SOME APPLICATIONS OF SALAGEAN INTEGRAL OPERATOR

M. K. AOUF

Abstract

In this paper we introduce and study some new subclasses of starlike, convex, close-to-convex and quasi-convex functions defined by Salagean integral operator. Inclusion relations are established and integral operator $L_{c}(f)(c \in N=\{1,2, \ldots\})$ is also discussed for these subclasses.

1. Introduction

Let A denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z:|z|<1\}$. Also let S denote the subclass of A consisting of univalent functions in U. A function $f(z) \in S$ is called starlike of order $\gamma, 0 \leq \gamma<1$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\gamma(z \in U) \tag{1.2}
\end{equation*}
$$

We denote by $S^{*}(\gamma)$ the class of all functions in S which are starlike of order γ in U.
A function $f(z) \in S$ is called convex of order $\gamma, 0 \leq \gamma<1$, in U if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\gamma(z \in U) . \tag{1.3}
\end{equation*}
$$

We denote by $C(\gamma)$ the class of all functions in S which are convex of order γ in U.
It follows from (1.2) and (1.3) that:

$$
\begin{equation*}
f(z) \in C(\gamma) \quad \text { if and only if } \quad z f^{\prime}(z) \in S^{*}(\gamma) \tag{1.4}
\end{equation*}
$$

Received by the editors: 18.11.2008
2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Analytic, starlike, convex, close-to-convex, quasi-convex, Salagean integral operator.

The classes $S^{*}(\gamma)$ and $C(\gamma)$ was introduced by Robertson [12].
Let $f(z) \in A$, and $g(z) \in S^{*}(\gamma)$. Then $f(z) \in K(\beta, \gamma)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>\beta(z \in U) \tag{1.5}
\end{equation*}
$$

where $0 \leq \beta<1$ and $0 \leq \gamma<1$. Such functions are called close-to-convex functions of order β and type γ. The class $K(\beta, \gamma)$ was introduced by Libera [4].

A function $f(z) \in A$ is called quasi-convex of order β and type γ if there exists a function $g(z) \in C(\gamma)$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}>\beta(z \in U) \tag{1.6}
\end{equation*}
$$

where $0 \leq \beta<1$ and $0 \leq \gamma<1$. We denote this class by $K^{*}(\beta, \gamma)$. The class $K^{*}(\beta, \gamma)$ was introduced by Noor [10].

It follows from (1.5) and (1.6) that:

$$
\begin{equation*}
f(z) \in K^{*}(\beta, \gamma) \quad \text { if and only if } \quad z f^{\prime}(z) \in K(\beta, \gamma) . \tag{1.7}
\end{equation*}
$$

For a function $f(z) \in A$, we define the integral operator $I^{n} f(z), n \in N_{0}=$ $N \cup\{0\}$, where $N=\{1,2, \ldots\}$, by

$$
\begin{gather*}
I^{0} f(z)=f(z) \tag{1.8}\\
I^{1} f(z)=I f(z)=\int_{0}^{z} f(t) t^{-1} d t \tag{1.9}
\end{gather*}
$$

and

$$
\begin{equation*}
I^{n} f(z)=I\left(I^{n-1} f(z)\right) . \tag{1.10}
\end{equation*}
$$

It is easy to see that:

$$
\begin{equation*}
I^{n} f(z)=z+\sum_{k=2}^{\infty} \frac{a_{k}}{k^{n}} z^{k} \quad\left(n \in N_{0}\right) \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(I^{n} f(z)\right)^{\prime}=I^{n-1} f(z) . \tag{1.12}
\end{equation*}
$$

The integral operator $I^{n} f(z)(f \in A)$ was introduced by Salagean [13] and studied by Aouf et al. [1]. We call the operator I^{n} by Salagean integral operator.

