COMPLETE SUBMANIFOLDS IN A HYPERBOLIC SPACE

SHICHANG SHU

Abstract

In this paper, we study n-dimensional $(n \geq 3)$ complete submanifolds M^{n} in a hyperbolic space $H^{n+p}(-1)$ with the scalar curvature $n(n-1) R$ and the mean curvature H being linearly related. Suppose that the normalized mean curvature vector field is parallel and the mean curvature is positive and obtains its maximum on M^{n}. We prove that if the squared norm $\|h\|^{2}$ of the second fundamental form of M^{n} satisfies $\|h\|^{2} \leq n H^{2}+\left(B_{H}\right)^{2},(p \leq 2)$, and $\|h\|^{2} \leq n H^{2}+\left(\widetilde{B}_{H}\right)^{2},(p \geq 3)$, then M^{n} is totally umbilical, or M^{n} is isometric to $S^{n-1}(r) \times H^{1}\left(-1 /\left(r^{2}+1\right)\right)$ for some $r>0$, where B_{H} and \widetilde{B}_{H} are denoted by (1.1) and (1.2), respectively.

1. Introduction

Let $M_{p}^{n+p}(c)$ be a $(n+p)$-dimensional space form of constant curvature c, M^{n} be an n-dimensional submanifold in $M^{n+p}(c)$ with parallel mean curvature vector. If $c=0$, Cheng and Nonaka [3] obtained some intrinsic rigidity theorems of complete submanifolds with parallel mean vector in Euclidean space R^{n+p}. If $c>0, \mathrm{Xu}$ [16] obtained the intrinsic rigidity theorems of these kind of submanifolds in a sphere $S^{n+p}(c)(c=1)$. If $c<0, \mathrm{Yu}[18]$ and $\mathrm{Hu}[10]$ proved some intrinsic rigidity theorems of complete hypersurfaces with constant mean curvature in a hyperbolic space $H^{n+1}(c)$

Let M^{n} be an n-dimensional complete submanifold with constant normalized scalar curvature in $M^{n+p}(c)$. If $c=0$, for hypersurfaces $(p=1)$, Cheng and

Key words and phrases. Submanifold, scalar curvature, mean curvature, hyperbolic space Project supported by NSF of Shaanxi Province (SJ08A31) and NSF of Shaanxi Educational Committee (2008JK484).

Yau [6] obtained an intrinsic rigidity theorem of these kind of hypersurfaces in Euclidean space R^{n+1}, and for submanifolds $(p>1)$, Cheng [4] studied the problem and obtained a rigidity and classification theorem. If $c>0, \mathrm{Li}[10]$ proved a rigidity and classification theorem of compact hypersurfaces with constant normalized scalar curvature in a sphere $S^{n+1}(c)(c=1)$. As a generalization, Cheng [4] obtained a rigidity and classification theorem of higher codimension compact submanifolds in $S^{n+p}(c)(c=1)$. If $c<0$, the authors [15] studied the submanifolds with constant normalized scalar curvature in hyperbolic space $H^{n+p}(c)(c=-1)$ and obtained some rigidity and classification theorems.

It is well-know that the investigation on hypersurfaces with the scalar curvature $n(n-1) R$ and the mean curvature H being linearly related is also important and interesting. Fox example, Cheng [5] and Li [11] obtained some characteristic theorems of such space-like hypersurfaces in a de Sitter space and such compact hypersurfaces in a unit sphere in terms of sectional curvature, respectively. It is natural and very important to study n-dimensional submanifolds with the scalar curvature $n(n-1) R$ and the mean curvature H being linearly related and with higher codimension in a space form $M^{n+p}(c)$. But there are few results about it. In this paper, we shall investigate n-dimensional complete submanifolds in a hyperbolic space $H^{n+p}(-1)$ with the scalar curvature and the mean curvature being linearly related. We shall prove the following:

Main Theorem. Let M^{n} be a n-dimensional ($n \geq 3$) complete submanifold with $n(n-1) R=k^{\prime} H,\left(H^{2} \geq 1\right)$ in a hyperbolic space $H^{n+p}(-1)$, where k^{\prime} is a positive constant. Suppose that the normalized mean curvature vector field is parallel and the mean curvature H is positive and obtains its maximum on M^{n}. If the norm square $\|h\|^{2}$ of the second fundamental form of M^{n} satisfies

$$
\|h\|^{2} \leq n H^{2}+\left(B_{H}^{+}\right)^{2},(p \leq 2)
$$

and

$$
\|h\|^{2} \leq n H^{2}+\left(\widetilde{B}_{H}^{+}\right)^{2},(p \geq 3)
$$

then M^{n} is totally umbilical, or M^{n} is isometric to $S^{n-1}(r) \times H^{1}\left(-1 /\left(r^{2}+1\right)\right)$ for some $r>0$, where B_{H}^{+}and \widetilde{B}_{H}^{+}are denoted by

$$
\begin{gather*}
B_{H}^{+}=-\frac{1}{2}(n-2) \sqrt{\frac{n}{n-1}} H+\sqrt{\frac{n^{3} H^{2}}{4(n-1)}-n} \tag{1.1}\\
\widetilde{B}_{H}^{+}=-\frac{1}{3}(n-2) \sqrt{\frac{n}{n-1}} H+\frac{1}{3} \sqrt{\frac{n}{n-1}\left(n^{2}+2 n-2\right) H^{2}-6 n} \tag{1.2}
\end{gather*}
$$

2. Preliminaries

Let M^{n} be a n-dimensional complete submanifold in a hyperbolic space $H^{n+p}(-1)$, we choose a local field of orthonormal frames e_{1}, \cdots, e_{n+p} in $H^{n+p}(-1)$ such that at each point of $M^{n}, e_{1}, \cdots, e_{n}$ span the tangent space of M^{n}. Let $\omega_{1}, \cdots, \omega_{n+p}$ be the dual frame field, then the structure equations of $H^{n+p}(-1)$ are given by

$$
\begin{gather*}
d \omega_{A}=-\sum_{B=1}^{n+p} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0, \tag{2.1}\\
d \omega_{A B}=-\sum_{C=1}^{n+p} \omega_{A C} \wedge \omega_{C B}+\frac{1}{2} \sum_{C, D=1}^{n+p} K_{A B C D} \omega_{C} \wedge \omega_{D}, \tag{2.2}\\
K_{A B C D}=-\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right) . \tag{2.3}
\end{gather*}
$$

