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SOME APPLICATIONS OF SALAGEAN INTEGRAL OPERATOR

M. K. AOUF

Abstract. In this paper we introduce and study some new subclasses

of starlike, convex, close-to-convex and quasi-convex functions defined by

Salagean integral operator. Inclusion relations are established and integral

operator Lc(f)(c ∈ N = {1, 2, ...}) is also discussed for these subclasses.

1. Introduction

Let A denote the class of functions of the form:

f(z) = z +
∞∑

k=2

akzk (1.1)

which are analytic in the unit disc U = {z : |z| < 1}. Also let S denote the subclass

of A consisting of univalent functions in U . A function f(z) ∈ S is called starlike of

order γ, 0 ≤ γ < 1, if and only if

Re

{
zf

′
(z)

f(z)

}
> γ (z ∈ U) . (1.2)

We denote by S∗(γ) the class of all functions in S which are starlike of order γ in U .

A function f(z) ∈ S is called convex of order γ, 0 ≤ γ < 1, in U if and only if

Re

{
1 +

zf
′′
(z)

f ′(z)

}
> γ (z ∈ U) . (1.3)

We denote by C(γ) the class of all functions in S which are convex of order γ in U .

It follows from (1.2) and (1.3) that:

f(z) ∈ C(γ) if and only if zf
′
(z) ∈ S∗(γ) . (1.4)
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The classes S∗(γ) and C(γ) was introduced by Robertson [12].

Let f(z) ∈ A, and g(z) ∈ S∗(γ). Then f(z) ∈ K(β, γ) if and only if

Re

{
zf

′
(z)

g(z)

}
> β (z ∈ U) , (1.5)

where 0 ≤ β < 1 and 0 ≤ γ < 1. Such functions are called close-to-convex functions

of order β and type γ. The class K(β, γ) was introduced by Libera [4].

A function f(z) ∈ A is called quasi-convex of order β and type γ if there

exists a function g(z) ∈ C(γ) such that

Re

{
(zf

′
(z))

′

g′(z)

}
> β (z ∈ U) , (1.6)

where 0 ≤ β < 1 and 0 ≤ γ < 1. We denote this class by K∗(β, γ). The class K∗(β, γ)

was introduced by Noor [10].

It follows from (1.5) and (1.6) that:

f(z) ∈ K∗(β, γ) if and only if zf
′
(z) ∈ K(β, γ) . (1.7)

For a function f(z) ∈ A, we define the integral operator Inf(z), n ∈ N0 =

N ∪ {0}, where N = {1, 2, ...}, by

I0f(z) = f(z) , (1.8)

I1f(z) = If(z) =

z∫
0

f(t)t−1dt , (1.9)

and

Inf(z) = I(In−1f(z)) . (1.10)

It is easy to see that:

Inf(z) = z +
∞∑

k=2

ak

kn
zk (n ∈ N0) , (1.11)

and

z(Inf(z))
′
= In−1f(z) . (1.12)

The integral operator Inf(z) (f ∈ A) was introduced by Salagean [13] and studied

by Aouf et al. [1]. We call the operator In by Salagean integral operator.
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Using the operator In, we now introduce the following classes:

S∗n(γ) = {f ∈ A : Inf ∈ S∗(γ)} ,

Cn(γ) = {f ∈ A : Inf ∈ C(γ)} ,

Kn(β, γ) = {f ∈ A : Inf ∈ K(β, γ)} ,

and

K∗
n(β, γ) = {f ∈ A : Inf ∈ K∗(β, γ)} .

In this paper, we shall establish inclusion relation for these classes and integral

operator Lc(f)(c ∈ N) is also discussed for these classes. In [11], Noor introduced and

studied some classes defined by Ruscheweyh derivatives and in [6] Liu studied some

classes defined by the one-parameter family of integral operator Iσf(z)(σ > 0, f ∈ A).

2. Inclusion relations

We shall need the following lemma.

Lemma 2.1. [8], [9] Let ϕ(u, v) be a complex function, φ : D → C,D ⊂ C × C, and

let u = u1 + iu2, v = v1 + iv2. Suppose that ϕ(u, v) satisfies the following conditions:

(i) ϕ(u, v) is continuous in D;

(ii) (1, 0) ∈ D and Re {ϕ(1, 0)} > 0;

(iii) Re {ϕ(iu2, v1)} ≤ 0 for all (iu2, v1) ∈ D and such that v1 ≤ −1
2 (1 + u2

2).

