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STATISTICAL APPROXIMATION BY DOUBLE PICARD
SINGULAR INTEGRAL OPERATORS

GEORGE A. ANASTASSIOU AND OKTAY DUMAN

Abstract. We first construct a sequence of double smooth Picard singular

integral operators which do not have to be positive in general. After giving

some useful estimates, we mainly show that it is possible to approximate

a function by these operators in statistical sense even though they do not

obey the positivity condition of the statistical Korovkin theory.

1. Introduction

In the classical Korovkin theory, the positivity condition of linear opera-

tors and the validity of their (ordinary) limits are crucial points in approximating a

function by these operators (see [1, 22]). However, there are many approximation

operators that do not have to be positive, such as Picard, Poisson-Cauchy and Gauss-

Weierstrass singular integral operators (see, e.g., [2, 3, 4, 8, 9, 10, 19]). Furthermore,

using the concept of statistical convergence from the summability theory which is a

weaker method than the usual convergence, it is possible to approximate (in statisti-

cal sense) a function by means of a sequence of positive linear operators although the

limit of the sequence fails (see, e.g., [5, 6, 11, 12, 13, 14, 15, 16, 23, 24]).
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The aim of the present paper is to construct a sequence of linear operators

that are not necessarily positive and to investigate its statistical approximation prop-

erties. Hence, we demonstrate that it is possible to find some statistical approximation

operators that are not in general positive.

This paper is organized as follows. In the first section we recall some def-

initions and set the main notation used in the paper, while, in the second section,

we construct the double smooth Picard singular integral operators which do not have

to be positive. In the third section, we give some useful estimates on these opera-

tors. In the forth section, we obtain some statistical approximation theorems for our

operators. The last section of the paper is devoted to the concluding remarks and

discussion.

Let A := [ajn], j, n = 1, 2, ..., be an infinite summability matrix and assume

that, for a given sequence x = (xn)n∈N , the series
∑∞

n=1 ajnxn converges for every

j ∈ N. Then, by the A-transform of x, we mean the sequence Ax = ((Ax)j)j∈N such

that, for every j ∈ N,

(Ax)j :=
∞∑

n=1

ajnxn.

A summability matrix A is said to be regular (see [20]) if for every x = (xn)n∈N

for which limn→∞ xn = L we get limj→∞ (Ax)j = L. Now, fix a non-negative reg-

ular summability matrix A. In [18] Freedman and Sember introduced a convergence

method, the so-called A-statistical convergence, as in the following way. A given

sequence x = (xn)n∈N is said to be A-statistically convergent to L if, for every ε > 0,

lim
j→∞

∑
n : |xn−L|≥ε

anj = 0.

This limit is denoted by stA − limn xn = L.

Observe that if A = C1 = [cjn], the Cesáro matrix of order one defined to

be cjn = 1/j if 1 ≤ n ≤ j, and cjn = 0 otherwise, then C1-statistical convergence

coincides with the concept of statistical convergence, which was first introduced by

Fast [17]. In this case, we use the notation st− lim instead of stC1− lim (see Section 5

for this situation). Notice that every convergent sequence is A-statistically convergent
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to the same value for any non-negative regular matrix A, however, its converse is not

always true. Actually, Kolk [21] proved that A-statistical convergence is stronger than

(usual) convergence if A = [ajn] is any nonnegative regular summability matrix sat-

isfying the condition limj maxn{ajn} = 0. Not all properties of convergent sequences

hold true for A-statistical convergence (or statistical convergence). For instance, al-

though it is well-known that a subsequence of a convergent sequence is convergent,

this is not always true for A-statistical convergence. Another example is that every

convergent sequence must be bounded, however it does not need to be bounded of

an A-statistically convergent sequence. Of course, with these properties, the usage of

A-statistical convergence in the approximation theory provides us many advantages.

2. Construction of the operators

Throughout the paper, for r ∈ N and m ∈ N0 := N ∪ {0}, we use

α
[m]
j,r :=


(−1)r−j

(
r

j

)
j−m if j = 1, 2, ..., r,

1−
r∑

j=1

(−1)r−j

(
r

j

)
j−m if j = 0.

