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COMPLETE SUBMANIFOLDS IN A HYPERBOLIC SPACE

SHICHANG SHU

Abstract. In this paper, we study n-dimensional (n ≥ 3) complete sub-

manifolds Mn in a hyperbolic space Hn+p(−1) with the scalar curvature

n(n − 1)R and the mean curvature H being linearly related. Suppose

that the normalized mean curvature vector field is parallel and the mean

curvature is positive and obtains its maximum on Mn. We prove that if

the squared norm ‖h‖2 of the second fundamental form of Mn satisfies

‖h‖2 ≤ nH2 +(BH)2, (p ≤ 2), and ‖h‖2 ≤ nH2 +(B̃H)2, (p ≥ 3), then Mn

is totally umbilical, or Mn is isometric to Sn−1(r)×H1(−1/(r2 + 1)) for

some r > 0, where BH and B̃H are denoted by (1.1) and (1.2), respectively.

1. Introduction

Let Mn+p
p (c) be a (n+p)-dimensional space form of constant curvature c, Mn

be an n-dimensional submanifold in Mn+p(c) with parallel mean curvature vector. If

c = 0, Cheng and Nonaka [3] obtained some intrinsic rigidity theorems of complete

submanifolds with parallel mean vector in Euclidean space Rn+p. If c > 0, Xu

[16] obtained the intrinsic rigidity theorems of these kind of submanifolds in a sphere

Sn+p(c)(c = 1). If c < 0, Yu [18] and Hu [10] proved some intrinsic rigidity theorems of

complete hypersurfaces with constant mean curvature in a hyperbolic space Hn+1(c)

Let Mn be an n-dimensional complete submanifold with constant normal-

ized scalar curvature in Mn+p(c). If c = 0, for hypersurfaces (p = 1), Cheng and
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Yau [6] obtained an intrinsic rigidity theorem of these kind of hypersurfaces in Eu-

clidean space Rn+1, and for submanifolds (p > 1), Cheng [4] studied the problem

and obtained a rigidity and classification theorem. If c > 0, Li [10] proved a rigidity

and classification theorem of compact hypersurfaces with constant normalized scalar

curvature in a sphere Sn+1(c)(c = 1). As a generalization, Cheng [4] obtained a

rigidity and classification theorem of higher codimension compact submanifolds in

Sn+p(c)(c = 1). If c < 0, the authors [15] studied the submanifolds with constant

normalized scalar curvature in hyperbolic space Hn+p(c)(c = −1) and obtained some

rigidity and classification theorems.

It is well-know that the investigation on hypersurfaces with the scalar curva-

ture n(n−1)R and the mean curvature H being linearly related is also important and

interesting. Fox example, Cheng [5] and Li [11] obtained some characteristic theorems

of such space-like hypersurfaces in a de Sitter space and such compact hypersurfaces

in a unit sphere in terms of sectional curvature, respectively. It is natural and very

important to study n-dimensional submanifolds with the scalar curvature n(n− 1)R

and the mean curvature H being linearly related and with higher codimension in a

space form Mn+p(c). But there are few results about it. In this paper, we shall in-

vestigate n-dimensional complete submanifolds in a hyperbolic space Hn+p(−1) with

the scalar curvature and the mean curvature being linearly related. We shall prove

the following:

Main Theorem. Let Mn be a n-dimensional (n ≥ 3) complete submanifold

with n(n − 1)R = k′H, (H2 ≥ 1) in a hyperbolic space Hn+p(−1), where k′ is a

positive constant. Suppose that the normalized mean curvature vector field is parallel

and the mean curvature H is positive and obtains its maximum on Mn. If the norm

square ‖h‖2 of the second fundamental form of Mn satisfies

‖h‖2 ≤ nH2 + (B+
H)2, (p ≤ 2),

and

‖h‖2 ≤ nH2 + (B̃+
H)2, (p ≥ 3),
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then Mn is totally umbilical, or Mn is isometric to Sn−1(r) × H1(−1/(r2 + 1)) for

some r > 0, where B+
H and B̃+

H are denoted by

B+
H = −1

2
(n− 2)

√
n

n− 1
H +

√
n3H2

4(n− 1)
− n, (1.1)

B̃+
H = −1

3
(n− 2)