SOME APPLICATIONS OF SALAGEAN INTEGRAL OPERATOR

Using the operator I^{n}, we now introduce the following classes:

$$
\begin{aligned}
S_{n}^{*}(\gamma) & =\left\{f \in A: I^{n} f \in S^{*}(\gamma)\right\}, \\
C_{n}(\gamma) & =\left\{f \in A: I^{n} f \in C(\gamma)\right\}, \\
K_{n}(\beta, \gamma) & =\left\{f \in A: I^{n} f \in K(\beta, \gamma)\right\},
\end{aligned}
$$

and

$$
K_{n}^{*}(\beta, \gamma)=\left\{f \in A: I^{n} f \in K^{*}(\beta, \gamma)\right\}
$$

In this paper, we shall establish inclusion relation for these classes and integral operator $L_{c}(f)(c \in N)$ is also discussed for these classes. In [11], Noor introduced and studied some classes defined by Ruscheweyh derivatives and in [6] Liu studied some classes defined by the one-parameter family of integral operator $I^{\sigma} f(z)(\sigma>0, f \in A)$.

2. Inclusion relations

We shall need the following lemma.
Lemma 2.1. [8], [9] Let $\varphi(u, v)$ be a complex function, $\phi: D \rightarrow C, D \subset C \times C$, and let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$. Suppose that $\varphi(u, v)$ satisfies the following conditions:
(i) $\varphi(u, v)$ is continuous in D;
(ii) $(1,0) \in D$ and $\operatorname{Re}\{\varphi(1,0)\}>0$;
(iii) $\operatorname{Re}\left\{\varphi\left(i u_{2}, v_{1}\right)\right\} \leq 0$ for all $\left(i u_{2}, v_{1}\right) \in D$ and such that $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

Let $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ be analytic in U, such that $\left(h(z), z h^{\prime}(z)\right) \in D$ for all $z \in U$. If $\operatorname{Re}\left\{\varphi\left(h(z), z h^{\prime}(z)\right)\right\}>0(z \in U)$, then $\operatorname{Re}\{h(z)\}>0$ for $z \in U$.

Theorem 2.1. $S_{n}^{*}(\gamma) \subset S_{n+1}^{*}(\gamma)\left(0 \leq \gamma<1, n \in N_{0}\right)$.
Proof. Let $f(z) \in S_{n}^{*}(\gamma)$ and set

$$
\begin{equation*}
\frac{z\left(I^{n+1} f(z)\right)^{\prime}}{I^{n+1} f(z)}=\gamma+(1-\gamma) h(z) \tag{2.1}
\end{equation*}
$$

where $h(z)=1+h_{1} z+h_{2} z^{2}+\ldots$. Using the identity (1.12), we have

$$
\begin{equation*}
\frac{I^{n} f(z)}{I^{n+1} f(z)}=\gamma+(1-\gamma) h(z) \tag{2.2}
\end{equation*}
$$

Differentiating (2.2) with respect to z logarithmically, we obtain

$$
\begin{aligned}
\frac{z\left(I^{n} f(z)\right)^{\prime}}{I^{n} f(z)} & =\frac{z\left(I^{n+1} f(z)\right)^{\prime}}{I^{n+1} f(z)}+\frac{(1-\gamma) z h^{\prime}(z)}{\gamma+(1-\gamma) h(z)} \\
& =\gamma+(1-\gamma) h(z)+\frac{(1-\gamma) z h^{\prime}(z)}{\gamma+(1-\gamma) h(z)}
\end{aligned}
$$

or

$$
\begin{equation*}
\frac{z\left(I^{n} f(z)\right)^{\prime}}{I^{n} f(z)}-\gamma=(1-\gamma) h(z)+\frac{(1-\gamma) z h^{\prime}(z)}{\gamma+(1-\gamma) h(z)} \tag{2.3}
\end{equation*}
$$

Taking $h(z)=u=u_{1}+i u_{2}$ and $z h^{\prime}(z)=v=v_{1}+i v_{2}$, we define the function $\varphi(u, v)$ by:

$$
\begin{equation*}
\varphi(u, v)=(1-\gamma) u+\frac{(1-\gamma) v}{\gamma+(1-\gamma) u} . \tag{2.4}
\end{equation*}
$$