Restricting these form to M^{n}, we have

$$
\begin{gather*}
\omega_{\alpha}=0, \quad \alpha=n+1, \cdots, n+p . \tag{2.4}\\
\omega_{\alpha_{i}}=\sum_{j=1}^{n} h_{i j}^{\alpha} \omega_{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha}, \tag{2.5}\\
d \omega_{i}=-\sum_{j=1}^{n} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0, \tag{2.6}\\
d \omega_{i j}=-\sum_{k=1}^{n} \omega_{i k} \wedge \omega_{k j}+\frac{1}{2} \sum_{k, l=1}^{n} R_{i j k l} \omega_{k} \wedge \omega_{l}, \tag{2.7}\\
R_{i j k l}=-\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\sum_{\alpha=n+1}^{n+p}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right) . \tag{2.8}
\end{gather*}
$$

SHICHANG SHU

The normal curvature tensor $R_{\alpha \beta i j}$ and Ricci curvature are

$$
\begin{gather*}
R_{\alpha \beta i j}=\sum_{l=1}^{n}\left(h_{i l}^{\alpha} h_{l j}^{\beta}-h_{j l}^{\alpha} h_{l i}^{\beta}\right), \tag{2.9}\\
R_{j k}=-(n-1) \delta_{j k}+\sum_{\alpha=n+1}^{n+p}\left(\sum_{i=1}^{n} h_{i i}^{\alpha} h_{j k}^{\alpha}-\sum_{i=1}^{n} h_{i k}^{\alpha} h_{j i}^{\alpha}\right), \tag{2.10}\\
n(n-1)(R+1)=n^{2} H^{2}-\|h\|^{2}, \tag{2.11}
\end{gather*}
$$

where R is the normalized scalar curvature, H is the mean curvature of $M^{n},\|h\|^{2}$ is the squared norm of the second fundamental form of M^{n}. Define the first and second covariant derivatives of $h_{i j}^{\alpha}$ by

$$
\begin{gather*}
\sum_{k=1}^{n} h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}-\sum_{k=1}^{n} h_{i k}^{\alpha} \omega_{k j}-\sum_{k=1}^{n} h_{j k}^{\alpha} \omega_{k i}-\sum_{\beta=n+1}^{n+p} h_{i j}^{\beta} \omega_{\beta \alpha}, \tag{2.12}\\
\sum_{l=1}^{n} h_{i j k l}^{\alpha} \omega_{l}=d h_{i j k}^{\alpha}-\sum_{l=1}^{n} h_{l j k}^{\alpha} \omega_{l i}-\sum_{l=1}^{n} h_{i l k}^{\alpha} \omega_{l j}-\sum_{l=1}^{n} h_{i j l}^{\alpha} \omega_{l k}-\sum_{\beta=n+1}^{n+p} h_{i j k}^{\beta} \omega_{\beta \alpha} . \tag{2.13}
\end{gather*}
$$

The Codazzi equation and Ricci identities are

$$
\begin{gather*}
h_{i j k}^{\alpha}=h_{i k j}^{\alpha}=h_{j i k}^{\alpha}, \tag{2.14}\\
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum_{m=1}^{n} h_{m j}^{\alpha} R_{m i k l}+\sum_{m=1}^{n} h_{i m}^{\alpha} R_{m j k l}+\sum_{\beta=n+1}^{n+p} h_{i j}^{\beta} R_{\beta \alpha k l} . \tag{2.15}
\end{gather*}
$$

The Laplacian of $h_{i j}^{\alpha}$ is defined by $\Delta h_{i j}^{\alpha}=\sum_{k=1}^{n} h_{i j k k}^{\alpha}$. From (2.14) and (2.15), we get

$$
\begin{equation*}
\Delta h_{i j}^{\alpha}=\sum_{k=1}^{n} h_{k k i j}^{\alpha}+\sum_{k, m=1}^{n} h_{k m}^{\alpha} R_{m i j k}+\sum_{k, m=1}^{n} h_{m i}^{\alpha} R_{m k j k}+\sum_{k=1}^{n} \sum_{\beta=n+1}^{n+p} h_{k i}^{\beta} R_{\beta \alpha j k} \tag{2.16}
\end{equation*}
$$

Denote by ξ the mean curvature vector field. When $\xi \neq 0$, since we suppose $H>0$, $e_{n+1}=\frac{\xi}{H}$ is the normal vector field on M^{n}. We define S_{1} and S_{2} by

$$
\begin{equation*}
S_{1}=\sum_{i, j=1}^{n}\left(h_{i j}^{n+1}-H \delta_{i j}\right)^{2}, \quad S_{2}=\sum_{\alpha=n+2}^{n+p} \sum_{i, j=1}^{n}\left(h_{i j}^{\alpha}\right)^{2} . \tag{2.17}
\end{equation*}
$$

Obviously, we have

$$
\begin{equation*}
\|h\|^{2}=n H^{2}+S_{1}+S_{2} . \tag{2.18}
\end{equation*}
$$

By the definition of the mean curvature vector ξ, we have

$$
\begin{equation*}
n H=\sum_{i=1}^{n} h_{i i}^{n+1}, \quad \sum_{i=1}^{n} h_{i i}^{\alpha}=0, n+2 \leq \alpha \leq n+p . \tag{2.19}
\end{equation*}
$$

From (2.11), (2.17) and (2.18), we get

$$
\begin{equation*}
\Delta\left(n^{2} H^{2}\right)=\Delta\|h\|^{2}+n(n-1) \Delta R=\Delta\left(\operatorname{tr} H_{n+1}^{2}\right)+\Delta S_{2}+n(n-1) \Delta R \tag{2.20}
\end{equation*}
$$

Hence, from (2.8), (2.9) and (2.16), by a direct and simple calculation we conclude

$$
\begin{align*}
\frac{1}{2} \Delta\left(\operatorname{tr} H_{n+1}^{2}\right)= & \sum_{i, j, k=1}^{n}\left(h_{i j k}^{n+1}\right)^{2}+\sum_{i, j=1}^{n} h_{i j}^{n+1} \Delta h_{i j}^{n+1} \tag{2.21}\\
= & \sum_{i, j, k=1}^{n}\left(h_{i j k}^{n+1}\right)^{2}+\sum_{i, j=1}^{n} h_{i j}^{n+1}(n H)_{i j}-n \sum_{i, j=1}^{n}\left(h_{i j}^{n+1}\right)^{2}-\left(\sum_{i, j=1}^{n}\left(h_{i j}^{n+1}\right)^{2}\right)^{2} \\
& +n H \sum_{i, j, k=1}^{n} h_{i j}^{n+1} h_{j k}^{n+1} h_{k i}^{n+1}+n^{2} H^{2}-\sum_{\beta=n+2}^{n+p}\left\{\sum_{i, j=1}^{n}\left(h_{i j}^{n+1}-H \delta_{i j}\right) h_{i j}^{\beta}\right\}^{2} \\
& +\sum_{\beta=n+2}^{n+p}\left\{\sum_{i, j, k=1}^{n}\left[h_{i j}^{n+1} h_{k j}^{n+1}-\left(h_{i j}^{n+1}\right)^{2}\right]\left(h_{i k}^{\beta}\right)^{2}\right\},
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{2} \Delta S_{2}=\sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{\alpha=n+2}^{n+p} \sum_{i, j=1}^{n} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha} \tag{2.22}
\end{equation*}
$$