√
n

n− 1
H +

1
3

√
n

n− 1
(n2 + 2n− 2)H2 − 6n. (1.2)

2. Preliminaries

Let Mn be a n-dimensional complete submanifold in a hyperbolic space

Hn+p(−1), we choose a local field of orthonormal frames e1, · · · , en+p in Hn+p(−1)

such that at each point of Mn, e1, · · · , en span the tangent space of Mn. Let

ω1, · · · , ωn+p be the dual frame field, then the structure equations of Hn+p(−1) are

given by

dωA = −
n+p∑
B=1

ωAB ∧ ωB , ωAB + ωBA = 0, (2.1)

dωAB = −
n+p∑
C=1

ωAC ∧ ωCB +
1
2

n+p∑
C,D=1

KABCDωC ∧ ωD, (2.2)

KABCD = −(δACδBD − δADδBC). (2.3)

Restricting these form to Mn, we have

ωα = 0, α = n + 1, · · · , n + p. (2.4)

ωαi
=

n∑
j=1

hα
ijωj , hα

ij = hα
ji, (2.5)

dωi = −
n∑

j=1

ωij ∧ ωj , ωij + ωji = 0, (2.6)

dωij = −
n∑

k=1

ωik ∧ ωkj +
1
2

n∑
k,l=1

Rijklωk ∧ ωl, (2.7)

Rijkl = −(δikδjl − δilδjk) +
n+p∑

α=n+1

(hα
ikhα

jl − hα
ilh

α
jk). (2.8)
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The normal curvature tensor Rαβij and Ricci curvature are

Rαβij =
n∑

l=1

(hα
ilh

β
lj − hα

jlh
β
li), (2.9)

Rjk = −(n− 1)δjk +
n+p∑

α=n+1

(
n∑

i=1

hα
iih

α
jk −

n∑
i=1

hα
ikhα

ji), (2.10)

n(n− 1)(R + 1) = n2H2 − ‖h‖2, (2.11)

where R is the normalized scalar curvature, H is the mean curvature of Mn, ‖h‖2 is

the squared norm of the second fundamental form of Mn. Define the first and second

covariant derivatives of hα
ij by

n∑
k=1

hα
ijkωk = dhα

ij −
n∑

k=1

hα
ikωkj −

n∑
k=1

hα
jkωki −

n+p∑
β=n+1

hβ
ijωβα, (2.12)

n∑
l=1

hα
ijklωl = dhα

ijk −
n∑

l=1

hα
ljkωli −

n∑
l=1

hα
ilkωlj −

n∑
l=1

hα
ijlωlk −

n+p∑
β=n+1

hβ
ijkωβα. (2.13)

The Codazzi equation and Ricci identities are

hα
ijk = hα

ikj = hα
jik, (2.14)

hα
ijkl − hα

ijlk =
n∑

m=1

hα
mjRmikl +

n∑
m=1

hα
imRmjkl +

n+p∑
β=n+1

hβ
ijRβαkl. (2.15)

The Laplacian of hα
ij is defined by ∆hα

ij =
n∑

k=1

hα
ijkk. From (2.14) and (2.15), we get

∆hα
ij =

n∑
k=1

hα
kkij +

n∑
k,m=1

hα
kmRmijk +

n∑
k,m=1

hα
miRmkjk +

n∑
k=1

n+p∑
β=n+1

hβ
kiRβαjk. (2.16)

Denote by ξ the mean curvature vector field. When ξ 6= 0, since we suppose H > 0,

en+1 = ξ
H is the normal vector field on Mn. We define S1 and S2 by

S1 =
n∑

i,j=1

(hn+1
ij −Hδij)2, S2 =

n+p∑
α=n+2

n∑
i,j=1

(hα
ij)

2. (2.17)

Obviously, we have

‖h‖2 = nH2 + S1 + S2. (2.18)
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By the definition of the mean curvature vector ξ, we have

nH =
n∑

i=1

hn+1
ii ,

n∑
i=1

hα
ii = 0, n + 2 ≤ α ≤ n + p. (2.19)

From (2.11), (2.17) and (2.18), we get

∆(n2H2) = ∆‖h‖2 + n(n− 1)∆R = ∆(trH2
n+1) + ∆S2 + n(n− 1)∆R. (2.20)