(2.1)

and

δ
[m]
k,r :=

r∑
j=1

α
[m]
j,r jk, k = 1, 2, ...,m ∈ N. (2.2)

Then observe that
r∑

j=0

α
[m]
j,r = 1 (2.3)

and

−
r∑

j=1

(−1)r−j

(
r

j

)
= (−1)r

(
r

0

)
. (2.4)

We now define the double smooth Picard singular integral operators as fol-

lows:

P [m]
r,n (f ;x, y) =

1
2πξ2

n

r∑
j=0

α
[m]
j,r

 ∞∫
−∞

∞∫
−∞

f (x + sj, y + tj) e−(
√

s2+t2)/ξndsdt

 , (2.5)

where (x, y) ∈ R2, n, r ∈ N, m ∈ N0, f : R2 → R is a Lebesgue measurable function,

and also (ξn)n∈N is a bounded sequence of positive real numbers.
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Remark 2.1. The operators P
[m]
r,n are not in general positive. For example, consider

the function ϕ(u, v) = u2 + v2 and also take r = 2, m = 3, x = y = 0. Observe that

ϕ ≥ 0, however

P
[3]
2,n(ϕ; 0, 0) =

1
2πξ2

n

 2∑
j=1

j2α
[3]
j,2

 ∞∫
−∞

∞∫
−∞

(
s2 + t2

)
e−(

√
s2+t2)/ξndsdt

=
2

πξ2
n

(
α

[3]
1,2 + 4α

[3]
2,2

) ∞∫
0

∞∫
0

(
s2 + t2

)
e−(

√
s2+t2)/ξndsdt

=
2

πξ2
n

(
−2 +

1
2

) π/2∫
0

∞∫
0

e−ρ/ξnρ3dρdθ

= −9ξ2
n < 0.

Lemma 2.1. The operators P
[m]
r,n given by (2.5) preserve the constant functions in

two variables.

Proof. Let f(x, y) = C, where C is any real constant. By (2.1) and (2.3), we get,

for every r, n ∈ N and m ∈ N0, that

P [m]
r,n (C;x, y) =

C

2πξ2
n

r∑
j=0

α
[m]
j,r

 ∞∫
−∞

∞∫
−∞

e−(
√

s2+t2)/ξndsdt


=

C

2πξ2
n

∞∫
−∞

∞∫
−∞

e−(
√

s2+t2)/ξndsdt

=
2C

πξ2
n

∞∫
0

∞∫
0

e−(
√

s2+t2)/ξndsdt

=
2C

πξ2
n

π/2∫
0

∞∫
0

e−ρ/ξnρdρdθ

=
C

ξ2
n

∞∫
0

e−ρ/ξnρdρ

= C,

which completes the proof. �
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Lemma 2.2. Let k ∈ N0. Then, it holds, for each ` = 0, 1, ..., k and for every n ∈ N,

that
∞∫

−∞

∞∫
−∞

sk−`t`e−(
√

s2+t2)/ξndsdt =

 0 if k is odd

2B
(

k−`+1
2 , `+1

2

)
ξk+2
n (k + 1)! if k is even

where B(a, b) denotes the Beta function.

Proof. It is clear that if k is odd, then the integrand is a odd function with respect

to s and t; and hence the above integral is zero. Also, if k is even, then the integrand

is an even function with respect to s and t. So, we may write that
∞∫

−∞

∞∫
−∞

sk−`t`e−(
√

s2+t2)/ξndsdt = 4

∞∫
0

∞∫
0

sk−`t`e−(
√

s2+t2)/ξndsdt

= 4

 π/2∫
0

(cos θ)k−` (sin θ)`
dθ


 ∞∫

0

ρk+1e−ρ/ξndρ


= 2B

(
k − ` + 1

2
,
` + 1

2

)
ξk+2
n (k + 1)!

whence the result. �

3. Estimates for the operators (2.5)

Let f ∈ CB(R2), the space of all bounded and continuous functions on R2.