Let h(z) = 1 + c1z + c2z
2 + ... be analytic in U , such that (h(z), zh

′
(z)) ∈ D for all

z ∈ U . If Re {ϕ(h(z), zh
′
(z))} > 0 (z ∈ U), then Re {h(z)} > 0 for z ∈ U .

Theorem 2.1. S∗n(γ) ⊂ S∗n+1(γ)(0 ≤ γ < 1, n ∈ N0).

Proof. Let f(z) ∈ S∗n(γ) and set

z(In+1f(z))
′

In+1f(z)
= γ + (1− γ)h(z) , (2.1)

where h(z) = 1 + h1z + h2z
2 + .... Using the identity (1.12), we have

Inf(z)
In+1f(z)

= γ + (1− γ)h(z) . (2.2)
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Differentiating (2.2) with respect to z logarithmically, we obtain

z(Inf(z))
′

Inf(z)
=

z(In+1f(z))
′

In+1f(z)
+

(1− γ)zh
′
(z)

γ + (1− γ)h(z)

= γ + (1− γ)h(z) +
(1− γ)zh

′
(z)

γ + (1− γ)h(z)
,

or
z(Inf(z))

′

Inf(z)
− γ = (1− γ)h(z) +

(1− γ)zh
′
(z)

γ + (1− γ)h(z)
. (2.3)

Taking h(z) = u = u1 + iu2 and zh
′
(z) = v = v1 + iv2, we define the function ϕ(u, v)

by:

ϕ(u, v) = (1− γ)u +
(1− γ)v

γ + (1− γ)u
. (2.4)

Then it follows from (2.4) that

(i) ϕ(u, v) is continuous in D = (C −
{

γ
γ−1

}
)× C;

(ii) (1, 0) ∈ D and Re {ϕ(1, 0)} = 1− γ > 0;

(iii) for all (iu2, v1) ∈ D such that v1 ≤ − 1
2 (1 + u2

2),

Re {ϕ(iu2, v1)} = Re
{

(1− γ)v1

γ + (1− γ)iu2

}
=

γ(1− γ)v1

γ2 + (1− γ)2u2
2

≤ − γ(1− γ)(1 + u2
2)

2[γ2 + (1− γ)2u2
2]

< 0 ,

for 0 ≤ γ < 1. Therefore, the function ϕ(u, v) satisfies the conditions in Lemma. It

follows from the fact that if Re {ϕ(h(z), zh
′
(z))} > 0, z ∈ U , then Re {h(z)} > 0 for

z ∈ U , that is, if f(z) ∈ S∗n(γ) then f(z) ∈ S∗n+1(γ). This completes the proof of

Theorem 2.1. �

We next prove:

Theorem 2.2. Cn(γ) ⊂ Cn+1(γ)(0 ≤ γ < 1, n ∈ N0).

Proof. f ∈ Cn(γ) ⇔ Inf ∈ C(γ) ⇔ z(Inf)
′ ∈ S∗(γ) ⇔ In(zf

′
) ∈ S∗(γ) ⇔ zf

′ ∈

S∗n(γ) ⇒ zf
′ ∈ S∗n+1(γ) ⇔ In+1(zf

′
) ∈ S∗(γ) ⇔ z(In+1f)

′ ∈ S∗(γ) ⇔ In+1f ∈

C(γ) ⇔ f ∈ Cn+1(γ).

This completes the proof of Theorem 2.2. �
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Theorem 2.3. Kn(β, γ) ⊂ Kn+1(β, γ)(0 ≤ γ < 1, 0 ≤ β < 1, n ∈ N0).

Proof. Let f(z) ∈ Kn(β, γ). Then there exists a function k(z) ∈ S∗(γ) such that

Re

{
z(Inf(z))

′

k(z)

}
> β (z ∈ U) .

Taking the function g(z) which satisfies Ing(z) = k(z), we have g(z) ∈ S∗n(γ) and

Re

{
z(Inf(z))

′

Ing(z)

}
> β (z ∈ U) . (2.5)

Now put
z(In+1f(z))

′

In+1g(z)
− β = (1− β)h(z) , (2.6)

where h(z) = 1 + c1z + c2z
2 + .... Using (1.12) we have

z(Inf(z))
′

Ing(z)
=

In(zf
′
(z))

Ing(z)
=

z(In+1(zf
′
(z)))

′

z(In+1g(z))′

=

z(In+1(zf
′
(z))

′

In+1g(z)
z(In+1g(z))

′

In+1g(z)

. (2.7)