Hence, from (2.8), (2.9) and (2.16), by a direct and simple calculation we conclude

1
2
∆(trH2

n+1) =
n∑

i,j,k=1

(hn+1
ijk )2 +

n∑
i,j=1

hn+1
ij ∆hn+1

ij (2.21)

=
n∑

i,j,k=1

(hn+1
ijk )2 +

n∑
i,j=1

hn+1
ij (nH)ij − n

n∑
i,j=1

(hn+1
ij )2 − (

n∑
i,j=1

(hn+1
ij )2)2

+ nH
n∑

i,j,k=1

hn+1
ij hn+1

jk hn+1
ki + n2H2 −

n+p∑
β=n+2

{
n∑

i,j=1

(hn+1
ij −Hδij)h

β
ij}

2

+
n+p∑

β=n+2

{
n∑

i,j,k=1

[hn+1
ij hn+1

kj − (hn+1
ij )2](hβ

ik)2},

1
2
∆S2 =

n+p∑
α=n+2

n∑
i,j,k=1

(hα
ijk)2 +

n+p∑
α=n+2

n∑
i,j=1

hα
ij∆hα

ij (2.22)

=
n+p∑

α=n+2

n∑
i,j,k=1

(hα
ijk)2 − n

n+p∑
α=n+2

n∑
i,j=1

(hα
ij)

2 + nH

n+p∑
α=n+2

tr(Hn+1H
2
α)

−
n+p∑

α=n+2

[tr(Hn+1Hα)]2 −
n+p∑

α,β=n+2

N(HαHβ −HβHα)

−
n+p∑

α,β=n+2

[tr(HαHβ)]2 +
n+p∑

α=n+2

tr(Hn+1Hα)2 −
n+p∑

α=n+2

tr(H2
n+1H

2
α).

We need the following lemmas:

Lemma 2.1 ([12], [1]). Let µi, i = 1, · · · , n be real numbers, with
∑
i

µi = 0 and∑
i

µ2
i = β2 ≥ 0. Then

− n− 2√
n(n− 1)

β3 ≤
∑

i

µ3
i ≤

n− 2√
n(n− 1)

β3, (2.23)
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and equality holds if and only if either (n − 1) of the numbers µi are equal to

β/
√

n(n− 1) or (n− 1) of the numbers µi are equal to −β/
√

n(n− 1).

Lemma 2.2 ([14]). Let A,B be symmetric n × n matrices satisfying AB = BA,

and trA = trB = 0. Then

|trA2B| ≤ n− 2√
n(n− 1)

(trA2)(trB2)
1
2 . (2.24)

Lemma 2.3 ([4]). Let a1, · · · , an, bij(i, j = 1, 2, · · · , n) be real numbers satisfying∑n
i=1 ai = 0,

∑n
i=1 bii = 0,

∑n
i,j=1 b2

ij = b and bij = bji(i, j = 1, 2, · · · , n). Then

−(
n∑

i=1

biiai)2 +
n∑

i,j=1

b2
ijaiaj −

n∑
i,j=1

b2
ija

2
i ≥ −

n∑
i=1

a2
i b. (2.25)

Lemma 2.4 ([9]). Let A1, A2, · · · , Ap be (n×n) symmetric matrices (p ≥ 2). Denote

Sαβ = trAαA′
β , Sα = Sαα = N(Aα), S = S1 + · · ·+ Sp. Then

n∑
α,β=1

N(AαAβ −AβAα) +
p∑

α,β=1

S2
αβ ≤

3
2
S2, (2.26)

and the equality holds if and only if one of the following conditions hold: (1) A1 =

A2 = · · · = Ap = 0; (2) Only two of A1, · · · , Ap are different from zero. Assuming

A1 6= 0, A2 6= 0, A3 = · · · = Ap = 0. Then S11 = S22, and there exists (n × n)

orthogonal matrix T such that

TA1T
′ =

√
S11

2



1 0 0 · · · 0

0 −1 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · ·


, TA2T

′ =

√
S22

2



0 1 0 · · · 0

1 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


.

In order to represent our theorems, we need some notations, for details see

Lawson [8] and Ryan [13]. First we give a description of the real hyperbolic space

Hn+1(c) of constant curvature c(< 0).