$$
=\sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}-n \sum_{\alpha=n+2}^{n+p} \sum_{i, j=1}^{n}\left(h_{i j}^{\alpha}\right)^{2}+n H \sum_{\alpha=n+2}^{n+p} \operatorname{tr}\left(H_{n+1} H_{\alpha}^{2}\right)
$$

$$
-\sum_{\alpha=n+2}^{n+p}\left[\operatorname{tr}\left(H_{n+1} H_{\alpha}\right)\right]^{2}-\sum_{\alpha, \beta=n+2}^{n+p} N\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)
$$

$$
-\sum_{\alpha, \beta=n+2}^{n+p}\left[\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)\right]^{2}+\sum_{\alpha=n+2}^{n+p} \operatorname{tr}\left(H_{n+1} H_{\alpha}\right)^{2}-\sum_{\alpha=n+2}^{n+p} \operatorname{tr}\left(H_{n+1}^{2} H_{\alpha}^{2}\right) .
$$

We need the following lemmas:
Lemma 2.1 ([12], [1]). Let $\mu_{i}, i=1, \cdots, n$ be real numbers, with $\sum_{i} \mu_{i}=0$ and $\sum_{i} \mu_{i}^{2}=\beta^{2} \geq 0$. Then

$$
\begin{equation*}
-\frac{n-2}{\sqrt{n(n-1)}} \beta^{3} \leq \sum_{i} \mu_{i}^{3} \leq \frac{n-2}{\sqrt{n(n-1)}} \beta^{3}, \tag{2.23}
\end{equation*}
$$

and equality holds if and only if either $(n-1)$ of the numbers μ_{i} are equal to $\beta / \sqrt{n(n-1)}$ or $(n-1)$ of the numbers μ_{i} are equal to $-\beta / \sqrt{n(n-1)}$.
Lemma 2.2 ([14]). Let A, B be symmetric $n \times n$ matrices satisfying $A B=B A$, and $\operatorname{tr} A=\operatorname{tr} B=0$. Then

$$
\begin{equation*}
\left|\operatorname{tr} A^{2} B\right| \leq \frac{n-2}{\sqrt{n(n-1)}}\left(\operatorname{tr} A^{2}\right)\left(\operatorname{tr} B^{2}\right)^{\frac{1}{2}} \tag{2.24}
\end{equation*}
$$

Lemma 2.3 ([4]). Let $a_{1}, \cdots, a_{n}, b_{i j}(i, j=1,2, \cdots, n)$ be real numbers satisfying $\sum_{i=1}^{n} a_{i}=0, \sum_{i=1}^{n} b_{i i}=0, \sum_{i, j=1}^{n} b_{i j}^{2}=b$ and $b_{i j}=b_{j i}(i, j=1,2, \cdots, n)$. Then

$$
\begin{equation*}
-\left(\sum_{i=1}^{n} b_{i i} a_{i}\right)^{2}+\sum_{i, j=1}^{n} b_{i j}^{2} a_{i} a_{j}-\sum_{i, j=1}^{n} b_{i j}^{2} a_{i}^{2} \geq-\sum_{i=1}^{n} a_{i}^{2} b \tag{2.25}
\end{equation*}
$$

Lemma 2.4 ([9]). Let $A_{1}, A_{2}, \cdots, A_{p}$ be $(n \times n)$ symmetric matrices $(p \geq 2)$. Denote $S_{\alpha \beta}=\operatorname{tr} A_{\alpha} A_{\beta}^{\prime}, S_{\alpha}=S_{\alpha \alpha}=N\left(A_{\alpha}\right), S=S_{1}+\cdots+S_{p}$. Then

$$
\begin{equation*}
\sum_{\alpha, \beta=1}^{n} N\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)+\sum_{\alpha, \beta=1}^{p} S_{\alpha \beta}^{2} \leq \frac{3}{2} S^{2} \tag{2.26}
\end{equation*}
$$

and the equality holds if and only if one of the following conditions hold: (1) $A_{1}=$ $A_{2}=\cdots=A_{p}=0$; (2) Only two of A_{1}, \cdots, A_{p} are different from zero. Assuming $A_{1} \neq 0, A_{2} \neq 0, A_{3}=\cdots=A_{p}=0$. Then $S_{11}=S_{22}$, and there exists $(n \times n)$ orthogonal matrix T such that
$T A_{1} T^{\prime}=\sqrt{\frac{S_{11}}{2}}\left(\begin{array}{ccccc}1 & 0 & 0 & \cdots & 0 \\ 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \end{array}\right), T A_{2} T^{\prime}=\sqrt{\frac{S_{22}}{2}}\left(\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0\end{array}\right)$.
In order to represent our theorems, we need some notations, for details see Lawson [8] and Ryan [13]. First we give a description of the real hyperbolic space $H^{n+1}(c)$ of constant curvature $c(<0)$.

For any two vectors x and y in R^{n+2}, we set

$$
g(x, y)=x_{1} y_{1}+\cdots+x_{n+1} y_{n+1}-x_{n+2} y_{n+2}
$$

$\left(R^{n+2}, g\right)$ is the so-called Minkowski space-time. Denote $\rho=\sqrt{-1 / c}$. We define

$$
H^{n+1}(c)=\left\{x \in R^{n+2} \mid g(x, x)=-\rho^{2}, x_{n+2}>0\right\}
$$

Then $H^{n+1}(c)$ is a simply-connected hypersurface of R^{n+2}. Hence, we obtain a model of a real hyperbolic space.