Then, the rth (double) modulus of smoothness of f is given by (see, e.g., [7])

ωr(f ;h) := sup√
u2+v2≤h

∥∥∆r
u,v(f)

∥∥ < ∞, h > 0, (3.1)

where ‖·‖ is the sup-norm and

∆r
u,v (f(x, y)) =

r∑
j=0

(−1)r−j

(
r

j

)
f(x + ju, y + jv). (3.2)

Let m ∈ N. By C(m)
(
R2
)

we mean the space of functions having m times

continuous partial derivatives with respect to the variables x and y. Assume now that

a function f ∈ C(m)
(
R2
)

satisfies the condition∥∥∥∥ ∂mf(·, ·)
∂m−`x∂`y

∥∥∥∥ := sup
(x,y)∈R2

∣∣∣∣ ∂mf(x, y)
∂m−`x∂`y

∣∣∣∣ < ∞ (3.3)
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for every ` = 0, 1, ...,m. Then, we consider the function

G[m]
x,y(s, t) :=

1
(m− 1)!

r∑
j=0

(
r

j

) 1∫
0

(1− w)m−1

×

{
m∑

`=0

(
m

m− `

) ∣∣∣∣∂mf(x + jsw, y + jtw)
∂m−`x∂`y

∣∣∣∣
}

dw (3.4)

for m ∈ N and (x, y), (s, t) ∈ R2. Notice that the condition (3.3) implies that G
[m]
x,y(s, t)

is well-defined for each fixed m ∈ N.

We first estimate the case of m ∈ N in (2.5).

Theorem 3.1. Let m ∈ N and f ∈ C(m)
(
R2
)

for which (3.3) holds. Then, for the

operators P
[m]
r,n , we have∣∣∣∣∣∣ P [m]

r,n (f ;x, y)− f(x, y)− 1
π

[m/2]∑
i=1

(2i + 1)δ[m]
2i,rξ

2i
n

×

{
2i∑

`=0

(
2i

2i− `

)
∂2if(x, y)
∂2i−`x∂`y

B

(
2i− ` + 1

2
,
` + 1

2

)}∣∣∣∣∣
≤ 1

2πξ2
n

∞∫
−∞

∞∫
−∞

G[m]
x,y(s, t)(|s|m + |t|m)e−(

√
s2+t2)/ξndsdt. (3.5)

The sums in the left hand side of (3.5) collapse when m = 1.

Proof. Let (x, y) ∈ R2 be fixed. By Taylor’s formula, we may write that

f(x + js, y + jt) =
m−1∑
k=0

jk

k!

k∑
`=0

(
k

k − `

)
sk−`t`

∂kf(x, y)
∂k−`x∂`y

+
jm

(m− 1)!

1∫
0

(1− w)m−1

{
m∑

`=0

(
m

m− `

)
sm−`t`

× ∂mf(x + jsw, y + jtw)
∂m−`x∂`y

}
dw,
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which implies that

f(x + js, y + jt)− f(x, y) =
m∑

k=1

jk

k!

k∑
`=0

(
k

k − `

)
sk−`t`

∂kf(x, y)
∂k−`x∂`y

− jm

(m− 1)!

1∫
0

(1− w)m−1

×

{
m∑

`=0

(
m

m− `

)
sm−`t`

∂mf(x, y)
∂m−`x∂`y

}
dw

+
jm

(m− 1)!

1∫
0

(1− w)m−1

{
m∑

`=0

(
m

m− `

)
sm−`t`

× ∂mf(x + jsw, y + jtw)
∂m−`x∂`y

}
dw.

Now multiplying both sides of the above equality by α
[m]
j,r and summing up from 0 to

r we obtain

r∑
j=0

α
[m]
j,r (f(x + js, y + jt)− f(x, y)) =

m∑
k=1

δ
[m]
k,r

k!

k∑
`=0

(
k

k − `

)
sk−`t`

∂kf(x, y)
∂k−`x∂`y

+
1

(m− 1)!

1∫
0

(1− w)m−1ϕ
[m]
s,t (w)dw,

where

ϕ[m]
x,y(w; s, t) =

r∑
j=0

α
[m]
j,r jm

{
m∑

`=0

(
m

m− `

)
sm−`t`

∂mf(x + jsw, y + jtw)
∂m−`x∂`y

}

−δ[m]
m,r

m∑
`=0

(
m

m− `

)
sm−`t`

∂mf(x, y)
∂m−`x∂`y

.