For any two vectors x and y in Rn+2, we set

g(x, y) = x1y1 + · · ·+ xn+1yn+1 − xn+2yn+2,
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(Rn+2, g) is the so-called Minkowski space-time. Denote ρ =
√
−1/c. We define

Hn+1(c) = {x ∈ Rn+2 | g(x, x) = −ρ2, xn+2 > 0}.

Then Hn+1(c) is a simply-connected hypersurface of Rn+2. Hence, we obtain a model

of a real hyperbolic space.

We define

M1 ={x ∈ Hn+1(c) | x1 = 0},

M2 ={x ∈ Hn+1(c) | x1 = r > 0},

M3 ={x ∈ Hn+1(c) | xn+2 = xn+1 + ρ},

M4 ={x ∈ Hn+1(c) | x2
1 + · · ·+ x2

n+1 = r2 > 0},

M5 ={x ∈ Hn+1(c) | x2
1 + · · ·+ x2

k+1 = r2 > 0,

x2
k+2 + · · ·+ x2

n+1 − x2
n+2 = −ρ2 − r2}.

M1, · · · ,M5 are often called the standard examples of complete hypersurfaces in

Hn+1(c) with at most two distinct constant principal curvatures. It is obvious that

M1, · · · ,M4 are totally umbilical. In the sense of Chen [2], they are called the hyper-

spheres of Hn+1(c). M3 is called the horosphere and M4 the geodesic distance sphere

of Hn+1(c). Ryan [13] obtained the following:

Lemma 2.5 ([13]). Let Mn be a complete hypersurface in Hn+1(c). Suppose

that, under a suitable choice of a local orthonormal tangent frame field of TMn, the

shape operator over TMn is expressed as a matrix A. If Mn has at most two distinct

constant principal curvatures, then it is congruent to one of the following:

(1) M1. In this case, A = 0, and M1 is totally geodesic. Hence M1 is

isometric to Hn(c);

(2) M2. In this case, A = 1/ρ2√
1/ρ2+1/r2

In, where In denotes the identity matrix

of degree n, and M2 is isometric to Hn(−1/(r2 + ρ2));

(3) M3. In this case, A = 1
ρIn, and M3 is isometric to a Euclidean space Rn;

(4) M4. In this case, A =
√

1/r2 + 1/ρ2In,M4 is isometric to a round sphere

Sn(r) of radius r;
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(5) M5. In this case, A = λIk ⊕ µIn−k, where λ =
√

1/ρ2 + 1/r2, and

µ = 1/ρ2√
1/r2+1/ρ2

,M5 is isometric to Sk(r)×Hn−k(−1/(r2 + ρ2)).

3. Proof of main theorem

For a C2-function f defined on Mn, we defined its gradient and Hessian (fij)

by

df =
n∑

i=1

fiωi,
n∑

j=1

fijωj = dfi +
n∑

j=1

fjωji. (3.1)

Let T =
∑

Tijωi ⊗ ωj be a symmetric tensor on Mn defined by

Tij = nHδij − hn+1
ij . (3.2)

Follow Cheng-Yau [6], we introduce operator � associated to T acting on f by

�f =
n∑

i,j=1

Tijfij =
n∑

i,j=1

(nHδij − hn+1
ij )fij . (3.3)

By a simple calculation and from (2.20), we obtained

�(nH) =
n∑

i,j=1

(nHδij − hn+1
ij )(nH)ij (3.4)

=
1
2
∆(n2H2)− n2‖∇H‖2 −

n∑
i,j=1

hn+1
ij (nH)ij

=
1
2
n(n− 1)∆R +

1
2
∆(trH2

n+1) +
1
2
∆S2 − n2‖∇H‖2 −

n∑
i,j=1

hn+1
ij (nH)ij .