We define

$$
\begin{aligned}
M_{1}= & \left\{x \in H^{n+1}(c) \mid x_{1}=0\right\} \\
M_{2}= & \left\{x \in H^{n+1}(c) \mid x_{1}=r>0\right\} \\
M_{3}= & \left\{x \in H^{n+1}(c) \mid x_{n+2}=x_{n+1}+\rho\right\} \\
M_{4}= & \left\{x \in H^{n+1}(c) \mid x_{1}^{2}+\cdots+x_{n+1}^{2}=r^{2}>0\right\}, \\
M_{5}= & \left\{x \in H^{n+1}(c) \mid x_{1}^{2}+\cdots+x_{k+1}^{2}=r^{2}>0,\right. \\
& \left.x_{k+2}^{2}+\cdots+x_{n+1}^{2}-x_{n+2}^{2}=-\rho^{2}-r^{2}\right\} .
\end{aligned}
$$

M_{1}, \cdots, M_{5} are often called the standard examples of complete hypersurfaces in $H^{n+1}(c)$ with at most two distinct constant principal curvatures. It is obvious that M_{1}, \cdots, M_{4} are totally umbilical. In the sense of Chen [2], they are called the hyperspheres of $H^{n+1}(c) . M_{3}$ is called the horosphere and M_{4} the geodesic distance sphere of $H^{n+1}(c)$. Ryan [13] obtained the following:

Lemma 2.5 ([13]). Let M^{n} be a complete hypersurface in $H^{n+1}(c)$. Suppose that, under a suitable choice of a local orthonormal tangent frame field of $T M^{n}$, the shape operator over $T M^{n}$ is expressed as a matrix A. If M^{n} has at most two distinct constant principal curvatures, then it is congruent to one of the following:
(1) M_{1}. In this case, $A=0$, and M_{1} is totally geodesic. Hence M_{1} is isometric to $H^{n}(c)$;
(2) M_{2}. In this case, $A=\frac{1 / \rho^{2}}{\sqrt{1 / \rho^{2}+1 / r^{2}}} I_{n}$, where I_{n} denotes the identity matrix of degree n, and M_{2} is isometric to $H^{n}\left(-1 /\left(r^{2}+\rho^{2}\right)\right)$;
(3) M_{3}. In this case, $A=\frac{1}{\rho} I_{n}$, and M_{3} is isometric to a Euclidean space R^{n};
(4) M_{4}. In this case, $A=\sqrt{1 / r^{2}+1 / \rho^{2}} I_{n}, M_{4}$ is isometric to a round sphere $S^{n}(r)$ of radius r;
(5) M_{5}. In this case, $A=\lambda I_{k} \oplus \mu I_{n-k}$, where $\lambda=\sqrt{1 / \rho^{2}+1 / r^{2}}$, and $\mu=\frac{1 / \rho^{2}}{\sqrt{1 / r^{2}+1 / \rho^{2}}}, M_{5}$ is isometric to $S^{k}(r) \times H^{n-k}\left(-1 /\left(r^{2}+\rho^{2}\right)\right)$.

3. Proof of main theorem

For a C^{2}-function f defined on M^{n}, we defined its gradient and Hessian $\left(f_{i j}\right)$ by

$$
\begin{equation*}
d f=\sum_{i=1}^{n} f_{i} \omega_{i}, \quad \sum_{j=1}^{n} f_{i j} \omega_{j}=d f_{i}+\sum_{j=1}^{n} f_{j} \omega_{j i} . \tag{3.1}
\end{equation*}
$$

Let $T=\sum T_{i j} \omega_{i} \otimes \omega_{j}$ be a symmetric tensor on M^{n} defined by

$$
\begin{equation*}
T_{i j}=n H \delta_{i j}-h_{i j}^{n+1} \tag{3.2}
\end{equation*}
$$

Follow Cheng-Yau [6], we introduce operatorassociated to T acting on f by

$$
\begin{equation*}
\square f=\sum_{i, j=1}^{n} T_{i j} f_{i j}=\sum_{i, j=1}^{n}\left(n H \delta_{i j}-h_{i j}^{n+1}\right) f_{i j} . \tag{3.3}
\end{equation*}
$$

By a simple calculation and from (2.20), we obtained

$$
\begin{align*}
\square(n H) & =\sum_{i, j=1}^{n}\left(n H \delta_{i j}-h_{i j}^{n+1}\right)(n H)_{i j} \tag{3.4}\\
& =\frac{1}{2} \Delta\left(n^{2} H^{2}\right)-n^{2}\|\nabla H\|^{2}-\sum_{i, j=1}^{n} h_{i j}^{n+1}(n H)_{i j} \\
& =\frac{1}{2} n(n-1) \Delta R+\frac{1}{2} \Delta\left(\operatorname{tr} H_{n+1}^{2}\right)+\frac{1}{2} \Delta S_{2}-n^{2}\|\nabla H\|^{2}-\sum_{i, j=1}^{n} h_{i j}^{n+1}(n H)_{i j}
\end{align*}
$$

By making use of the similar method in [5], we prove the following:
Proposition 3.1. Let M^{n} be an n-dimensional submanifold in a hyperbolic space $H^{n+p}(-1)$ with $n(n-1) R=k^{\prime} H\left(k^{\prime}=\right.$ const. $\left.>0\right)$. If the mean curvature $H>0$, then the operator

$$
L=\square-\left(k^{\prime} / 2 n\right) \Delta
$$

is elliptic.

Proof. For a fixed α, we choose a orthonormal frame field $\left\{e_{j}\right\}$ at each point in M^{n} so that $h_{i j}^{\alpha}=\lambda_{i}^{\alpha} \delta_{i j}$. From (2.19), we have, for any i,

$$
\begin{aligned}
(n H- & \left.\lambda_{i}^{n+1}-k^{\prime} / 2 n\right)=\sum_{j} \lambda_{j}^{n+1}-\lambda_{i}^{n+1} \\
& -(1 / 2)\left[-\sum_{j, \alpha}\left(\lambda_{j}^{\alpha}\right)^{2}+n^{2} H^{2}-n(n-1)\right] /(n H) \\
\geq & \sum_{j} \lambda_{j}^{n+1}-\lambda_{i}^{n+1} \\
& -(1 / 2)\left[-\sum_{j}\left(\lambda_{j}^{n+1}\right)^{2}+\left(\sum_{j} \lambda_{j}^{n+1}\right)^{2}-n(n-1)\right] /(n H) \\
= & {\left[\left(\sum_{j} \lambda_{j}^{n+1}\right)^{2}-\lambda_{i}^{n+1}\left(\sum_{j} \lambda_{j}^{n+1}\right)\right.} \\
& \left.-(1 / 2) \sum_{l \neq j} \lambda_{l}^{n+1} \lambda_{j}^{n+1}+(1 / 2) n(n-1)\right](n H)^{-1} \\
= & {\left[\sum_{j}\left(\lambda_{j}^{n+1}\right)^{2}+(1 / 2) \sum_{l \neq j} \lambda_{l}^{n+1} \lambda_{j}^{n+1}\right.} \\
& \left.-\lambda_{i}^{n+1}\left(\sum_{j} \lambda_{j}^{n+1}\right)+(1 / 2) n(n-1)\right](n H)^{-1} \\
= & {\left[\sum_{i \neq j}\left(\lambda_{j}^{n+1}\right)^{2}+(1 / 2) \sum_{\substack{l \neq j}} \lambda_{l}^{n+1} \lambda_{j}^{n+1}+(1 / 2) n(n-1)\right](n H)^{-1} } \\
= & (1 / 2)\left[\sum_{j \neq i}\left(\lambda_{j}^{n+1}\right)^{2}+\left(\sum_{j \neq i} \lambda_{j}^{n+1}\right)^{2}+n(n-1)\right](n H)^{-1}>0 .
\end{aligned}
$$

Thus, L is an elliptic operator. This completes the proof of Proposition 3.1.
Proposition 3.2. Let M^{n} be a n-dimensional submanifold in a hyperbolic space $H^{n+p}(-1)$ with $n(n-1) R=k^{\prime} H,\left(k^{\prime}=\right.$ const. $\left.>0\right)$. If the mean curvature $H>0$, then

$$
\|\nabla h\|^{2} \geq n^{2}\|\nabla H\|^{2} .
$$

Proof. Since $H>0$, we have $\|h\|^{2} \neq 0$. In fact, if $\|h\|^{2}=\sum_{i, \alpha}\left(\lambda_{i}^{\alpha}\right)^{2}=0$ at a point of M^{n}, then $\lambda_{i}^{\alpha}=0$ for all i and α at this point. This implies that $H=0$ at this point. This is impossible.