We first estimate ϕ
[m]
x,y(w; s, t). Using (2.1), (2.2) and (2.4), we have

ϕ[m]
x,y(w; s, t) =

r∑
j=1

(−1)r−j

(
r

j

){ m∑
`=0

(
m

m− `

)
sm−`t`

∂mf(x + jsw, y + jtw)
∂m−`x∂`y

}

−
r∑

j=1

(−1)r−j

(
r

j

){ m∑
`=0

(
m

m− `

)
sm−`t`

∂mf(x, y)
∂m−`x∂`y

}
9
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=
r∑

j=1

(−1)r−j

(
r

j

){ m∑
`=0

(
m

m− `

)
sm−`t`

∂mf(x + jsw, y + jtw)
∂m−`x∂`y

}

+(−1)r

(
r

0

){ m∑
`=0

(
m

m− `

)
sm−`t`

∂mf(x, y)
∂m−`x∂`y

}

=
r∑

j=0

(−1)r−j

(
r

j

){ m∑
`=0

(
m

m− `

)
sm−`t`

∂mf(x + jsw, y + jtw)
∂m−`x∂`y

}
.

In this case, we see that∣∣∣ϕ[m]
x,y(w; s, t)

∣∣∣ ≤ (|s|m + |t|m)
r∑

j=0

(
r

j

){ m∑
`=0

(
m

m− `

) ∣∣∣∣∂mf(x + jsw, y + jtw)
∂m−`x∂`y

∣∣∣∣
}

.

(3.6)

After integration and some simple calculations, and also using Lemma 2.1, we obtain,

for every n ∈ N, that

P [m]
r,n (f ;x, y)− f(x, y) =

1
2πξ2

n

∞∫
−∞

∞∫
−∞


r∑

j=0

α
[m]
j,r (f (x + sj, y + tj)− f(x, y))


×e−(

√
s2+t2)/ξndsdt

=
1

2πξ2
n

m∑
k=1

δ
[m]
k,r

k!

k∑
`=0

(
k

k − `

)
∂kf(x, y)
∂k−`x∂`y

×


∞∫

−∞

∞∫
−∞

sk−`t`e−(
√

s2+t2)/ξndsdt


+R[m]

n (x, y)

where

R[m]
n (x, y) :=

1
2πξ2

n(m− 1)!

∞∫
−∞

∞∫
−∞

 1∫
0

(1− w)m−1ϕ[m]
x,y(w; s, t)dw

e−(
√

s2+t2)/ξndsdt.

By (3.4) and (3.6), it is clear that

∣∣∣R[m]
n (x, y)

∣∣∣ ≤ 1
2πξ2

n

∞∫
−∞

∞∫
−∞

G[m]
x,y(s, t) (|s|m + |t|m) e−(

√
s2+t2)/ξndsdt.

Then, combining these results with Lemma 2.2, we immediately get (3.5). The proof

is completed. �
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The next estimate answers the case of m = 0 in (2.5).

Theorem 3.2. Let f ∈ CB

(
R2
)
. Then, we have

∣∣∣P [0]
r,n(f ;x, y)− f(x, y)

∣∣∣ ≤ 2
πξ2

n

∞∫
0

∞∫
0

ωr

(
f ;
√

s2 + t2
)

e−(
√

s2+t2)/ξndsdt. (3.7)

Proof. Taking m = 0 in (2.1) we observe that

P [0]
r,n(f ;x, y)− f(x, y) =

1
2πξ2

n

∞∫
−∞

∞∫
−∞


r∑

j=1

α
[0]
j,r (f (x + sj, y + tj)− f(x, y))


× e−(

√
s2+t2)/ξndsdt

=
1

2πξ2
n

∞∫
−∞

∞∫
−∞


r∑

j=1

(−1)r−j

(
r

j

)
(f (x + sj, y + tj)− f(x, y))


× e−(

√
s2+t2)/ξndsdt

=
1

2πξ2
n

∞∫
−∞

∞∫
−∞


r∑

j=1

(−1)r−j

(
r

j

)
f (x + sj, y + tj)

+

− r∑
j=1

(−1)r−j

(
r

j

) f(x, y)

 e−(
√

s2+t2)/ξndsdt.

