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ERROR BOUND FOR THE SOLUTION OF A POLYLOCAL

PROBLEM WITH A COMBINED METHOD

DANIEL N. POP

Abstract. Consider the problem:

−y
′′(t) + q(t)y(t) = r(t), t ∈ [a, b]

y(c) = α

y(d) = β, c, d ∈ (a, b).

The aim of this paper is to give an error bound for the solution of this

problem using a collocation with B-spline method combined with a Runge-

Kutta method. A numerical example is also given.

1. Introduction

Consider the problem:

−y′′(t) + q(t)y(t) = r(t), t ∈ [a, b] (1)

y(d) = α (2)

y(e) = β, d, e ∈ (a, b), d < e. (3)

where q, r ∈ C[a, b], α, β ∈ R. This is not a two-point boundary value problem (BVP),

since d, e ∈ (a, b).
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If the solution of the two-point boundary value problem

−y′′(t) + q(t)y(t) = r(t), t ∈ (d, e)

y(d) = α (4)

y(e) = β,

exists and it is unique, then the requirement y ∈ C2[a, b] assures the existence and

the uniqueness of (1)+(2)+(3).

We have two initial value problems on [a, d] and [e, b], respectively, and the

existence and the uniqueness for (4) assure existence and uniqueness of these problems.

It is possible to solve this problem by dividing it into the three above-mentioned

problems and to solve each of these problem separately.

This decomposition strategy allows us to solve the problem using a new com-

bined method (collocation + Runge-Kutta) and to give an error estimation.

2. Principles of the method

We decompose our problem into a two-point BVP:

−y′′(t) + q(t)y(t) = r(t), t ∈ (d, e) (5)

y(d) = α (6)

y(e) = β, (7)

and two initial value problems (IVP)

−y′′(t) + q(t)y(t) = r(t), t ∈ [a, d] (8)

y(d) = α (9)

y′(d) = α′ (10)
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and

−y′′(t) + q(t)y(t) = r(t), t ∈ [e, b] (11)

y(e) = β (12)

y′(e) = β′. (13)

The values of the differential y′ at d and e required for the solution of problems

(8)+(9)+(10) and (11)+(12)+(13) are approximated during the solution of the prob-

lem (5)+(6)+(7).

For the first problem we use a collocation method with nonuniform B-splines

of order k + 2, k ∈ N
∗ [1, 10, 3]. For properties of B-spline and basic algorithms see

[5].

Consider the mesh (see [2, 3])

∆ : d = x1 < x2 < · · · < xN < xN+1 = e, (14)

and the step sizes

hi := xi+1 − xi, i = 1, . . . , N.

The multiplicity of e and d is k + 2 and the inner points have the multiplicity k.

Within each subinterval we consider k points

ξi,j := xi + hiρj , j = 1, . . . , k, i = 1, . . . , N,

where

0 ≤ ρ1 < ρ2 < · · · < ρk ≤ 1,

are the roots of the kth Legendre’s orthogonal polynomial on [0, 1] [7, 8]. We add the

points d and e to the set of collocation points.

We shall choose the basis such that the following conditions hold:

(C1) the solution verifies the differential equation (1) at ξi,j ;

(C2) the solution verifies the conditions (2), (3).
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We need a basis having n = Nk + 2 cubic B-spline functions.

One renumbers the collocation points (ξk), such that the first point is d and

the last is e.

The form of solution is

y∆(t) =

n
∑

i=1

ciBi(t), (15)

where Bi(t) is the k + 2 order B-spline with knots xi, . . . , xi+k.

The conditions (C1) +(C2) yield a linear system Ac = γ, with n equations

and n unknowns (the coefficients ci, i = 1, . . . , n).

Its matrix is

A = [aij ]i,j=1,...,n
,

where

aij =



















−B′′
j (ξi) + q(ξi)Bj(ξi), for i = 2, ..., n− 1

Bj(d), for i = 1

Bj(e), for i = n.

(16)

The system matrix is banded with at most k +2 nonzero elements on each line (k +2

nonzero splines at each inner collocation point and only one four at d and e), since a

k+2 order B-splines is nonzero only on k+2 consecutive subintervals. The right-hand

side of the system is

γ = [α, r(ξ2), . . . , r(ξn−1), β]
T

.

The paper [9] gives a Maple implementation based on a different B-spline

basis.

For the solution of problems (8)+(9)+(10) and (11)+(12)+(13) we consider

a Runge-Kutta method with sufficiently high order. For the left IVP we consider

negative steps. The values α′ and β′ are obtained by differentiating the B-spline

solution of the BVP at points d and e, respectively.

3. Main result

Our estimation is inspired from [3, Chapter 5]. If the mesh is sufficiently

fine, the condition number of matrix A given by (16) is not too high and the order of
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Runge-Kutta method is sufficiently high we can obtain an acceptable upper bound of

error.