SHICHANG SHU

From (2.11) and $n(n-1) R=k^{\prime} H$, we have

$$
\begin{gathered}
k^{\prime} \nabla_{i} H=2 n^{2} H \nabla_{i} H-2 \sum_{j, k, \alpha} h_{k j}^{\alpha} h_{k j i}^{\alpha}, \\
\left(\frac{1}{2} k^{\prime}-n^{2} H\right) \nabla_{i} H=-\sum_{j, k, \alpha} h_{k j}^{\alpha} h_{k j i}^{\alpha}, \\
\left(\frac{1}{2} k^{\prime}-n^{2} H\right)^{2}\|\nabla H\|^{2}=\sum_{i}\left(\sum_{j, k, \alpha} h_{k j}^{\alpha} h_{k j i}^{\alpha}\right)^{2} \leq \sum_{i, j, \alpha}\left(h_{i j}^{\alpha}\right)^{2} \sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2} \quad=\|h\|^{2}\|\nabla h\|^{2} .
\end{gathered}
$$

Therefore, we have

$$
\begin{aligned}
\|\nabla h\|^{2}-n^{2}\|\nabla H\|^{2} & \geq\left[\left(\frac{k^{\prime}}{2}-n^{2} H\right)^{2}-n^{2}\|h\|^{2}\right]\|\nabla H\|^{2} \frac{1}{\|h\|^{2}} \\
& =\left[\frac{\left(k^{\prime}\right)^{2}}{4}+n^{3}(n-1)\right]\|\nabla H\|^{2} \frac{1}{\|h\|^{2}} \geq 0 .
\end{aligned}
$$

This completes the proof of Proposition 3.2.
Proof of Main Theorem. By making use of the similar method in [4], we choose a local orthonornmal frame field $\left\{e_{1}, \cdots, e_{n}\right\}$ such that $h_{i j}^{n+1}=\lambda_{i} \delta_{i j}$. Let $\mu_{i}=\lambda_{i}-H$. Then $\sum_{n=1}^{n} \mu_{i}=0, \sum_{i=1}^{n} \mu_{i}^{2}=\sum_{i=1}^{n} \lambda_{i}^{2}-n H^{2}=\operatorname{tr} H_{n+1}^{2}-n H^{2}=S_{1}$. By Lemma 2.1, we get

$$
\begin{align*}
n H \sum_{i, j, k=1}^{n} h_{i i}^{n+1} h_{j k}^{n+1} h_{k i}^{n+1} & =n H \sum_{i=1}^{n} \lambda_{i}^{3}=3 n H^{2} S_{1}+n^{2} H^{4}+n H \sum_{i=1}^{n} \mu_{i}^{3} \tag{3.5}\\
& \geq 3 n H^{2} S_{1}+n^{2} H^{4}-\frac{n(n-2)}{\sqrt{n(n-1)}} H\left(S_{1}\right)^{\frac{3}{2}}
\end{align*}
$$

From Lemma 2.3, we obtain

$$
\begin{align*}
& -\sum_{\beta=n+2}^{n+p}\left\{\sum_{i, j=1}^{n}\left(h_{i j}^{n+1}-H \delta_{i j}\right) h_{i j}^{\beta}\right\}^{2}+\sum_{\beta=n+2}^{n+p}\left\{\sum_{i, j, k=1}^{n}\left[h_{i j}^{n+1} h_{k j}^{n+1}-\left(h_{i j}^{n+1}\right)^{2}\right]\left(h_{i k}^{\beta}\right)^{2}\right\} \tag{3.6}\\
& \quad=-\sum_{\beta=n+2}^{n+p}\left\{\sum_{i=1}^{n}\left(\lambda_{i}-H\right) h_{i i}^{\beta}\right\}^{2}+\sum_{\beta=n+2}^{n+p}\left\{\sum_{i, k=1}^{n}\left(\lambda_{i} \lambda_{k}-\lambda_{i}^{2}\right)\left(h_{i k}^{\beta}\right)^{2}\right\} \\
& \quad=\sum_{\beta=n+2}^{n+p}\left\{-\left(\sum_{i=1}^{n} \mu_{i} h_{i i}^{\beta}\right)^{2}+\sum_{i, k=1}^{n}\left(\mu_{i} \mu_{k}-\mu_{i}^{2}\right)\left(h_{i k}^{\beta}\right)^{2}\right\} \\
& \quad \geq \sum_{\beta=n+2}^{n+p}\left\{-\sum_{i=1}^{n} \mu_{i}^{2} \sum_{i, j=1}^{n}\left(h_{i j}^{\beta}\right)^{2}\right\}=-S_{1} S_{2} .
\end{align*}
$$

Hence from (2.21), (3.5), (3.6) we have

$$
\begin{align*}
\frac{1}{2} \Delta\left(t r H_{n+1}^{2}\right) \geq & \sum_{i, j, k=1}^{n}\left(h_{i j k}^{n+1}\right)^{2}+\sum_{i, j=1}^{n} h_{i j}^{n+1}(n H)_{i j}-n \sum_{i=1}^{n} \lambda_{i}^{2}-\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right)^{2} \tag{3.7}\\
& +n^{2} H^{2}+3 n H^{2} S_{1}+n^{2} H^{4}-\frac{n(n-2)}{\sqrt{n(n-1)}} H\left(S_{1}\right)^{\frac{3}{2}}-S_{1} S_{2} \\
= & \sum_{i, j, k=1}^{n}\left(h_{i j k}^{n+1}\right)^{2}+\sum_{i, j=1}^{n} h_{i j}^{n+1}(n H)_{i j} \\
& +S_{1}\left\{-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H \sqrt{S_{1}}-S_{1}-S_{2}\right\} .
\end{align*}
$$

