η
′
= 0 ⇔ v.η = 0 and no condition on u3(∑

(u) .η
′
)

.τ
′
= 0 ⇔

(∑
(v) .η

)
.τ = −λ

∂u3

∂η
= 0.

2.3. Study of the longitudinal displacement along an edge. In (1.6) the second

equation is none other than the Laplace equation in Q, using a change of scale in z.

By posing

z =
√

µ

λ + 2µ
z
′
,

we obtain

µ42 u3 + (λ + 2µ)
∂

∂z

(
Div2v +

∂u3

∂z

)
= µ42 u3 + µ

∂2u3

∂ (z′)2
= µ4 u3.

This result attached to the results of the preceding paragraph permits us, for

the longitudinal displacement part, to deduce the following problem:

(P1)


∆u3 = f3 in Q
∂u3

∂η
= h on Σ,

where h ∈ H− 1
2 (U × R), thanks to Lemma 2.1.
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The study of this problem is already made by P. Grisvard [10]. The applica-

tion of results of P. Grisvard [9], concerning the Laplace equations, gives after change

of scale in z the following decomposition of u3 :

u3 −
∑

α, 0<Re α<1

(Kλ,µ,z (r, z) ∗ C) rαΨα (θ) ∈ H2 (Q) ,

where C ∈ H1−α (R) and the functions Ψα (θ) are the first singular functions of

the problem (P1) , which are given, see P.Grisvard [8], by Ψα (θ) = cos αθ where

Kλ,µ,z (r, z) represents the kernel of the Laplace operator. This establishes the part

of the Theorem 2.2 that concerns the longitudinal part u3.

2.4. Study of the perpendicular displacement singularity along an edge.

We analyze the behavior of v from the first equation of (1.6) :

µ

(
42v +

∂2v

∂z2

)
+ (λ + µ)52 Div2v = g − (λ + µ)52

(
∂u3

∂z

)
∈ L2 (Q)3 .

To simplify we note h the second member of this equation. Using the par-

tial Fourier transformation in z, we see that the previous equation amounts to the

following problem which is governed by the Lamé system resolving:

Lv̂ − µζ2v̂ = ĥ.

Concerning the boundary conditions, as we can see that the conditions remain

unaltered, we will be able to have the same conditions but non homogeneous. However

by subtracting v to a field u ∈ H2 (Q)2 verifying the same conditions to limits that

v, consequently the field w = v − u verifies the homogeneous conditions. To simplify

the notations, we will note this field again by v.

The uniqueness of the variational solution implies that v̂ ∈ DL where

DL =
{

u ∈ sp
(
H2 (Ω)2 , Sα, S

′

α

)
;

(
u.η

′
,
(
Σ(u).η

′
)

.τ
′
)

= 0, on Σ
}

.

Therefore

v̂ = v̂R +
∑

α, 0<Re α<1

Ĉα=α
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where v̂R ∈ H2 (Q)2 and Ĉα ∈ R, for all ζ ∈ R. Moreover, according B. Benabder-

rahmane [2], we have the following inequalities:
ζ2 ‖v̂R‖L2(Q)2 + ζ ‖v̂R‖H1(Q)2 + ‖v̂R‖H2(Q)2 ≤ C

∥∥∥ĥ
∥∥∥

L2(Q)2∑
α, 0<Re α<1

∣∣∣Ĉα

∣∣∣ |ζ|1−α ≤ C
∥∥∥ĥ

∥∥∥
L2(Q)2

.

From where it comes that v̂ ∈ H2 (Q)2 and Ĉα ∈ H1−α (R) . Besides the

following decomposition:

v̂ = v̂R +
∑

α, 0<Re α<1

Ĉα=α,

which is equivalent by proceeding the inverse Fourier transformation, taking into

account the fact that f̂ ∗ g = f̂ .ĝ, to
vr = (vR)r +

∑
α, 0<Re α<1

(Kλ,µ,r (r, z) ∗ Cα) (Sα)r

vθ = (vR)θ +
∑

α, 0<Re α<1

(Kλ,µ,θ (r, z) ∗ Cα) (Sα)θ

because

Kλ,µ,r (r, ζ) = e
−r|ζ|√

1+ν and Kλ,µ,θ (r, ζ) = e−r|ζ|

and by definition

(=α)r = e
−r|ζ|√

1+ν (Sα)r and (=α)θ = e−r|ζ| (Sα)θ .

This establishes the first inequality of the Theorem 2.2.
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Annali Scuola Normale Superiore Pisa, Calsse di Scienze, Série IV, Vol. II, 3 (1975),

360-388.

[6] Grisvard, P., Résolvante du Laplacien dans un polygone et singularité des équations
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