By making use of the similar method in [5], we prove the following:

Proposition 3.1. Let Mn be an n-dimensional submanifold in a hyperbolic space

Hn+p(−1) with n(n − 1)R = k′H(k′ = const. > 0). If the mean curvature H > 0,

then the operator

L = �− (k′/2n)∆

is elliptic.
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Proof. For a fixed α, we choose a orthonormal frame field {ej} at each point in Mn

so that hα
ij = λα

i δij . From (2.19), we have, for any i,

(nH−λn+1
i − k′/2n) =

∑
j

λn+1
j − λn+1

i

− (1/2)[−
∑
j,α

(λα
j )2 + n2H2 − n(n− 1)]/(nH)

≥
∑

j

λn+1
j − λn+1

i

− (1/2)[−
∑

j

(λn+1
j )2 + (

∑
j

λn+1
j )2 − n(n− 1)]/(nH)

=[(
∑

j

λn+1
j )2 − λn+1

i (
∑

j

λn+1
j )

− (1/2)
∑
l 6=j

λn+1
l λn+1

j + (1/2)n(n− 1)](nH)−1

=[
∑

j

(λn+1
j )2 + (1/2)

∑
l 6=j

λn+1
l λn+1

j

− λn+1
i (

∑
j

λn+1
j ) + (1/2)n(n− 1)](nH)−1

=[
∑
i 6=j

(λn+1
j )2 + (1/2)

∑
l 6=j

l,j 6=i

λn+1
l λn+1

j + (1/2)n(n− 1)](nH)−1

=(1/2)[
∑
j 6=i

(λn+1
j )2 + (

∑
j 6=i

λn+1
j )2 + n(n− 1)](nH)−1 > 0.

Thus, L is an elliptic operator. This completes the proof of Proposition 3.1.

Proposition 3.2. Let Mn be a n-dimensional submanifold in a hyperbolic space

Hn+p(−1) with n(n − 1)R = k′H, (k′ = const. > 0). If the mean curvature H > 0,

then

‖∇h‖2 ≥ n2‖∇H‖2.

Proof. Since H > 0, we have ‖h‖2 6= 0. In fact, if ‖h‖2 =
∑
i,α

(λα
i )2 = 0 at a point of

Mn, then λα
i = 0 for all i and α at this point. This implies that H = 0 at this point.

This is impossible.
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From (2.11) and n(n− 1)R = k′H, we have

k′∇iH = 2n2H∇iH − 2
∑
j,k,α

hα
kjh

α
kji,

(
1
2
k′ − n2H)∇iH = −

∑
j,k,α

hα
kjh

α
kji,

(
1
2
k′ − n2H)2‖∇H‖2 =

∑
i

(
∑
j,k,α

hα
kjh

α
kji)

2 ≤
∑
i,j,α

(hα
ij)

2
∑

i,j,k,α

(hα
ijk)2 = ‖h‖2‖∇h‖2.

Therefore, we have

‖∇h‖2 − n2‖∇H‖2 ≥[(
k′

2
− n2H)2 − n2‖h‖2]‖∇H‖2 1

‖h‖2

=[
(k′)2

4
+ n3(n− 1)]‖∇H‖2 1

‖h‖2
≥ 0.

This completes the proof of Proposition 3.2.

Proof of Main Theorem. By making use of the similar method in [4], we choose a

local orthonornmal frame field {e1, · · · , en} such that hn+1
ij = λiδij . Let µi = λi−H.

Then
n∑

n=1
µi = 0,

n∑
i=1

µ2
i =

n∑
i=1

λ2
i − nH2 = trH2

n+1 − nH2 = S1. By Lemma 2.1, we

get

nH

n∑
i,j,k=1

hn+1
ii hn+1

jk hn+1
ki =nH

n∑
i=1

λ3
i = 3nH2S1 + n2H4 + nH

n∑
i=1

µ3
i (3.5)

≥3nH2S1 + n2H4 − n(n− 2)√
n(n− 1)

H(S1)
3
2 .

From Lemma 2.3, we obtain

−
n+p∑

β=n+2

{
n∑

i,j=1

(hn+1
ij −Hδij)h

β
ij}

2 +
n+p∑

β=n+2

{
n∑

i,j,k=1

[hn+1
ij hn+1

kj − (hn+1
ij )2](hβ

ik)2} (3.6)

= −
n+p∑

β=n+2

{
n∑

i=1

(λi −H)hβ
ii}

2 +
n+p∑

β=n+2

{
n∑

i,k=1

(λiλk − λ2
i )(h

β
ik)2}

=
n+p∑

β=n+2

{−(
n∑

i=1

µih
β
ii)

2 +
n∑

i,k=1

(µiµk − µ2
i )(h

β
ik)2}

≥
n+p∑

β=n+2

{−
n∑

i=1

µ2
i

n∑
i,j=1

(hβ
ij)