Since g(z) ∈ S∗n(γ) and S∗n(γ) ⊂ S∗n+1(γ), we let
z(In+1g(z))

′

In+1g(z)
= γ + (1 − γ)H(z),

where Re H(z) > 0(z ∈ U). Thus (2.7) can be written as

z(Inf(z))
′

Ing(z)
=

z(In+1(zf
′
(z))

′

In+1g(z)
γ + (1− γ)H(z)

. (2.8)

Consider

z(In+1f(z))
′
= In+1g(z)[β + (1− β)h(z)] . (2.9)

Differentiating both sides of (2.9), we have

z(In+1(zf
′
(z)))

′

In+1g(z)
= (1− β)zh

′
(z) + [β + (1− β)h(z)] . [γ + (1− γ)H(z)] . (2.10)

Using (2.10) and (2.8), we have

z(Inf(z))
′

Ing(z)
− β = (1− β)h(z) +

(1− β)zh
′
(z)

γ + (1− γ)H(z)
. (2.11)
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Taking u = h(z) = u1 + iu2, v = zh
′
(z) = v1 + iv2 in (2.11), we form the function

Ψ(u, v) as follows:

Ψ(u, v) = (1− β)u +
(1− β)v

γ + (1− γ)H(z)
. (2.12)

It is clear that the function Ψ(u, v) defined in D = C×C by (2.12) satisfies conditions

(i) and (ii) of Lemma easily. To verify condition (iii), we proceed as follows:

Re Ψ(iu2, v1) =
(1− β)v1[γ + (1− γ)h1(x, y)]

[γ + (1− γ)h1(x, y)]2 + [(1− γ)h2(x, y)]2
,

where H(z) = h1(x, y) + ih2(x, y), h1(x, y) and h2(x, y) being the functions of x and

y and Re H(z) = h1(x, y) > 0. By putting v1 ≤ −1
2 (1 + u2

2), we obtain

Re Ψ(iu2, v1) ≤ −
(1− β)(1 + u2

2)[γ + (1− γ)h1(x, y)]
2 {[γ + (1− γ)h1(x, y)]2 + [(1− γ)h2(x, y)]2}

< 0 .

Hence Re h(z) > 0(z ∈ U) and f(z) ∈ Kn+1(β, γ). The proof of Theorem 2.3 is

complete. �

Using the same method as in Theorem 2.3 with the fact that f(z) ∈

K∗
n(β, γ) ⇔ zf

′
(z) ∈ Kn(β, γ), we can deduce from Theorem 2.3 the following:

Theorem 2.4. K∗
n(β, γ) ⊂ K∗

n+1(β, γ)(0 ≤ β, γ < 1, n ∈ N0).

3. Integral operator

For c > −1 and f(z) ∈ A, we recall here the generalized Bernardi-Libera-

Livingston integral operator as:

Lc(f) =
c + 1
zc

z∫
0

tc−1f(t)dt . (3.1)

The operator Lc(f) when c ∈ N was studied by Bernardi [2]. For c = 1, L1(f) was

investigated ealier by Libera [5] and Livingston [7].

The following theorems deal with the generalized Bernardi-Libera-Livingston

integral operator Lc(f) defined by (3.1).

Theorem 3.1. Let c > −γ. If f(z) ∈ S∗n(γ), then Lc(f) ∈ S∗n(γ).
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Proof. From (3.1), we have

z(InLc(f))
′
= (c + 1)Inf(z)− cInLc(f) . (3.2)

Set
z(InLc(f))

′

InLc(f)
=

1 + (1− 2γ)w(z)
1− w(z)

, (3.3)

where w(z) is analytic or meromorphic in U,w(0) = 0. Using (3.2) and (3.3) we get

Inf(z)
InLc(f)

=
c + 1 + (1− c− 2γ)w(z)

(c + 1)(1− w(z))
. (3.4)

Differentiating (3.4) with respect to z logarithmically, we obtain

z(Inf(z))
′

Inf(z)
=

1 + (1− 2γ)w(z)
1− w(z)

+
zw

′
(z)

1− w(z)
+

(1− c− 2γ)zw
′
(z)

1 + c + (1− c− 2γ)w(z)
. (3.5)

Now we claim that |w(z)| < 1(z ∈ U). Otherwise, there exists a point z0 ∈ U such

that max
|z|≤|z0|

|w(z)| = |w(z0)| = 1. Then by Jack’s lemma [3], we have z0w
′
(z0) =

kw(z0)(k ≥ 1).