Then it follows from (2.4) that
(i) $\varphi(u, v)$ is continuous in $D=\left(C-\left\{\frac{\gamma}{\gamma-1}\right\}\right) \times C$;
(ii) $(1,0) \in D$ and $\operatorname{Re}\{\varphi(1,0)\}=1-\gamma>0$;
(iii) for all $\left(i u_{2}, v_{1}\right) \in D$ such that $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$,

$$
\begin{aligned}
\operatorname{Re}\left\{\varphi\left(i u_{2}, v_{1}\right)\right\} & =\operatorname{Re}\left\{\frac{(1-\gamma) v_{1}}{\gamma+(1-\gamma) i u_{2}}\right\} \\
& =\frac{\gamma(1-\gamma) v_{1}}{\gamma^{2}+(1-\gamma)^{2} u_{2}^{2}} \\
& \leq-\frac{\gamma(1-\gamma)\left(1+u_{2}^{2}\right)}{2\left[\gamma^{2}+(1-\gamma)^{2} u_{2}^{2}\right]}<0,
\end{aligned}
$$

for $0 \leq \gamma<1$. Therefore, the function $\varphi(u, v)$ satisfies the conditions in Lemma. It follows from the fact that if $\operatorname{Re}\left\{\varphi\left(h(z), z h^{\prime}(z)\right)\right\}>0, z \in U$, then $\operatorname{Re}\{h(z)\}>0$ for $z \in U$, that is, if $f(z) \in S_{n}^{*}(\gamma)$ then $f(z) \in S_{n+1}^{*}(\gamma)$. This completes the proof of Theorem 2.1.

We next prove:
Theorem 2.2. $C_{n}(\gamma) \subset C_{n+1}(\gamma)\left(0 \leq \gamma<1, n \in N_{0}\right)$.
Proof. $\quad f \in C_{n}(\gamma) \Leftrightarrow I^{n} f \in C(\gamma) \Leftrightarrow z\left(I^{n} f\right)^{\prime} \in S^{*}(\gamma) \Leftrightarrow I^{n}\left(z f^{\prime}\right) \in S^{*}(\gamma) \Leftrightarrow z f^{\prime} \in$ $S_{n}^{*}(\gamma) \Rightarrow z f^{\prime} \in S_{n+1}^{*}(\gamma) \Leftrightarrow I^{n+1}\left(z f^{\prime}\right) \in S^{*}(\gamma) \Leftrightarrow z\left(I^{n+1} f\right)^{\prime} \in S^{*}(\gamma) \Leftrightarrow I^{n+1} f \in$ $C(\gamma) \Leftrightarrow f \in C_{n+1}(\gamma)$.

This completes the proof of Theorem 2.2.

Theorem 2.3. $K_{n}(\beta, \gamma) \subset K_{n+1}(\beta, \gamma)\left(0 \leq \gamma<1,0 \leq \beta<1, n \in N_{0}\right)$.
Proof. Let $f(z) \in K_{n}(\beta, \gamma)$. Then there exists a function $k(z) \in S^{*}(\gamma)$ such that

$$
\operatorname{Re}\left\{\frac{z\left(I^{n} f(z)\right)^{\prime}}{k(z)}\right\}>\beta(z \in U) .
$$

Taking the function $g(z)$ which satisfies $I^{n} g(z)=k(z)$, we have $g(z) \in S_{n}^{*}(\gamma)$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(I^{n} f(z)\right)^{\prime}}{I^{n} g(z)}\right\}>\beta(z \in U) . \tag{2.5}
\end{equation*}
$$