Now using (2.4) we have

P [0]
r,n(f ;x, y)− f(x, y) =

1
2πξ2

n

∞∫
−∞

∞∫
−∞

{
r∑

j=1

(−1)r−j

(
r

j

)
f (x + sj, y + tj)

+(−1)r

(
r

0

)
f(x, y)

}
e−(

√
s2+t2)/ξndsdt

=
1

2πξ2
n

∞∫
−∞

∞∫
−∞


r∑

j=0

(−1)r−j

(
r

j

)
f (x + sj, y + tj)


×e−(

√
s2+t2)/ξndsdt,

and hence, by (3.2),

P [0]
r,n(f ;x, y)− f(x, y) =

1
2πξ2

n

∞∫
−∞

∞∫
−∞

∆r
s,t (f(x, y)) e−(

√
s2+t2)/ξndsdt.
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Therefore, we obtain from (3.1) that

∣∣∣P [0]
r,n(f ;x, y)− f(x, y)

∣∣∣ ≤ 1
2πξ2

n

∞∫
−∞

∞∫
−∞

∣∣∆r
s,t (f(x, y))

∣∣ e−(
√

s2+t2)/ξndsdt

≤ 1
2πξ2

n

∞∫
−∞

∞∫
−∞

ωr

(
f ;
√

s2 + t2
)

e−(
√

s2+t2)/ξndsdt

=
2

πξ2
n

∞∫
0

∞∫
0

ωr

(
f ;
√

s2 + t2
)

e−(
√

s2+t2)/ξndsdt

which completes the proof. �

4. Statistical approximation by the operators (2.5)

We first get the following statistical approximation theorem for the operators

(2.5) in case of m ∈ N.

Theorem 4.1. Let A = [ajn] be a non-negative regular summability matrix, and let

(ξn)n∈N be a bounded sequence of positive real numbers for which

stA − lim
n

ξn = 0 (4.1)

holds. Then, for each fixed m ∈ N and for all f ∈ C(m)
(
R2
)

satisfying (3.3), we have

stA − lim
n

∥∥∥P [m]
r,n (f)− f

∥∥∥ = 0. (4.2)

Proof. Let m ∈ N be fixed. Then, we obtain from the hypothesis and (3.5) that

∥∥∥P [m]
r,n (f)− f

∥∥∥ ≤
[m/2]∑
i=1

(2i + 1)Kiδ
[m]
2i,rξ

2i
n

+
1

2πξ2
n

∞∫
−∞

∞∫
−∞

∥∥∥G[m]
x,y(s, t)

∥∥∥ (|s|m + |t|m)e−(
√

s2+t2)/ξndsdt,

where

Ki :=
1
π

2i∑
`=0

(
2i

2i− `

)∥∥∥∥ ∂2if(·, ·)
∂2i−`x∂`y

∥∥∥∥B

(
2i− ` + 1

2
,
` + 1

2

)
12
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for i = 1, ...,
[

m
2

]
. By (3.4) we get that

∥∥∥G[m]
x,y(s, t)

∥∥∥ ≤ 2r

(m− 1)!

(
m∑

`=0

(
m

m− `

)∥∥∥∥ ∂mf(·, ·)
∂m−`x∂`y

∥∥∥∥
) 1∫

0

(1− w)m−1dw

=
2r

m!

m∑
`=0

(
m

m− `

)∥∥∥∥ ∂mf(·, ·)
∂m−`x∂`y

∥∥∥∥ ,

thus we obtain

∥∥∥P [m]
r,n (f)− f

∥∥∥ ≤
[m/2]∑
i=1

(2i + 1)Kiδ
[m]
2i,rξ

2i
n

+
2r+1

πm!ξ2
n

(
m∑

`=0

(
m

m− `

)∥∥∥∥ ∂mf(·, ·)
∂m−`x∂`y

∥∥∥∥
)

×
∞∫
0

∞∫
0

(sm + tm)e−(
√

s2+t2)/ξndsdt.

Then, we have

∥∥∥P [m]
r,n (f)− f

∥∥∥ ≤
[m/2]∑
i=1

(2i + 1)Kiδ
[m]
2i,rξ

2i
n

+Lm

∞∫
0

∞∫
0

(sm + tm)e−(
√

s2+t2)/ξndsdt

=
[m/2]∑
i=1

(2i + 1)Kiδ
[m]
2i,rξ

2i
n

+Lm

π/2∫
0

∞∫
0

(cosm θ + sinm θ)ρm+1e−ρ/ξndρdθ,

where

Lm :=
2r+1

πm!ξ2
n

(
m∑

`=0

(
m

m− `

)∥∥∥∥ ∂mf(·, ·)
∂m−`x∂`y

∥∥∥∥
)

.