Let M^{n} be complete connect submanifold in $H^{n+p}(-1)$ with positive mean curvature. Suppose that the normalized mean curvature vector $\frac{\xi}{H}$ is parallel in $T^{\perp} M^{n}$. If we choose $e_{n+1}=\frac{\xi}{H}$, then $\omega_{\alpha n+1}=0$, for all α. Consequently $R_{\alpha n+1 j k}=0$. From (2.9) we have

$$
\begin{equation*}
\sum_{i=1}^{n} h_{i j}^{\alpha} h_{i k}^{n+1}=\sum_{i=1}^{n} h_{i k}^{\alpha} h_{i j}^{n+1} . \tag{3.8}
\end{equation*}
$$

Hence, we obtain

$$
\begin{equation*}
H_{\alpha} H_{n+1}=H_{n+1} H_{\alpha} . \tag{3.9}
\end{equation*}
$$

We set $B=H_{n+1}-H I,(I$ is the unit matrix $)$ then $\operatorname{tr} B=0$, since $\operatorname{tr} H_{\alpha}=0(\alpha>n+1)$. By (3.9) we get for $\alpha>n+1, H_{\alpha} B=B H_{\alpha}$. By virtue of Lemma 2.2, we see that

$$
\begin{equation*}
\left|\operatorname{tr}\left(H_{\alpha}^{2} B\right)\right| \leq \frac{n-2}{\sqrt{n(n-1)}} \operatorname{tr} H_{\alpha}^{2} \sqrt{\operatorname{tr} B^{2}}, \quad \alpha>n+1 \tag{3.10}
\end{equation*}
$$

Since

$$
\begin{gather*}
\operatorname{tr}\left(H_{\alpha}^{2} B\right)=\operatorname{tr}\left(H_{\alpha}^{2} H_{n+1}\right)-H \operatorname{tr} H_{\alpha}^{2}, \quad \alpha>n+1 \tag{3.11}\\
\operatorname{tr} B^{2}=\operatorname{tr} H_{n+1}^{2}-n H^{2}=S_{1} \tag{3.12}
\end{gather*}
$$

By (3.10), (3.11) and (3.12), we have

$$
\begin{equation*}
\operatorname{tr}\left(H_{\alpha}^{2} H_{n+1}\right) \leq\left(H+\frac{n-2}{\sqrt{n(n-1)}} \sqrt{S_{1}}\right) \operatorname{tr} H_{\alpha}^{2}, \quad(\alpha>n+1) . \tag{3.13}
\end{equation*}
$$

From Lemma 2.4 and definition of S_{2}

$$
\begin{equation*}
-\sum_{\alpha, \beta=n+2}^{n+p} N\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)-\sum_{\alpha, \beta=n+2}^{n+p}\left[\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)\right]^{2} \geq-\frac{3}{2} S_{2}^{2} \tag{3.14}
\end{equation*}
$$

When $p=2$, we have

$$
\begin{equation*}
-\sum_{\alpha, \beta=n+2}^{n+p} N\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)-\sum_{\alpha, \beta=n+2}^{n+p}\left[\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)\right]^{2}=-S_{2}^{2} \tag{3.15}
\end{equation*}
$$

For a fixed $\alpha, n+2 \leq \alpha \leq n+p$, we choose a local orthonormal frame field $\left\{e_{1}, \cdots, e_{n}\right\}$ such that $h_{i j}^{\alpha}=\lambda_{i}^{\alpha} \delta_{i j}$. Thus, we have $\sum_{i=1}^{n} \lambda_{i}^{\alpha}=0$ and $\operatorname{tr} H_{\alpha}^{2}=\sum_{i=1}^{n}\left(\lambda_{i}^{\alpha}\right)^{2}$. Let $B=H_{n+1}-H I=\left(b_{i j}\right)$. We have $b_{i j}=b_{j i}(i, j=1,2, \cdots, n), \sum_{i=1}^{n} b_{i i}=0$ and $\sum_{i, j=1}^{n} b_{i j}^{2}=S_{1}$. Since $\lambda_{i}^{\alpha}, b_{i j}(i, j=1,2, \cdots, n)$ satisfy Lemma 2.3, from Lemma 2.3, we get

$$
\begin{align*}
& -\sum_{\alpha=n+2}^{n+p}\left[\operatorname{tr}\left(H_{n+1} H_{\alpha}\right)\right]^{2}+\sum_{\alpha=n+2}^{n+p} \operatorname{tr}\left(H_{n+1} H_{\alpha}\right)^{2}-\sum_{\alpha=n+2}^{n+p} \operatorname{tr}\left(H_{n+1}^{2} H_{\alpha}^{2}\right) \tag{3.16}\\
& =\sum_{\alpha=n+2}^{n+p}\left\{-\left[\operatorname{tr}\left(\left(H_{n+1}-H I\right) H_{\alpha}\right)\right]^{2}+\operatorname{tr}\left[\left(H_{n+1}-H I\right) H_{\alpha}\right]^{2}-\operatorname{tr}\left[\left(H_{n+1}-H I\right)^{2} H_{\alpha}^{2}\right]\right\} \\
& =\sum_{\alpha=n+2}^{n+p}\left\{-\left[\operatorname{tr}\left(B H_{\alpha}\right)\right]^{2}+\operatorname{tr}\left(B H_{\alpha}\right)^{2}-\operatorname{tr}\left(B^{2} H_{\alpha}^{2}\right)\right\} \\
& =\sum_{\alpha=n+2}^{n+p}\left\{-\left(\sum_{i=1}^{n} b_{i i} \lambda_{i}^{\alpha}\right)^{2}+\sum_{i=1}^{n} b_{i j}^{2}\left(\lambda_{i}^{\alpha}\right)^{2}\left(\lambda_{j}^{\alpha}\right)^{2}-\sum_{i=1}^{n} b_{i j}^{2}\left(\lambda_{i}^{\alpha}\right)^{2}\right\} \\
& \geq \sum_{\alpha=n+2}^{n+p}\left[-\sum_{i=1}^{n}\left(\lambda_{i}^{\alpha}\right)^{2} \sum_{i, j=1}^{n} b_{i j}^{2}\right]=-S_{1} \sum_{\alpha=n+2}^{n+p} \operatorname{tr} H_{\alpha}^{2}=-S_{1} S_{2} .
\end{align*}
$$

Therefore, by (2.22), (3.13), (3.14) and (3.16), when $p \geq 3$, we get

$$
\begin{equation*}
\frac{1}{2} \Delta S_{2} \geq \sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}+S_{2}\left\{-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H \sqrt{S_{1}}-S_{1}-\frac{3}{2} S_{2}\right\} \tag{3.17}
\end{equation*}
$$

