ERROR BOUND FOR THE SOLUTION OF A POLYLOCAL PROBLEM WITH A COMBINED METHOD

DANIEL N. POP

Abstract. Consider the problem:

$$
\begin{aligned}
-y^{\prime \prime}(t)+q(t) y(t) & =r(t), \quad t \in[a, b] \\
y(c) & =\alpha \\
y(d) & =\beta, \quad c, d \in(a, b) .
\end{aligned}
$$

The aim of this paper is to give an error bound for the solution of this problem using a collocation with B-spline method combined with a RungeKutta method. A numerical example is also given.

1. Introduction

Consider the problem:

$$
\begin{align*}
-y^{\prime \prime}(t)+q(t) y(t) & =r(t), \quad t \in[a, b] \tag{1}\\
y(d) & =\alpha \tag{2}\\
y(e) & =\beta, \quad d, e \in(a, b), d<e . \tag{3}
\end{align*}
$$

where $q, r \in C[a, b], \alpha, \beta \in \mathbb{R}$. This is not a two-point boundary value problem (BVP), since $d, e \in(a, b)$.

Received by the editors: 16.02.2009
2000 Mathematics Subject Classification. 65L10.
Key words and phrases. Collocation method, Runge-Kutta method, B-spline

DANIEL N. POP

If the solution of the two-point boundary value problem

$$
\begin{align*}
-y^{\prime \prime}(t)+q(t) y(t) & =r(t), \quad t \in(d, e) \\
y(d) & =\alpha \tag{4}\\
y(e) & =\beta,
\end{align*}
$$

exists and it is unique, then the requirement $y \in C^{2}[a, b]$ assures the existence and the uniqueness of $(1)+(2)+(3)$.

We have two initial value problems on $[a, d]$ and $[e, b]$, respectively, and the existence and the uniqueness for (4) assure existence and uniqueness of these problems. It is possible to solve this problem by dividing it into the three above-mentioned problems and to solve each of these problem separately.

This decomposition strategy allows us to solve the problem using a new combined method (collocation + Runge-Kutta) and to give an error estimation.

2. Principles of the method

We decompose our problem into a two-point BVP:

$$
\begin{align*}
-y^{\prime \prime}(t)+q(t) y(t) & =r(t), \quad t \in(d, e) \tag{5}\\
y(d) & =\alpha \tag{6}\\
y(e) & =\beta, \tag{7}
\end{align*}
$$

and two initial value problems (IVP)

$$
\begin{align*}
-y^{\prime \prime}(t)+q(t) y(t) & =r(t), \quad t \in[a, d] \tag{8}\\
y(d) & =\alpha \tag{9}\\
y^{\prime}(d) & =\alpha^{\prime} \tag{10}
\end{align*}
$$

ERROR BOUND FOR THE SOLUTION OF A POLYLOCAL PROBLEM WITH A COMBINED METHOD and

$$
\begin{align*}
-y^{\prime \prime}(t)+q(t) y(t) & =r(t), \quad t \in[e, b] \tag{11}\\
y(e) & =\beta \tag{12}\\
y^{\prime}(e) & =\beta^{\prime} . \tag{13}
\end{align*}
$$

The values of the differential y^{\prime} at d and e required for the solution of problems $(8)+(9)+(10)$ and $(11)+(12)+(13)$ are approximated during the solution of the problem $(5)+(6)+(7)$.

For the first problem we use a collocation method with nonuniform B-splines of order $k+2, k \in \mathbb{N}^{*}[1,10,3]$. For properties of B-spline and basic algorithms see [5].

Consider the mesh (see $[2,3]$)

$$
\begin{equation*}
\Delta: d=x_{1}<x_{2}<\cdots<x_{N}<x_{N+1}=e \tag{14}
\end{equation*}
$$

and the step sizes

$$
h_{i}:=x_{i+1}-x_{i}, \quad i=1, \ldots, N .
$$

The multiplicity of e and d is $k+2$ and the inner points have the multiplicity k. Within each subinterval we consider k points

$$
\xi_{i, j}:=x_{i}+h_{i} \rho_{j}, \quad j=1, \ldots, k, \quad i=1, \ldots, N,
$$

where

$$
0 \leq \rho_{1}<\rho_{2}<\cdots<\rho_{k} \leq 1
$$

are the roots of the k th Legendre's orthogonal polynomial on $[0,1][7,8]$. We add the points d and e to the set of collocation points.

We shall choose the basis such that the following conditions hold:
(C1) the solution verifies the differential equation (1) at $\xi_{i, j}$;
(C2) the solution verifies the conditions (2), (3).

We need a basis having $n=N k+2$ cubic B-spline functions.
One renumbers the collocation points $\left(\xi_{k}\right)$, such that the first point is d and the last is e.

The form of solution is

$$
\begin{equation*}
y_{\Delta}(t)=\sum_{i=1}^{n} c_{i} B_{i}(t) \tag{15}
\end{equation*}
$$

where $B_{i}(t)$ is the $k+2$ order B-spline with knots x_{i}, \ldots, x_{i+k}.
The conditions (C1) $+(\mathrm{C} 2)$ yield a linear system $A c=\gamma$, with n equations and n unknowns (the coefficients $c_{i}, i=1, \ldots, n$).