After some simple calculations, we see that

∥∥∥P [m]
r,n (f)− f

∥∥∥ ≤ [m/2]∑
i=1

(2i + 1)Kiδ
[m]
2i,rξ

2i
n + Lmξm+2

n (m + 1)!Um,

13
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where

Um :=

π/2∫
0

(cosm θ + sinm θ)dθ = B

(
m + 1

2
,
1
2

)
,

which yields ∥∥∥P [m]
r,n (f)− f

∥∥∥ ≤ Sm

ξm+2
n +

[m/2]∑
i=1

ξ2i
n

 , (4.3)

where

Sm := (m + 1)!UmLm + max
i=1,2,...,[m/2]

{
(2i + 1)Kiδ

[m]
2i,r

}
.

Now for a given ε > 0, define the following sets:

D : =
{

n ∈ N :
∥∥∥P [m]

r,n (f)− f
∥∥∥ ≥ ε

}
,

Di : =
{

n ∈ N : ξ2i
n ≥ ε

(1 + [m/2])Sm

}
, i = 1, ...,

[m
2

]
,

D1+[m/2] : =
{

n ∈ N : ξm+2
n ≥ ε

(1 + [m/2])Sm

}
.

Then, the inequality (4.3) gives that

D ⊆
1+[m/2]⋃

i=1

Di,

and hence, for every j ∈ N,

∑
n∈D

ajn ≤
1+[m/2]∑

i=1

∑
n∈Di

ajn.

Now taking limit as j → ∞ in the both sides of the above inequality and using the

hypothesis (4.1), we obtain that

lim
j

∑
n∈D

ajn = 0,

which implies (4.2). So, the proof is completed. �

Finally, we investigate the statistical approximation properties of the opera-

tors (2.5) when m = 0. We need the following result.

14
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Lemma 4.1. Let A = [ajn] be a non-negative regular summability matrix, and let

(ξn)n∈N be a bounded sequence of positive real numbers for which (4.1) holds. Then,

for every f ∈ CB

(
R2
)
, we have

stA − lim
n

ωr (f ; ξn) = 0. (4.4)

Proof. By the right-continuity of ωr (f ; ·) at zero, we may write that, for a given

ε > 0, there exists a δ > 0 such that ωr (f ;h) < ε whenever 0 < h < δ. Hence,

ωr (f ;h) ≥ ε implies that h ≥ δ. Now replacing h by ξn, for every ε > 0, we see that

{n : ωr (f ; ξn) ≥ ε} ⊆ {n : ξn ≥ δ},

which guarantees that, for each j ∈ N,

∑
n:ωr(f ;ξn)≥ε

ajn ≤
∑

n:ξn≥δ

ajn.

Also, by (4.1), we get

lim
j

∑
n:ξn≥δ

ajn = 0,

which implies

lim
j

∑
n:ωr(f ;ξn)≥ε

ajn = 0.

So, the proof is completed. �

Theorem 4.2. Let A = [ajn] be a non-negative regular summability matrix, and let

(ξn)n∈N be a bounded sequence of positive real numbers for which (4.1) holds. Then,

for all f ∈ CB

(
R2
)
, we have

stA − lim
n

∥∥∥P [0]
r,n(f)− f

∥∥∥ = 0. (4.5)

Proof. By (3.7), we can write

∥∥∥P [0]
r,n(f)− f

∥∥∥ ≤ 2
πξ2

n

∞∫
0

∞∫
0

ωr

(
f ;
√

s2 + t2
)

e−(
√

s2+t2)/ξndsdt.