When $p=2$, from (2.22), (3.13), (3.15), (3.16), we have

$$
\begin{equation*}
\frac{1}{2} \Delta S_{2} \geq \sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}+S_{2}\left\{-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H \sqrt{S_{1}}-S_{1}-S_{2}\right\} \tag{3.18}
\end{equation*}
$$

Case 1. If $p=1$, we have $S_{2}=0, S_{1}=\|h\|^{2}-n H^{2}$. Therefore, by (3.4), (3.7) and Proposition 3.2, we have

$$
\begin{align*}
\square(n H)= & \frac{1}{2} n(n-1) \Delta R+\|\nabla h\|^{2}-n^{2}\|\nabla H\|^{2} \tag{3.19}\\
& +S_{1}\left\{-n+n H-\frac{n(n-2)}{\sqrt{n(n-1)}} H \sqrt{S_{1}}-S_{1}\right\} \\
\geq & \frac{1}{2} n(n-1) \Delta R+\|g\|^{2}\left\{-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H\|g\|-\|g\|^{2}\right\}
\end{align*}
$$

where $\|g\|^{2}$ is a non-negative C^{2}-function on M^{n} defined by $\|g\|^{2}=\|h\|^{2}-n H^{2}$.
Therefore, from (3.19), we have

$$
\begin{align*}
n L H & =n\left[\square H-\left(k^{\prime} / 2 n\right) \Delta H\right] \tag{3.20}\\
& =\square(n H)-(1 / 2) n(n-1) \Delta R \\
& \geq\|g\|^{2}\left\{-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H\|g\|-\|g\|^{2}\right\} \\
& =\|g\|^{2} P_{H}(\|g\|),
\end{align*}
$$

where

$$
\begin{equation*}
P_{H}(\|g\|)=-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H\|g\|-\|g\|^{2} . \tag{3.21}
\end{equation*}
$$

Since $H^{2} \geq 1$, we know that $P_{H}(\|g\|)$ has two real roots B_{H}^{+}and B_{H}^{-}given by

$$
\begin{equation*}
B_{H}^{ \pm}=-\frac{1}{2}(n-2) \sqrt{\frac{n}{n-1}} H \pm \sqrt{\frac{n^{3} H^{2}}{4(n-1)}-n} \tag{3.22}
\end{equation*}
$$

Therefore, we know that

$$
P_{H}(\|g\|)=\left(\|g\|-B_{H}^{-}\right)\left(-\|g\|+B_{H}^{+}\right) .
$$

Clearly, we know that $\|g\|-B_{H}^{-}>0$. From the assumption of Main Theorem, we infer that $P_{H}(\|g\|) \geq 0$ on M^{n}. This implies that the right-hand side of (3.20) is non-negative. From Proposition 3.1, we know that L is elliptic. Since H obtains its maximum on M^{n}, from (3.20), we have $H=$ const. on M^{n}. From (3.20) again, we get $\|g\|^{2} P_{H}(\|g\|)=0$. Therefore, we have $\|g\|^{2}=0$ and M^{n} is totally umbilical, or $P_{H}(\|g\|)=0$. In the latter case, we infer that the equalities hold in (3.20), (3.19)
and (2.23) of Lemma 2.1. Therefore, we know that $(n-1)$ of the numbers $\lambda_{i}-H$ are equal to $\|g\| / \sqrt{n(n-1)}$. This implies that M^{n} has $(n-1)$ principal curvatures equal and constant. As H is constant, the other principal curvature is constant as well. Therefore we know that M^{n} is isoparametric. From the result of Lemma 2.5, M^{n} is isometric to $S^{n-1}(r) \times H^{1}\left(-1 /\left(r^{2}+1\right)\right)$ for some $r>0$.
Case 2. If $p=2$, from (2.18), we have

$$
\begin{equation*}
S_{1} \leq\|h\|^{2}-n H^{2} \tag{3.23}
\end{equation*}
$$

From (3.4), (3.7), (3.18), (3.23), Proposition 3.2 and (2.18) we have

$$
\begin{equation*}
\square(n H) \geq \frac{1}{2} n(n-1) \Delta R+\left(S_{1}+S_{2}\right)\left\{-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H \sqrt{S_{1}}-\left(S_{1}+S_{2}\right)\right\} \tag{3.24}
\end{equation*}
$$

where $\|g\|^{2}=\|h\|^{2}-n H^{2}$.
Therefore, from (3.22), we have

$$
\begin{align*}
n L H & =\square(n H)-(1 / 2) n(n-1) \Delta R \tag{3.25}\\
& \geq\|g\|^{2}\left\{-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H\|g\|-\|g\|^{2}\right\} \\
& =\|g\|^{2} P_{H}(\|g\|)
\end{align*}
$$

where $P_{H}(\|g\|)$ is denoted by $(3.21) . P_{H}(\|g\|)$ has two real roots B_{H}^{+}and B_{H}^{-}denoted by (3.22). Therefore, we know that

$$
P_{H}(\|g\|)=\left(\|g\|-B_{H}^{-}\right)\left(-\|g\|+B_{H}^{+}\right)
$$

Since $\|g\|-B_{H}^{-}>0$, from the assumption of Main Theorem, we infer that $P_{H}(\|g\|) \geq 0$ on M^{n}. This implies that the right-hand side of (3.25) is non-negative. By making use of the same method in Case 1, we can obtain $\|g\|^{2} P_{H}(\|g\|)=0$. Therefore, we have $\|g\|^{2}=0$ and M^{n} is totally umbilical, or $P_{H}(\|g\|)=0$. If $P_{H}(\|g\|)=0$, we infer that the equalities hold in (3.25), (3.24), (3.23) and (2.23) of Lemma 2.1. If the equality holds in (3.23), we have $S_{1}=\|h\|^{2}-n H^{2}$. This implies $S_{2}=0$. Since e_{n+1} is parallel 148
on the normal bundle $T^{\perp}\left(M^{n}\right)$ of M^{n}, using the method of Yau [17], we know that M^{n} lies in a totally geodesic submanifold $H^{n+1}(-1)$ of $H^{n+p}(-1)$. If the equality holds in Lemma 2.1, by making use of the same assertion as in the proof of Case 1, we infer that M^{n} has two distinct principal curvatures and is isoparametric. Therefore, from Lemma 2.5, we know that M^{n} is isometric to $S^{n-1}(r) \times H^{1}\left(-1 /\left(r^{2}+1\right)\right)$ for some $r>0$.