Its matrix is

$$
A=\left[a_{i j}\right]_{i, j=1, \ldots, n},
$$

where

$$
a_{i j}=\left\{\begin{array}{cl}
-B_{j}^{\prime \prime}\left(\xi_{i}\right)+q\left(\xi_{i}\right) B_{j}\left(\xi_{i}\right), & \text { for } i=2, \ldots, n-1 \tag{16}\\
B_{j}(d), & \text { for } i=1 \\
B_{j}(e), & \text { for } i=n .
\end{array}\right.
$$

The system matrix is banded with at most $k+2$ nonzero elements on each line ($k+2$ nonzero splines at each inner collocation point and only one four at d and e), since a $k+2$ order B-splines is nonzero only on $k+2$ consecutive subintervals. The right-hand side of the system is

$$
\gamma=\left[\alpha, r\left(\xi_{2}\right), \ldots, r\left(\xi_{n-1}\right), \beta\right]^{T} .
$$

The paper [9] gives a Maple implementation based on a different B-spline basis.

For the solution of problems $(8)+(9)+(10)$ and $(11)+(12)+(13)$ we consider a Runge-Kutta method with sufficiently high order. For the left IVP we consider negative steps. The values α^{\prime} and β^{\prime} are obtained by differentiating the B -spline solution of the BVP at points d and e, respectively.

3. Main result

Our estimation is inspired from [3, Chapter 5]. If the mesh is sufficiently fine, the condition number of matrix A given by (16) is not too high and the order of

ERROR BOUND FOR THE SOLUTION OF A POLYLOCAL PROBLEM WITH A COMBINED METHOD
Runge-Kutta method is sufficiently high we can obtain an acceptable upper bound of error.

Theorem 1. Suppose there exists a $p \geq k \geq 2$ such that
(a) The linear problem (5) with boundary conditions (6) + (7) is well-posed, that is, the equivalent problem

$$
\left[\begin{array}{c}
y^{\prime} \\
y^{\prime \prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
q(x) & 0
\end{array}\right]\left[\begin{array}{c}
y \\
y^{\prime}
\end{array}\right]+\left[\begin{array}{c}
0 \\
-r(x)
\end{array}\right]
$$

has a condition number $\kappa_{k}=\operatorname{cond}(A)$ of moderate size, $q, r \in C^{p}[a, b]$;
(b) The linear problem (5) with boundary conditions (6) $+(7)$ has a unique solution;
(c) The collocation points $\rho_{1}, \ldots, \rho_{k}$ satisfy the orthogonality condition

$$
\int_{0}^{1} \Phi(t) \prod_{\ell=1}^{k}\left(t-\rho_{\ell}\right) d t=0, \quad \Phi \in \mathbb{P}_{p-k}, \quad(p \leq 2 k)
$$

where \mathbb{P}_{p-k} is a set of polynomials at most degree $p-k$.
Then, for $h=\max _{i=1, \ldots, N} h_{i}$ sufficiently small, our method (collocation+two Runge-Kutta) is stable with constant $\kappa_{k} N$ and leads to a unique solution $y_{\Delta}(x)$. Furthermore, at mesh points x_{i} it holds

$$
\begin{equation*}
\left|y^{(j)}\left(x_{i}\right)-y_{\Delta}^{(j)}\left(x_{i}\right)\right|=O\left(h^{p}\right), \quad j=0,1 ; i=1, \ldots, N+1, \tag{17}
\end{equation*}
$$

while, on the other hands, for $i=1, \ldots, N, x \in\left[x_{i}, x_{i+1}\right]$

$$
\begin{equation*}
\left|y^{(j)}(x)-y_{\Delta}^{(j)}(x)\right|=O\left(h_{i}^{k+2-j}\right)+O\left(h^{p}\right), \quad j=0, \ldots, k+1 . \tag{18}
\end{equation*}
$$

Remark 2. The condition (c) means that $\left(\rho_{\ell}\right)$ are the roots of k th Legendre polynomial.

Proof. Using a result from [3, Theorem 5.140, page 253] we obtain the estimations $(17)+(18)$ for the BVP $(5)+(6)+(7)$. The error obtained by approximating α^{\prime} and β^{\prime} with $y_{\Delta}^{\prime}(d)$ and $y_{\Delta}^{\prime}(e)$ is $O\left(h^{p}\right)$, then, we use [7, Theorem 5.4.1, page 293]. If we choose an embedded pair of Runge-Kutta method of order at least $(p, p+1)$, the conditions in the hypothesis of theorem are fulfilled and the final error is $O\left(h^{p}\right)$. So,
if the mesh is sufficiently fine, the embedded pair of Runge-Kutta methods does not increase the order of error.

Remark 3. The condition number may grow rapidly when h is small. The paper $[2$, page 129] gives the following estimation

$$
\kappa_{\Delta} \approx K \sum_{i=1}^{N} h_{i}^{-2} \max _{j=1, \ldots, N+1} \int_{x_{i}}^{x_{i+1}}\left|G\left(x_{j}, t\right)\right| d t,
$$

where K is a generic constant and G is the Green's function for the BVP problem.