Theorem 1. Suppose there exists a p ≥ k ≥ 2 such that

(a) The linear problem (5) with boundary conditions (6)+(7) is well-posed,

that is, the equivalent problem




y′

y′′



 =





0 1

q(x) 0









y

y′



 +





0

−r(x)





has a condition number κk = cond(A) of moderate size, q, r ∈ Cp[a, b] ;

(b) The linear problem (5) with boundary conditions (6)+(7) has a unique

solution;

(c) The collocation points ρ1, . . . , ρk satisfy the orthogonality condition

∫ 1

0

Φ(t)

k
∏

ℓ=1

(t − ρℓ)dt = 0, Φ ∈ Pp−k, (p ≤ 2k),

where Pp−k is a set of polynomials at most degree p − k.

Then, for h = maxi=1,...,N hi sufficiently small, our method (col-

location+two Runge-Kutta) is stable with constant κkN and leads to a

unique solution y∆(x). Furthermore, at mesh points xi it holds

∣

∣

∣
y(j)(xi) − y

(j)
∆ (xi)

∣

∣

∣
= O(hp), j = 0, 1; i = 1, ..., N + 1, (17)

while, on the other hands, for i = 1, . . . , N, x ∈ [xi, xi+1]

∣

∣

∣y
(j)(x) − y

(j)
∆ (x)

∣

∣

∣ = O(hk+2−j
i ) + O(hp), j = 0, . . . , k + 1. (18)

Remark 2. The condition (c) means that (ρℓ) are the roots of kth Legendre polyno-

mial.

Proof. Using a result from [3, Theorem 5.140, page 253] we obtain the estimations

(17)+(18) for the BVP (5)+(6)+(7). The error obtained by approximating α′ and

β′ with y
′

∆(d) and y
′

∆(e) is O(hp), then, we use [7, Theorem 5.4.1, page 293]. If we

choose an embedded pair of Runge-Kutta method of order at least (p, p + 1), the

conditions in the hypothesis of theorem are fulfilled and the final error is O(hp). So,
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if the mesh is sufficiently fine, the embedded pair of Runge-Kutta methods does not

increase the order of error. �

Remark 3. The condition number may grow rapidly when h is small. The paper [2,

page 129] gives the following estimation

κ∆ ≈ K

N
∑

i=1

h−2
i max

j=1,...,N+1

∫ xi+1

xi

|G(xj , t)| dt,

where K is a generic constant and G is the Green’s function for the BVP problem.

4. Numerical examples

Our implementation is based on ideas from [5, 4]. We implement the method

in MATLAB1, using the Spline ToolboxTM 3 [6]. If d = a and e = b, our problem

becomes a classical BVP. If d = a or e = b, our problem is decomposed into a BVP

and one IVP. As a numerical example, we chose a problem with oscillatory solution:

−y′′(x) − 243y(x) = x, x ∈ [0, 1] (19)

y

(

1

4

)

=
1

243

sin
(

9
√

3
4

)

sin 9
√

3
− 1

972

y

(

3

4

)

=
1

243

sin
(

27
√

3
4

)

sin 9
√

3
− 1

324
.

If we chose k = 3, the order of spline will be 5, and p = 4. For the initial value

problems we choose the solver ode45 (order 4). The exact solution is

y(x) =
1

243

sin 9
√

3x

sin 9
√

3
− 1

243
x.

We plot the exact solution and approximate solution and the error in a semi-

logarithmic scale for n = 2 and k = 3 in Figures 1 and 2, respectively.

1MATLAB is a trademark of the MathWorks, Inc.

120



ERROR BOUND FOR THE SOLUTION OF A POLYLOCAL PROBLEM WITH A COMBINED METHOD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

x

y(
x)

 

 

exact
approximate
points

Figure 1. Exact and approximate solution of (19)

The collocation matrix for the BVP is








































1.000 0 0 0 0 0 0 0

−301.782 187.397 −91.380 −35.996 −1.239 0 0 0

−63.187 −60.750 4.875 −92.343 −31.593 0 0 0

−2.477 −34.757 −91.380 36.506 −150.891 0 0 0

0 0 0 −150.891 36.506 −91.380 −34.757 −2.4779

0 0 0 −31.593 −92.343 4.875 −60.750 −63.1875

0 0 0 −1.239 −35.996 −91.380 187.397 −301.782

0 0 0 0 0 0 0 1.000









































and its condition number is κ∆ =2.5422e+003.
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Figure 2. Error plot for Example (19)

5. Conclusions

The error estimation does not depend on the number of collocation points.

Nevertheless, the Runge-Kutta method requires an order greater or equal to the order

of error for the derivatives at d and e. We can conclude collocation combined with

Runge-Kutta is an effective method for polylocal problem.

Aknowledgement. The author is indebted to Professor Ph.D. Damian Trif

and Associate Professor Ph.D Radu Tr̂ımbiţaş for their support and helpful hints and
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