2} = −S1S2.
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Hence from (2.21), (3.5), (3.6) we have

1
2
∆(trH2

n+1) ≥
n∑

i,j,k=1

(hn+1
ijk )2 +

n∑
i,j=1

hn+1
ij (nH)ij − n

n∑
i=1

λ2
i − (

n∑
i=1

λ2
i )

2 (3.7)

+ n2H2 + 3nH2S1 + n2H4 − n(n− 2)√
n(n− 1)

H(S1)
3
2 − S1S2

=
n∑

i,j,k=1

(hn+1
ijk )2 +

n∑
i,j=1

hn+1
ij (nH)ij

+ S1{−n + nH2 − n(n− 2)√
n(n− 1)

H
√

S1 − S1 − S2}.

Let Mn be complete connect submanifold in Hn+p(−1) with positive mean

curvature. Suppose that the normalized mean curvature vector ξ
H is parallel in

T⊥Mn. If we choose en+1 = ξ
H , then ωαn+1 = 0, for all α. Consequently Rαn+1jk = 0.

From (2.9) we have
n∑

i=1

hα
ijh

n+1
ik =

n∑
i=1

hα
ikhn+1

ij . (3.8)

Hence, we obtain

HαHn+1 = Hn+1Hα. (3.9)

We set B = Hn+1−HI, (I is the unit matrix) then trB = 0, since trHα = 0(α > n+1).

By (3.9) we get for α > n + 1,HαB = BHα. By virtue of Lemma 2.2, we see that

|tr(H2
αB)| ≤ n− 2√

n(n− 1)
trH2

α

√
trB2, α > n + 1. (3.10)

Since

tr(H2
αB) = tr(H2

αHn+1)−HtrH2
α, α > n + 1, (3.11)

trB2 = trH2
n+1 − nH2 = S1. (3.12)

By (3.10), (3.11) and (3.12), we have

tr(H2
αHn+1) ≤ (H +

n− 2√
n(n− 1)

√
S1)trH2

α, (α > n + 1). (3.13)

From Lemma 2.4 and definition of S2

−
n+p∑

α,β=n+2

N(HαHβ −HβHα)−
n+p∑

α,β=n+2

[tr(HαHβ)]2 ≥ −3
2
S2

2 . (3.14)
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When p = 2, we have

−
n+p∑

α,β=n+2

N(HαHβ −HβHα)−
n+p∑

α,β=n+2

[tr(HαHβ)]2 = −S2
2 . (3.15)

For a fixed α, n + 2 ≤ α ≤ n + p, we choose a local orthonormal frame field

{e1, · · · , en} such that hα
ij = λα

i δij . Thus, we have
n∑

i=1

λα
i = 0 and trH2

α =
n∑

i=1

(λα
i )2.

Let B = Hn+1 − HI = (bij). We have bij = bji(i, j = 1, 2, · · · , n),
n∑

i=1

bii = 0 and
n∑

i,j=1

b2
ij = S1. Since λα

i , bij(i, j = 1, 2, · · · , n) satisfy Lemma 2.3, from Lemma 2.3, we

get

−
n+p∑

α=n+2

[tr(Hn+1Hα)]2 +
n+p∑

α=n+2

tr(Hn+1Hα)2 −
n+p∑

α=n+2

tr(H2
n+1H

2
α) (3.16)

=
n+p∑

α=n+2

{−[tr((Hn+1 −HI)Hα)]2 + tr[(Hn+1 −HI)Hα]2 − tr[(Hn+1 −HI)2H2
α]}

=
n+p∑

α=n+2

{−[tr(BHα)]2 + tr(BHα)2 − tr(B2H2
α)}

=
n+p∑

α=n+2

{−(
n∑

i=1

biiλ
α
i )2 +

n∑
i=1

b2
ij(λ

α
i )2(λα

j )2 −
n∑

i=1

b2
ij(λ

α
i )2}

≥
n+p∑

α=n+2

[−
n∑

i=1

(λα
i )2

n∑
i,j=1

b2
ij ] = −S1

n+p∑
α=n+2

trH2
α = −S1S2.