Case 3. If $p \geq 3$, from $(3.4),(3.7),(3.17),(3.23)$ and Proposition 3.2, we have

$$
\begin{align*}
\square(n H) \geq & \frac{1}{2} n(n-1) \Delta R+\left(S_{1}+S_{2}\right)\left\{-n+n H^{2}\right. \tag{3.26}\\
& \left.-\frac{n(n-2)}{\sqrt{n(n-1)}} H \sqrt{S_{1}}-\left(S_{1}+S_{2}\right)\right\}-\frac{1}{2} S_{2}^{2} \\
\geq & \frac{1}{2} n(n-1) \Delta R+\left(S_{1}+S_{2}\right)\left\{-n+n H^{2}\right. \\
& \left.-\frac{n(n-2)}{\sqrt{n(n-1)}} H \sqrt{S_{1}}-\left(S_{1}+S_{2}\right)\right\}-\frac{1}{2}\left(S_{1}+S_{2}\right)^{2} \\
\geq & \frac{1}{2} n(n-1) \Delta R+\left(S_{1}+S_{2}\right)\left\{-n+n H^{2}\right. \\
& \left.-\frac{n(n-2)}{\sqrt{n(n-1)}} H \sqrt{\|h\|^{2}-n H^{2}}-\frac{3}{2}\left(S_{1}+S_{2}\right)\right\} \\
= & \frac{1}{2} n(n-1) \Delta R+\|g\|^{2}\left\{-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H\|g\|-\frac{3}{2}\|g\|^{2}\right\},
\end{align*}
$$

where $\|g\|^{2}=\|h\|^{2}-n H^{2}$.
Therefore, we have

$$
\begin{align*}
n L H & =\square(n H)-(1 / 2) n(n-1) \Delta R \tag{3.27}\\
& \geq\|g\|^{2}\left\{-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H\|g\|-\frac{3}{2}\|g\|^{2}\right\} \\
& =\frac{3}{2}\|g\|^{2}\left\{\frac{2}{3}\left(n H^{2}-n\right)-\frac{2}{3} \frac{n(n-2)}{\sqrt{n(n-1)}} H\|g\|-\|g\|^{2}\right\} \\
& =\frac{3}{2}\|g\|^{2} Q_{H}(\|g\|),
\end{align*}
$$

where

$$
Q_{H}(\|g\|)=\frac{2}{3}\left(n H^{2}-n\right)-\frac{2}{3} \frac{n(n-2)}{\sqrt{n(n-1)}} H\|g\|-\|g\|^{2} .
$$

Since $H^{2} \geq 1$, we know that $Q_{H}(\|g\|)$ has two real roots \widetilde{B}_{H}^{+}and \widetilde{B}_{H}^{-}given by

$$
\widetilde{B}_{H}^{ \pm}=-\frac{1}{3}(n-2) \sqrt{\frac{n}{n-1}} H \pm \frac{1}{3} \sqrt{\frac{n}{n-1}\left(n^{2}+2 n-2\right) H^{2}-6 n},
$$

Therefore, we know that

$$
Q_{H}(\|g\|)=\left(\|g\|-\widetilde{B}_{H}^{-}\right)\left(-\|g\|+\widetilde{B}_{H}^{+}\right) .
$$

Clearly, we know that $\|g\|-\widetilde{B}_{H}^{-}>0$. From the assumption of Main Theorem, we infer that $Q_{H}(\|g\|) \geq 0$ on M^{n}. This implies that the right-hand side of (3.27) is non-negative. From Proposition 3.1, we know that L is elliptic. Since H obtains its maximum on M^{n}, from (3.27), we have $H=$ const. on M^{n}. From (3.27) again, we get $\|g\|^{2} Q_{H}(\|g\|)=0$. Therefore, we have $\|g\|^{2}=0$ and M^{n} is totally umbilical, or $Q_{H}(\|g\|)=0$. If $Q_{H}(\|g\|)=0$, we infer that the equalities hold in (3.27), (3.26) and (3.23). Therefore, we know that

$$
S_{1}=\|h\|^{2}-n H^{2}, \quad S_{2}=S_{1}+S_{2} .
$$

From (2.18), this implies that $S_{2}=0$ and $S_{1}=0$. Therefore, we have $\|g\|^{2}=$ $\|h\|^{2}-n H^{2}=0$ on M^{n} and M^{n} is totally umbilical. This completes the proof of Main Theorem.

References

[1] Alencar, H., do Carmo, M.P., Hypersurfaces with constant mean curvature in sphere, Proc. Amer. Math. Soc., 120(1994), 1223-1229.
[2] Chen, B.Y., Totally mean curvature and submanifols of finite type, World Scientific, Singapore, 1984.
[3] Cheng, Q.M., Nonaka, K., Complete submanifolds in Euclidean space with parallel mean curvature vector, Manuscripta Math., 105(2001), 353-366.
[4] Cheng, Q.M., Submanifolds with constant scalar curvature, Proc. Royal Society Edinbergh, 132(2002), 1163-1183.
[5] Cheng, Q.M., Complete space-like hypersurfaces of a de Sitter space with $r=k H$, Mem. Fac. Sci. Kyushu Univ., 44(1990), 67-77.
[6] Cheng, S.Y., Yau, S.T., Hypersurfaces with constant scalar curvature, Math. Ann., 225(1977), 195-204.
[7] Hu, Z.J., Complete hypersurfaces with constant mean curvature and non-negative sectional curvature, Proc. Amer. Math. Soc., 123(1995), 2835-2840.
[8] Lawson Jr., H.B., Local rigidity theorems for minimal hypersurfaces, Ann. of Math., 89(1969), 187-197.
[9] Li, A.M., Li, J.M., An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math., 58(1992), 582-594.
[10] Li, H.Z., Hypersurfaces with constant scalar curvatrue in space forms, Math. Ann., 305(1996), 665-672.
[11] Li, H.Z., Global rigidity theorems of hypersurfaces, Ark. Math., 35(1997), 327-351.
[12] Okumura, M., Hypersurfaces and a pinching problem on the second fundamental tensor, Anner. J. Math., 96(1974), 207-213.
[13] Ryan, P.J., Hypersurfaces with parallel Ricci tensor, Osaka J. Math., 8(1971), 251-259.
[14] Santos, W., Submanifolds with parallel mean curvature vector in sphere, Tôhoku Math. J., 46(1994), 403-415.
[15] Shu, S.C., Liu, S.Y., Complete submanifolds with constant scalar curvatrue in the hyperbolic space, Advances in Math. (Chinese), 35(2006), 155-166.
[16] Xu, H.W., A rigidity theorem for submanifolds with parallel mean curvature vector in a sphere, Arch. Math., 61(1993), 489-496.
[17] Yau, S.T., Submanifolds with constant mean curvature, Amer. J. Math., 96(1974), 346366.
[18] Yu, Z.H., Hypersurfaces in hyperbolic space with constant mean curvatrue, Chinese Ann. of Math., $\mathbf{6}(16 \mathrm{~A})(1995), 709-716$.

Department of Mathematics
Xianyang Normal University
Xianyang 712000 ShaAnxi, P. R. China
E-mail address: shushichang@126.com