Now put

$$
\begin{equation*}
\frac{z\left(I^{n+1} f(z)\right)^{\prime}}{I^{n+1} g(z)}-\beta=(1-\beta) h(z) \tag{2.6}
\end{equation*}
$$

where $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$. Using (1.12) we have

$$
\begin{align*}
\frac{z\left(I^{n} f(z)\right)^{\prime}}{I^{n} g(z)} & =\frac{I^{n}\left(z f^{\prime}(z)\right)}{I^{n} g(z)}=\frac{z\left(I^{n+1}\left(z f^{\prime}(z)\right)\right)^{\prime}}{z\left(I^{n+1} g(z)\right)^{\prime}} \\
& =\frac{\frac{z\left(I^{n+1}\left(z f^{\prime}(z)\right)^{\prime}\right.}{I^{n+1} g(z)}}{\frac{z\left(I^{n+1} g(z)\right)^{\prime}}{I^{n+1} g(z)}} \tag{2.7}
\end{align*}
$$

Since $g(z) \in S_{n}^{*}(\gamma)$ and $S_{n}^{*}(\gamma) \subset S_{n+1}^{*}(\gamma)$, we let $\frac{z\left(I^{n+1} g(z)\right)^{\prime}}{I^{n+1} g(z)}=\gamma+(1-\gamma) H(z)$, where $\operatorname{Re} H(z)>0(z \in U)$. Thus (2.7) can be written as

$$
\begin{equation*}
\frac{z\left(I^{n} f(z)\right)^{\prime}}{I^{n} g(z)}=\frac{\frac{z\left(I^{n+1}\left(z f^{\prime}(z)\right)^{\prime}\right.}{I^{n+1} g(z)}}{\gamma+(1-\gamma) H(z)} . \tag{2.8}
\end{equation*}
$$

Consider

$$
\begin{equation*}
z\left(I^{n+1} f(z)\right)^{\prime}=I^{n+1} g(z)[\beta+(1-\beta) h(z)] . \tag{2.9}
\end{equation*}
$$

Differentiating both sides of (2.9), we have

$$
\begin{equation*}
\frac{z\left(I^{n+1}\left(z f^{\prime}(z)\right)\right)^{\prime}}{I^{n+1} g(z)}=(1-\beta) z h^{\prime}(z)+[\beta+(1-\beta) h(z)] \cdot[\gamma+(1-\gamma) H(z)] . \tag{2.10}
\end{equation*}
$$

Using (2.10) and (2.8), we have

$$
\begin{equation*}
\frac{z\left(I^{n} f(z)\right)^{\prime}}{I^{n} g(z)}-\beta=(1-\beta) h(z)+\frac{(1-\beta) z h^{\prime}(z)}{\gamma+(1-\gamma) H(z)} . \tag{2.11}
\end{equation*}
$$

Taking $u=h(z)=u_{1}+i u_{2}, v=z h^{\prime}(z)=v_{1}+i v_{2}$ in (2.11), we form the function $\Psi(u, v)$ as follows:

$$
\begin{equation*}
\Psi(u, v)=(1-\beta) u+\frac{(1-\beta) v}{\gamma+(1-\gamma) H(z)} . \tag{2.12}
\end{equation*}
$$

It is clear that the function $\Psi(u, v)$ defined in $D=C \times C$ by (2.12) satisfies conditions (i) and (ii) of Lemma easily. To verify condition (iii), we proceed as follows:

$$
\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right)=\frac{(1-\beta) v_{1}\left[\gamma+(1-\gamma) h_{1}(x, y)\right]}{\left[\gamma+(1-\gamma) h_{1}(x, y)\right]^{2}+\left[(1-\gamma) h_{2}(x, y)\right]^{2}}
$$

where $H(z)=h_{1}(x, y)+i h_{2}(x, y), h_{1}(x, y)$ and $h_{2}(x, y)$ being the functions of x and y and $\operatorname{Re} H(z)=h_{1}(x, y)>0$. By putting $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$, we obtain

$$
\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right) \leq-\frac{(1-\beta)\left(1+u_{2}^{2}\right)\left[\gamma+(1-\gamma) h_{1}(x, y)\right]}{2\left\{\left[\gamma+(1-\gamma) h_{1}(x, y)\right]^{2}+\left[(1-\gamma) h_{2}(x, y)\right]^{2}\right\}}<0
$$

Hence $\operatorname{Re} h(z)>0(z \in U)$ and $f(z) \in K_{n+1}(\beta, \gamma)$. The proof of Theorem 2.3 is complete.