15
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Now using the fact that ωr (f ;λu) ≤ (1 + λ)rωr (f ;u) , λ, u > 0, we get

∥∥∥P [0]
r,n(f)− f

∥∥∥ ≤ 2
πξ2

n

∞∫
0

∞∫
0

ωr

(
f ; ξn

√
s2 + t2

ξn

)
e−(

√
s2+t2)/ξndsdt

≤ 2ωr (f ; ξn)
πξ2

n

∞∫
0

∞∫
0

(
1 +

√
s2 + t2

ξn

)r

e−(
√

s2+t2)/ξndsdt

=
2ωr (f ; ξn)

πξ2
n

π/2∫
0

∞∫
0

(
1 +

ρ

ξn

)r

ρe−ρ/ξndρdθ

= ωr (f ; ξn)

∞∫
0

(1 + u)r
ue−udu

≤ ωr (f ; ξn)

∞∫
0

(1 + u)r+1
e−udu

=

(
r+1∑
k=0

(
r + 1

k

)
k!

)
ωr (f ; ξn) ,

and hence ∥∥∥P [0]
r,n(f)− f

∥∥∥ ≤ Krωr (f ; ξn) , (4.6)

where

Kr :=
r+1∑
k=0

(
r + 1

k

)
k!.

Then, from (4.6), for a given ε > 0, we observe that{
n ∈ N :

∥∥∥P [0]
r,n(f)− f

∥∥∥ ≥ ε
}
⊆
{

n ∈ N : ωr (f ; ξn) ≥ ε

Kr

}
,

which implies that ∑
n:

∥∥∥P
[0]
r,n(f)−f

∥∥∥≥ε

ajn ≤
∑

n:ωr(f ;ξn)≥ε/Kr

ajn (4.7)

holds for every j ∈ N. Now, taking limit as j → ∞ in the both sides of inequality

(4.7) and also using (4.4), we obtain that

lim
j

∑
n:

∥∥∥P
[0]
r,n(f)−f

∥∥∥≥ε

ajn = 0,
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which means (4.5). Hence, the proof is completed. �

5. Concluding remarks

In this section, we give some special cases of our results obtained in the

previous sections.

Taking A = C1, the Cesáro matrix of order one, and also combining Theorems

4.1 and 4.2, we immediately get the following result.

Corollary 5.1. Let (ξn)n∈N be a bounded sequence of positive real numbers for which

st− lim
n

ξn = 0

holds. Then, for each fixed m ∈ N0 and for all f ∈ C(m)
(
R2
)

satisfying (3.3), we

have

st− lim
n

∥∥∥P [m]
r,n (f)− f

∥∥∥ = 0.

Furthermore, choosing A = I, the identity matrix, in Theorems 4.1 and 4.2,

we have the next approximation theorems with the usual convergence.

Corollary 5.2. Let (ξn)n∈N be a bounded sequence of positive real numbers for which

lim
n

ξn = 0

holds. Then, for each fixed m ∈ N0 and for all f ∈ C(m)
(
R2
)

satisfying (3.3), the

sequence
{

P
[m]
r,n (f)

}
is uniformly convergent to f on R2.

Now we define a special sequence (ξn)n∈N as follows:

ξn :=

 1, if n = k2, k = 1, 2, ...

1
n , otherwise.

(5.1)

Then, observe that st − limn ξn = 0. In this case, taking A = C1, we obtain from

Corollary 5.1 (or, Theorems 4.1 and 4.2) that

st− lim
n

∥∥∥P [m]
r,n (f)− f

∥∥∥ = 0

holds for each m ∈ N0 and for all f ∈ C(m)
(
R2
)

satisfying (3.3). However, since the

sequence (ξn)n∈N given by (5.1) is non-convergent, the classical approximation to a

function f by the operators P
[m]
r,n (f) is impossible.
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Notice that Theorems 4.1, 4.2 and Corollary 5.1 are also valid when lim ξn = 0

because every convergent sequence is A-statistically convergent, and so statistically

convergent. But, as in the above example, our theorems still work although (ξn)n∈N is

non-convergent. Therefore, this non-trivial example clearly demonstrates the power

of our statistical approximation method in Theorems 4.1 and 4.2 with respect to

Corollary 5.2.

In the end, we should remark that, so far, almost all statistical approximation

results have dealt with positive linear operators. Of course, in this case, one has the

following natural problem:

• Can we use the concept of A-statistical convergence in the approximation

by non-positive approximation operators?

The same question was also asked as an open problem by Duman et. al. in [13]. With

this paper we find affirmative answers to this problem by using the double smooth

Picard singular integral operators given by (2.5). However, some similar arguments

may be valid for other non-positive operators. Thus, in the future studies, it would

be very interesting to improve such structures.
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