Therefore, by (2.22), (3.13), (3.14) and (3.16), when p ≥ 3, we get

1
2
∆S2 ≥

n+p∑
α=n+2

n∑
i,j,k=1

(hα
ijk)2+S2{−n+nH2− n(n− 2)√

n(n− 1)
H

√
S1−S1−

3
2
S2}. (3.17)

When p = 2, from (2.22), (3.13), (3.15), (3.16), we have

1
2
∆S2 ≥

n+p∑
α=n+2

n∑
i,j,k=1

(hα
ijk)2 +S2{−n+nH2− n(n− 2)√

n(n− 1)
H

√
S1−S1−S2}. (3.18)
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Case 1. If p = 1, we have S2 = 0, S1 = ‖h‖2 − nH2. Therefore, by (3.4), (3.7) and

Proposition 3.2, we have

�(nH) =
1
2
n(n− 1)∆R + ‖∇h‖2 − n2‖∇H‖2 (3.19)

+ S1{−n + nH − n(n− 2)√
n(n− 1)

H
√

S1 − S1}

≥1
2
n(n− 1)∆R + ‖g‖2{−n + nH2 − n(n− 2)√

n(n− 1)
H‖g‖ − ‖g‖2},

where ‖g‖2 is a non-negative C2-function on Mn defined by ‖g‖2 = ‖h‖2 − nH2.

Therefore, from (3.19), we have

nLH =n[�H − (k′/2n)∆H] (3.20)

=�(nH)− (1/2)n(n− 1)∆R

≥‖g‖2{−n + nH2 − n(n− 2)√
n(n− 1)

H‖g‖ − ‖g‖2}

=‖g‖2PH(‖g‖),

where

PH(‖g‖) = −n + nH2 − n(n− 2)√
n(n− 1)

H‖g‖ − ‖g‖2. (3.21)

Since H2 ≥ 1, we know that PH(‖g‖) has two real roots B+
H and B−

H given by

B±
H = −1

2
(n− 2)

√
n

n− 1
H ±

√
n3H2

4(n− 1)
− n. (3.22)

Therefore, we know that

PH(‖g‖) = (‖g‖ −B−
H)(−‖g‖+ B+

H).

Clearly, we know that ‖g‖ − B−
H > 0. From the assumption of Main Theorem, we

infer that PH(‖g‖) ≥ 0 on Mn. This implies that the right-hand side of (3.20) is

non-negative. From Proposition 3.1, we know that L is elliptic. Since H obtains its

maximum on Mn, from (3.20), we have H = const. on Mn. From (3.20) again, we

get ‖g‖2PH(‖g‖) = 0. Therefore, we have ‖g‖2 = 0 and Mn is totally umbilical, or

PH(‖g‖) = 0. In the latter case, we infer that the equalities hold in (3.20), (3.19)
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and (2.23) of Lemma 2.1. Therefore, we know that (n − 1) of the numbers λi − H

are equal to ‖g‖/
√

n(n− 1). This implies that Mn has (n − 1) principal curvatures

equal and constant. As H is constant, the other principal curvature is constant as

well. Therefore we know that Mn is isoparametric. From the result of Lemma 2.5,

Mn is isometric to Sn−1(r)×H1(−1/(r2 + 1)) for some r > 0.

Case 2. If p = 2, from (2.18), we have

S1 ≤ ‖h‖2 − nH2. (3.23)

From (3.4), (3.7), (3.18), (3.23), Proposition 3.2 and (2.18) we have

�(nH) ≥1
2
n(n− 1)∆R + (S1 + S2){−n + nH2 − n(n− 2)√

n(n− 1)
H

√
S1 − (S1 + S2)}

(3.24)

≥1
2
n(n− 1)∆R + ‖g‖2{−n + nH2 − n(n− 2)√

n(n− 1)
H‖g‖ − ‖g‖2},

where ‖g‖2 = ‖h‖2 − nH2.

Therefore, from (3.22), we have

nLH =�(nH)− (1/2)n(n− 1)∆R (3.25)

≥‖g‖2{−n + nH2 − n(n− 2)√
n(n− 1)

H‖g‖ − ‖g‖2}

=‖g‖2PH(‖g‖),

where PH(‖g‖) is denoted by (3.21). PH(‖g‖) has two real roots B+
H and B−

H denoted

by (3.22). Therefore, we know that

PH(‖g‖) = (‖g‖ −B−
H)(−‖g‖+ B+

H).