Using the same method as in Theorem 2.3 with the fact that $f(z) \in$ $K_{n}^{*}(\beta, \gamma) \Leftrightarrow z f^{\prime}(z) \in K_{n}(\beta, \gamma)$, we can deduce from Theorem 2.3 the following:

Theorem 2.4. $K_{n}^{*}(\beta, \gamma) \subset K_{n+1}^{*}(\beta, \gamma)\left(0 \leq \beta, \gamma<1, n \in N_{0}\right)$.

3. Integral operator

For $c>-1$ and $f(z) \in A$, we recall here the generalized Bernardi-LiberaLivingston integral operator as:

$$
\begin{equation*}
L_{c}(f)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{3.1}
\end{equation*}
$$

The operator $L_{c}(f)$ when $c \in N$ was studied by Bernardi [2]. For $c=1, L_{1}(f)$ was investigated ealier by Libera [5] and Livingston [7].

The following theorems deal with the generalized Bernardi-Libera-Livingston integral operator $L_{c}(f)$ defined by (3.1).

Theorem 3.1. Let $c>-\gamma$. If $f(z) \in S_{n}^{*}(\gamma)$, then $L_{c}(f) \in S_{n}^{*}(\gamma)$.

Proof. From (3.1), we have

$$
\begin{equation*}
z\left(I^{n} L_{c}(f)\right)^{\prime}=(c+1) I^{n} f(z)-c I^{n} L_{c}(f) \tag{3.2}
\end{equation*}
$$

Set

$$
\begin{equation*}
\frac{z\left(I^{n} L_{c}(f)\right)^{\prime}}{I^{n} L_{c}(f)}=\frac{1+(1-2 \gamma) w(z)}{1-w(z)} \tag{3.3}
\end{equation*}
$$

where $w(z)$ is analytic or meromorphic in $U, w(0)=0$. Using (3.2) and (3.3) we get

$$
\begin{equation*}
\frac{I^{n} f(z)}{I^{n} L_{c}(f)}=\frac{c+1+(1-c-2 \gamma) w(z)}{(c+1)(1-w(z))} \tag{3.4}
\end{equation*}
$$

Differentiating (3.4) with respect to z logarithmically, we obtain

$$
\begin{equation*}
\frac{z\left(I^{n} f(z)\right)^{\prime}}{I^{n} f(z)}=\frac{1+(1-2 \gamma) w(z)}{1-w(z)}+\frac{z w^{\prime}(z)}{1-w(z)}+\frac{(1-c-2 \gamma) z w^{\prime}(z)}{1+c+(1-c-2 \gamma) w(z)} . \tag{3.5}
\end{equation*}
$$

Now we claim that $|w(z)|<1(z \in U)$. Otherwise, there exists a point $z_{0} \in U$ such that $\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$. Then by Jack's lemma [3], we have $z_{0} w^{\prime}\left(z_{0}\right)=$ $k w\left(z_{0}\right)(k \geq 1)$.

Putting $z=z_{0}$ and $w\left(z_{0}\right)=e^{i \theta}$ in (3.5), we have

$$
\operatorname{Re}\left\{\frac{1+(1-2 \gamma) w\left(z_{0}\right)}{1-w\left(z_{0}\right)}\right\}=\operatorname{Re}\left\{(1-\gamma) \frac{1+w\left(z_{0}\right)}{1-w\left(z_{0}\right)}+\gamma\right\}=\gamma
$$

and

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{z_{0}\left(I^{n} f\left(z_{0}\right)\right)^{\prime}}{I^{n} f\left(z_{0}\right)}-\gamma\right\}=\operatorname{Re}\left\{\frac{2(1-\gamma) k e^{i \theta}}{\left(1-e^{i \theta}\right)\left[1+c+(1-c-2 \gamma) e^{i \theta}\right]}\right\} \\
=2 k(1-\gamma) \operatorname{Re}\left\{\frac{\left(e^{i \theta}-1\right)\left[1+c+(1-c-2 \gamma) e^{-i \theta}\right]}{2(1-\cos \theta)\left[(1+c)^{2}+2(1+c)(1-c-2 \gamma) \cos \theta+(1-c-2 \gamma)^{2}\right]}\right\} \\
=\frac{-2 k(1-\gamma)(c+\gamma)}{(1+c)^{2}+2(1+c)(1-c-2 \gamma) \cos \theta+(1-c-2 \gamma)^{2}} \leq 0,
\end{gathered}
$$