Putting z = z0 and w(z0) = eiθ in (3.5), we have

Re
{

1 + (1− 2γ)w(z0)
1− w(z0)

}
= Re

{
(1− γ)

1 + w(z0)
1− w(z0)

+ γ

}
= γ ,

and

Re

{
z0(Inf(z0))

′

Inf(z0)
− γ

}
= Re

{
2(1− γ)keiθ

(1− eiθ)[1 + c + (1− c− 2γ)eiθ]

}

= 2k(1− γ)Re

{
(eiθ − 1)

[
1 + c + (1− c− 2γ)e−iθ

]
2(1− cos θ) [(1 + c)2 + 2(1 + c)(1− c− 2γ) cos θ + (1− c− 2γ)2]

}

=
−2k(1− γ)(c + γ)

(1 + c)2 + 2(1 + c)(1− c− 2γ) cos θ + (1− c− 2γ)2
≤ 0 ,

which contradicts the hypothesis that f(z) ∈ S∗n(γ). Hence |w(z)| < 1 for z ∈ U , and

it follows from (3.3) that Lc(f) ∈ S∗n(γ). The proof of Theorem 3.1 is complete. �

Theorem 3.2. Let c > −γ. If f(z) ∈ Cn(γ), then Lc(f) ∈ Cn(γ).

Proof. f ∈ Cn(γ) ⇔ zf
′ ∈ S∗n(γ) ⇒ Lc(zf

′
) ∈ S∗n(γ) ⇔ z(Lcf)

′ ∈ S∗n(γ) ⇔

Lc(f) ∈ Cn(γ). �

Theorem 3.3. Let c > −γ. If f(z) ∈ Kn(β, γ), then Lc(f) ∈ Kn(β, γ).
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Proof. Let f(z) ∈ Kn(β, γ). Then, by definition, there exists a function g(z) ∈

S∗n(γ) such that

Re

{
z(Inf(z))

′

Ing(z)

}
> β (z ∈ U) .

Put
z(InLc(f))

′

InLc(g)
− β = (1− β)h(z) , (3.6)

where h(z) = 1 + c1z + c2z
2 + .... From (3.2), we have

z(Inf(z))
′

Ing(z)
=

In(zf
′
(z))

Ing(z)

=
z(InLc(zf

′
))

′
+ cInLc(zf

′
)

z(InLc(g))′ + cInLc(g)

=

z(InLc(zf
′
))

′

InLc(g)
+

cInLc(zf
′
)

InLc(g)
z(InLc(g))

′

InLc(g)
+ c

. (3.7)

Since g(z) ∈ S∗n(γ), then from Theorem 3.1, we have Lc(g) ∈ S∗n(γ). Let

z(InLc(g))
′

InLc(g)
= γ + (1− γ)H(z) ,

where Re H(z) > 0(z ∈ U). Using (3.7), we have

z(Inf(z))
′

Ing(z)
=

z(InLc(zf
′
))

′

InLc(g)
+ c[(1− β)h(z) + β]

γ + c + (1− γ)H(z)
. (3.8)

Also, (3.6) can be written as

z(InLc(f))
′
= InLc(g)[β + (1− β)h(z)] . (3.9)

Differentiating both sides of (3.9), we have

z
{

z(InLc(f))
′
}′

= z(InLc(g))
′
[β + (1− β)h(z)] + (1− β)zh

′
(z)InLc(g) ,

or

z
{

z(InLc(f))
′
}′

InLc(g)
=

z(InLc(zf
′
))

′

InLc(g)

= (1− β)zh
′
(z) + [β + (1− β)h(z)] [γ + (1− γ)H(z)] .
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From (3.8), we have

z(Inf(z))
′

Ing(z)
− β = (1− β)h(z) +

(1− β)zh
′
(z)

γ + c + (1− γ)H(z)
. (3.10)

We form the function Ψ(u, v) by taking u = h(z) and v = zh
′
(z) in (3.10) as:

Ψ(u, v) = (1− β)u +
(1− β)v

γ + c + (1− γ)H(z)
. (3.11)

It is clear that the function Ψ(u, v) defined by (3.11) satisfies the conditions (i), (ii)

and (iii) of Lemma 2.1. Thus we have In(f(z)) ∈ Kn(β, γ). The proof of Theorem

3.3 is complete. �

Similarly, we can prove:

Theorem 3.4. Let c > −γ. If f(z) ∈ K∗
n(β, γ), then In(f(z)) ∈ K∗

n(β, γ).
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