Since ‖g‖−B−
H > 0, from the assumption of Main Theorem, we infer that PH(‖g‖) ≥ 0

on Mn. This implies that the right-hand side of (3.25) is non-negative. By making use

of the same method in Case 1, we can obtain ‖g‖2PH(‖g‖) = 0. Therefore, we have

‖g‖2 = 0 and Mn is totally umbilical, or PH(‖g‖) = 0. If PH(‖g‖) = 0, we infer that

the equalities hold in (3.25), (3.24), (3.23) and (2.23) of Lemma 2.1. If the equality

holds in (3.23), we have S1 = ‖h‖2−nH2. This implies S2 = 0. Since en+1 is parallel
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on the normal bundle T⊥(Mn) of Mn, using the method of Yau [17], we know that

Mn lies in a totally geodesic submanifold Hn+1(−1) of Hn+p(−1). If the equality

holds in Lemma 2.1, by making use of the same assertion as in the proof of Case 1, we

infer that Mn has two distinct principal curvatures and is isoparametric. Therefore,

from Lemma 2.5, we know that Mn is isometric to Sn−1(r) × H1(−1/(r2 + 1)) for

some r > 0.

Case 3. If p ≥ 3, from (3.4),(3.7),(3.17),(3.23) and Proposition 3.2, we have

�(nH) ≥1
2
n(n− 1)∆R + (S1 + S2){−n + nH2 (3.26)

− n(n− 2)√
n(n− 1)

H
√

S1 − (S1 + S2)} −
1
2
S2

2

≥1
2
n(n− 1)∆R + (S1 + S2){−n + nH2

− n(n− 2)√
n(n− 1)

H
√

S1 − (S1 + S2)} −
1
2
(S1 + S2)2

≥1
2
n(n− 1)∆R + (S1 + S2){−n + nH2

− n(n− 2)√
n(n− 1)

H
√
‖h‖2 − nH2 − 3

2
(S1 + S2)}

=
1
2
n(n− 1)∆R + ‖g‖2{−n + nH2 − n(n− 2)√

n(n− 1)
H‖g‖ − 3

2
‖g‖2},

where ‖g‖2 = ‖h‖2 − nH2.

Therefore, we have

nLH =�(nH)− (1/2)n(n− 1)∆R (3.27)

≥‖g‖2{−n + nH2 − n(n− 2)√
n(n− 1)

H‖g‖ − 3
2
‖g‖2}

=
3
2
‖g‖2{2

3
(nH2 − n)− 2

3
n(n− 2)√
n(n− 1)

H‖g‖ − ‖g‖2}

=
3
2
‖g‖2QH(‖g‖),

where

QH(‖g‖) =
2
3
(nH2 − n)− 2

3
n(n− 2)√
n(n− 1)

H‖g‖ − ‖g‖2.
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Since H2 ≥ 1, we know that QH(‖g‖) has two real roots B̃+
H and B̃−

H given by

B̃±
H = −1

3
(n− 2)

√
n

n− 1
H ± 1

3

√
n

n− 1
(n2 + 2n− 2)H2 − 6n,

Therefore, we know that

QH(‖g‖) = (‖g‖ − B̃−
H)(−‖g‖+ B̃+

H).

Clearly, we know that ‖g‖ − B̃−
H > 0. From the assumption of Main Theorem, we

infer that QH(‖g‖) ≥ 0 on Mn. This implies that the right-hand side of (3.27) is

non-negative. From Proposition 3.1, we know that L is elliptic. Since H obtains its

maximum on Mn, from (3.27), we have H = const. on Mn. From (3.27) again, we

get ‖g‖2QH(‖g‖) = 0. Therefore, we have ‖g‖2 = 0 and Mn is totally umbilical, or

QH(‖g‖) = 0. If QH(‖g‖) = 0, we infer that the equalities hold in (3.27), (3.26) and

(3.23). Therefore, we know that

S1 = ‖h‖2 − nH2, S2 = S1 + S2.

From (2.18), this implies that S2 = 0 and S1 = 0. Therefore, we have ‖g‖2 =

‖h‖2 − nH2 = 0 on Mn and Mn is totally umbilical. This completes the proof of

Main Theorem.
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