which contradicts the hypothesis that $f(z) \in S_{n}^{*}(\gamma)$. Hence $|w(z)|<1$ for $z \in U$, and it follows from (3.3) that $L_{c}(f) \in S_{n}^{*}(\gamma)$. The proof of Theorem 3.1 is complete.

Theorem 3.2. Let $c>-\gamma$. If $f(z) \in C_{n}(\gamma)$, then $L_{c}(f) \in C_{n}(\gamma)$.
Proof. $\quad f \in C_{n}(\gamma) \Leftrightarrow z f^{\prime} \in S_{n}^{*}(\gamma) \Rightarrow L_{c}\left(z f^{\prime}\right) \in S_{n}^{*}(\gamma) \Leftrightarrow z\left(L_{c} f\right)^{\prime} \in S_{n}^{*}(\gamma) \Leftrightarrow$ $L_{c}(f) \in C_{n}(\gamma)$.

Theorem 3.3. Let $c>-\gamma$. If $f(z) \in K_{n}(\beta, \gamma)$, then $L_{c}(f) \in K_{n}(\beta, \gamma)$.

Proof. Let $f(z) \in K_{n}(\beta, \gamma)$. Then, by definition, there exists a function $g(z) \in$ $S_{n}^{*}(\gamma)$ such that

$$
\operatorname{Re}\left\{\frac{z\left(I^{n} f(z)\right)^{\prime}}{I^{n} g(z)}\right\}>\beta(z \in U)
$$

Put

$$
\begin{equation*}
\frac{z\left(I^{n} L_{c}(f)\right)^{\prime}}{I^{n} L_{c}(g)}-\beta=(1-\beta) h(z) \tag{3.6}
\end{equation*}
$$

where $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$. From (3.2), we have

$$
\begin{align*}
\frac{z\left(I^{n} f(z)\right)^{\prime}}{I^{n} g(z)} & =\frac{I^{n}\left(z f^{\prime}(z)\right)}{I^{n} g(z)} \\
& =\frac{z\left(I^{n} L_{c}\left(z f^{\prime}\right)\right)^{\prime}+c I^{n} L_{c}\left(z f^{\prime}\right)}{z\left(I^{n} L_{c}(g)\right)^{\prime}+c I^{n} L_{c}(g)} \\
& =\frac{\frac{z\left(I^{n} L_{c}\left(z f^{\prime}\right)\right)^{\prime}}{I^{n} L_{c}(g)}+\frac{c I^{n} L_{c}\left(z f^{\prime}\right)}{I^{n} L_{c}(g)}}{\frac{z\left(I^{n} L_{c}(g)\right)^{\prime}}{I^{n} L_{c}(g)}+c} . \tag{3.7}
\end{align*}
$$

Since $g(z) \in S_{n}^{*}(\gamma)$, then from Theorem 3.1, we have $L_{c}(g) \in S_{n}^{*}(\gamma)$. Let

$$
\frac{z\left(I^{n} L_{c}(g)\right)^{\prime}}{I^{n} L_{c}(g)}=\gamma+(1-\gamma) H(z)
$$

where $\operatorname{Re} H(z)>0(z \in U)$. Using (3.7), we have

$$
\begin{equation*}
\frac{z\left(I^{n} f(z)\right)^{\prime}}{I^{n} g(z)}=\frac{\frac{z\left(I^{n} L_{c}\left(z f^{\prime}\right)\right)^{\prime}}{I^{n} L_{c}(g)}+c[(1-\beta) h(z)+\beta]}{\gamma+c+(1-\gamma) H(z)} . \tag{3.8}
\end{equation*}
$$