4. Numerical examples

Our implementation is based on ideas from [5, 4]. We implement the method in MATLAB ${ }^{1}$, using the Spline Toolbox ${ }^{\text {TM }} 3$ [6]. If $d=a$ and $e=b$, our problem becomes a classical BVP. If $d=a$ or $e=b$, our problem is decomposed into a BVP and one IVP. As a numerical example, we chose a problem with oscillatory solution:

$$
\begin{align*}
-y^{\prime \prime}(x)-243 y(x) & =x, \quad x \in[0,1] \tag{19}\\
y\left(\frac{1}{4}\right) & =\frac{1}{243} \frac{\sin \left(\frac{9 \sqrt{3}}{4}\right)}{\sin 9 \sqrt{3}}-\frac{1}{972} \\
y\left(\frac{3}{4}\right) & =\frac{1}{243} \frac{\sin \left(\frac{27 \sqrt{3}}{4}\right)}{\sin 9 \sqrt{3}}-\frac{1}{324} .
\end{align*}
$$

If we chose $k=3$, the order of spline will be 5 , and $p=4$. For the initial value problems we choose the solver ode45 (order 4). The exact solution is

$$
y(x)=\frac{1}{243} \frac{\sin 9 \sqrt{3} x}{\sin 9 \sqrt{3}}-\frac{1}{243} x
$$

We plot the exact solution and approximate solution and the error in a semilogarithmic scale for $n=2$ and $k=3$ in Figures 1 and 2, respectively.

[^0]ERROR BOUND FOR THE SOLUTION OF A POLYLOCAL PROBLEM WITH A COMBINED METHOD

Figure 1. Exact and approximate solution of (19)

The collocation matrix for the BVP is

$$
\left(\begin{array}{rrrrrrrr}
1.000 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-301.782 & 187.397 & -91.380 & -35.996 & -1.239 & 0 & 0 & 0 \\
-63.187 & -60.750 & 4.875 & -92.343 & -31.593 & 0 & 0 & 0 \\
-2.477 & -34.757 & -91.380 & 36.506 & -150.891 & 0 & 0 & 0 \\
0 & 0 & 0 & -150.891 & 36.506 & -91.380 & -34.757 & -2.4779 \\
0 & 0 & 0 & -31.593 & -92.343 & 4.875 & -60.750 & -63.1875 \\
0 & 0 & 0 & -1.239 & -35.996 & -91.380 & 187.397 & -301.782 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1.000
\end{array}\right)
$$

and its condition number is $\kappa_{\Delta}=2.5422 \mathrm{e}+003$.

Figure 2. Error plot for Example (19)

5. Conclusions

The error estimation does not depend on the number of collocation points. Nevertheless, the Runge-Kutta method requires an order greater or equal to the order of error for the derivatives at d and e. We can conclude collocation combined with Runge-Kutta is an effective method for polylocal problem.

Aknowledgement. The author is indebted to Professor Ph.D. Damian Trif and Associate Professor Ph.D Radu Trîmbiţaş for their support and helpful hints and comments during the elaboration of this paper.

References

[1] Ascher, U., Christiansen, J., Russell, R.D., A Collocation Solver for Mixed Order Systems of Boundary Value Problems, Mathematics of Computation 33(1979), no. 146, 659-679.
[2] Ascher, U., Pruess, S., Russell, R.D., On spline basis selections for solving differential equations, SIAM J. Numer. Anal., 20(1983), no. 1, 121-142.

ERROR BOUND FOR THE SOLUTION OF A POLYLOCAL PROBLEM WITH A COMBINED METHOD
[3] Ascher, U.M., Mattheij, R.M.M., Russel, R.D., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, 1997.
[4] de Boor, C., Package for calculating with B-splines, SIAM J. Numer. Anal., 14(1977), no. 3, 441-472.
[5] de Boor, C., A Practical Guide to Splines, Springer Verlag, Berlin, Heidelberg, New York, 1978.
[6] de Boor, C., Spline Toolbox 3, MathWorks Inc., Nattick, MA, 2008.
[7] Gautschi, W., Numerical Analysis, An Introduction, Birkhäuser, Basel, 1997.
[8] Lupaş, Al., Numerical Methods, Constant, Sibiu, 2000, (Romanian).
[9] Pop, D.N., Trîmbiţas, R., New Trends in Approximation, Optimization and Classification, ch. Solution of a polylocal problem - a Computer Algebra based approach, Lucian Blaga University Press, Sibiu, 2008, Proceedings of International Workshop New Trends in Approximation, Optimization and Classification, (D. Simian ed.), pp. 82-93.
[10] Schultz, M.H., Spline Analysis, Prentice Hall, Englewood Cliffs, N.J., 1972.

Romanian-German University
Faculty of Economics and Computers
Calea Dumbrăvii, No. 28-32, Sibiu, Romania
E-mail address: danielnicolaepop@yahoo.com

[^0]: ${ }^{1}$ MATLAB is a trademark of the MathWorks, Inc.