Also, (3.6) can be written as

$$
\begin{equation*}
z\left(I^{n} L_{c}(f)\right)^{\prime}=I^{n} L_{c}(g)[\beta+(1-\beta) h(z)] . \tag{3.9}
\end{equation*}
$$

Differentiating both sides of (3.9), we have

$$
z\left\{z\left(I^{n} L_{c}(f)\right)^{\prime}\right\}^{\prime}=z\left(I^{n} L_{c}(g)\right)^{\prime}[\beta+(1-\beta) h(z)]+(1-\beta) z h^{\prime}(z) I^{n} L_{c}(g)
$$

or

$$
\begin{gathered}
\frac{z\left\{z\left(I^{n} L_{c}(f)\right)^{\prime}\right\}^{\prime}}{I^{n} L_{c}(g)}=\frac{z\left(I^{n} L_{c}\left(z f^{\prime}\right)\right)^{\prime}}{I^{n} L_{c}(g)} \\
=(1-\beta) z h^{\prime}(z)+[\beta+(1-\beta) h(z)][\gamma+(1-\gamma) H(z)] .
\end{gathered}
$$

From (3.8), we have

$$
\begin{equation*}
\frac{z\left(I^{n} f(z)\right)^{\prime}}{I^{n} g(z)}-\beta=(1-\beta) h(z)+\frac{(1-\beta) z h^{\prime}(z)}{\gamma+c+(1-\gamma) H(z)} . \tag{3.10}
\end{equation*}
$$

We form the function $\Psi(u, v)$ by taking $u=h(z)$ and $v=z h^{\prime}(z)$ in (3.10) as:

$$
\begin{equation*}
\Psi(u, v)=(1-\beta) u+\frac{(1-\beta) v}{\gamma+c+(1-\gamma) H(z)} \tag{3.11}
\end{equation*}
$$

It is clear that the function $\Psi(u, v)$ defined by (3.11) satisfies the conditions (i), (ii) and (iii) of Lemma 2.1. Thus we have $I_{n}(f(z)) \in K_{n}(\beta, \gamma)$. The proof of Theorem 3.3 is complete.

Similarly, we can prove:
Theorem 3.4. Let $c>-\gamma$. If $f(z) \in K_{n}^{*}(\beta, \gamma)$, then $I_{n}(f(z)) \in K_{n}^{*}(\beta, \gamma)$.
Acknowledgements. The author is thankful to the referee for his comments and suggestions.

References

[1] Aouf, M. K., Al-Oboudi, F. M. and Hadain, M. M., An application of certain integral operator, Math. (Cluj), 47(70) (2005), 2, 121-124.
[2] Bernardi, S. D., Convex ans starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
[3] Jack, I. S., Functions starlike and convex of order α, J. London Math. Soc., 3 (1971), 469-474.
[4] Libera, R. J., Some radius of convexity problems, Duke Math. J., 31 (1964), 143-158.
[5] Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-658.
[6] Liu, J.-L., Some applications of certain integral operator, Kyungpook Math. J., 43 (2003), 211-219.
[7] Livingston, A. E., On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357.
[8] Miller, S. S., Differential inequalities and Carathodory function, Bull. Amer. Math. Soc., 8 (1975), 79-81.
[9] Miller, S. S. and Mocanu, P. T., Second differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305.
[10] Noor, K. I., On quasi-convex functions and related topics, Internat. J. Math. Math. Sci., 10 (1987), 241-258.
[11] Noor, K. I., On some applications of the Ruscheweyh derivative, Math. Japon., 36 (1991), 869-874.
[12] Robertson, M. S., On the theory of univalent functions, Ann. Math., 37 (1936), 374-408.
[13] Salagean, G. S., Subclasses of univalent functions, Lecture Notes in Math. 1013, Springer-Verlag, Berlin, Heidelberg and New York, 1983, 362-372.

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt
E-mail address: mkaouf127@yahoo.com

