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THERMAL STRESSES IN A THIN POROUS PLATE

REMUS D. ENE AND ADARA M. BLAGA

Abstract. The thermal stresses that appear in a thin porous plate are

analized and numerical results are obtained with FreeFem++.

1. Introduction

The porous plates have been recently studied, in particular, the silicon thin
porous plates which are component parts of electronic engines (integrate circuits,
transistors) and are often used in nanotechnology.

An existence and uniqueness result for the problem with initial data and
boundary conditions was established by Birsan [1], using the logarithmic convexity
method. Kumar and Rani [6] determined an analytical solution for the equilibrium
equations for the generalized thermoelastic half-space with voids using the Laplace
and Fourier transforms.

In what follows, based on the representation theory, we shall establish an exis-
tence and uniqueness theorem, using the theory of semigroups [8]. In order to obtain
numerical results modeled with FreeFem++, it is necessary to give the variational
formulation of the limit problem (1.1).

We are interested to study the thermal effect on a thin porous plate (de-
formation and thermal stresses), not taking into account the chemical and physical
phenomena that appear under the action of the thermal field. In order to do that, we

need a representation theorem of the solution of the limit problem (1.1).
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Consider a porous media having the form of a rectangular plate that fulfills a
domain B C R3. The geometry of the plate is described with respect to an orthonor-
mal positively oriented frame Oxyxox3, having the axis Ox; and Oxy in the median
plane ¥ of the plate.

We shall reduce the study of the system to the 2-dimensional case (in the
median plane), using the micropolar theory of thermoelastic media introduced by
Eringen [3].

Following Lord and Shulman [7], Green and Lindsay [4] and Iegan [5], the field
equations and constitutive relations in a generalized thermoelastic solid with voids,

without body forces, heat sources and extrinsic equilibrated body force are:

-+ 1) g2 (v ) + pulas + bg—ji — 855 + pof; = poiis, i=1.3
aAp — b(div @) — Ep 4+ mb + pol* = poxd , (L1
To[B(div @) + m¢ + ab] = kA + pS*

on B x(0,tg), where by @ we denoted the displacement field, 6 stands for the variation

of the absolute temperature, ® is the change in volume fraction field, pg is the density

of the medium, A, p are the Lame’s constants, k is the thermal conduction coefficient
and a, b, m, «, B, £ are the constitutive coefficients.
Denote by f; = pof; the density of the body forces. Assume that f €

C%(B x (0,t0)) and f € C>1(B x (0,t)). Then

f=grad @ + rot~,
where @,y € C*1(B x (0,tp)) and divy = 0. Assume that 3 # 0. Put

= grad ® + rot 1. (1.2)

The first equation of the system (1.1) becomes

5% ~

o

< pA(grad ® +rot¢)) + (A + p) grad(div(grad ® + rot ) + bgrad ¢p—
2

—pPgradf — po%(grad ® +roty) = —(grad @ + rot )

uAG + (A4 p) grad(diva) + bgrad ¢ — Bgrad 6 — pg
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= grad[(A + 2u)AD — po® + bo — 860 + Q] + rot[uAd — pot) + 7] = 0.
The first equation of the system (1.1) is satisfied if we take

po  0*® 1
Ad — — = 0 — boh —
A+ 24 02 /\+2M(6 0-Q)

B-2 20— _(5-16-Q) (13)
Aot A+2u ’ '
where ¢; = 4/ %, and respectively,
_ w1
w o>
1 9? 1
(A - %@W =
where ¢y = ,/%.
We obtain
R RTINS A S
B a el ot? ’
and respectively,
1 1 9?
=—-[-A+2u)(A - 5—=—)P+ b8 — Q.
P b[ (A +2p)( C%8t2) + Q]
Replacing @ and 6 in the last equation of the system (1.1) we get
T, [52 div(grad ® + rot 1) + ma) + gﬁ((/\+2 (6 — —8—2)@+b¢+62)] =
TR 3ot WO 2 0 -
= EA(()\ +2u)(6 — la—z)rb + b9+ Q) + poS*
- 6 H C% 8t2 Po .
o . . 3 .
Multiplying this relation by a2 it becomes
k d 1 92 BTy O k o bk
A Y A- =2 )20 A= —(ZA - )0 — A
[(a 8t)( ci ot? apocs Ot ] (a 8t)Q A+ 2,u[a
mIy3, 0 Bro s
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Replacing @ and ¢ in the second equation of the system (1.1) we get
1 02 ¢ 1 92

(6%
—A[-A+2p)(A— = =)D+ 0 — Q] —bAD — 2[—(A+2u) (A — = = )P+ 56 —
5 [—(A+2p)( c‘;’atz’) + 36— Q)] b[ (A+2p)( thz) + 80— QJ+
+m®—Ma—2[—(A+2 )(A———2)<I>+59—Q]—— "
b ot H 2 ot -
Multiplying this relation by m, it becomes
? o« 1 07 b2 — (N +2p) € 02 1 ok
e ANA- ) (— LTINS e = -
Katz PoX I cfatQ) ( PoX +x8t2>] /\+2u(ﬁat2
af 1 0? o 3 b
——A+ —bm))+ —[-— + —A - —=—]|Q — —I". 1.5
PoX (€0 ) /\+2u[ ot pox pox]Q X(A +2p) (15)

Therefore, it holds a Deresiewicz [2] - Zorski [9] theorem:
Theorem 1.1. Let @i = grad ¢ + oty and 6 = %[()\ +2u)(A — ég—;)fb + 0y + QJ,
where ® € C*4(B x (0,t0)) and 1 € C32(B x (0,t0)) satisfy the relations (1.3), (1.4),
(1.5). Then 4,0 and v satisfy the system (1.1).

2. Existence and uniqueness

According to the micropolar theory of thermoelasticity for elastic media with

voids introduced by Eringen [3], we shall assume
4V = (z3v1, T302, W)
u?® = grad(z3®)
¢ =z3, 0=ua3T

where the functions vy, ve, w, ®,9, T depend on x1,xa,t [(x1,22) € X, t € T].
Using the representation theorem 1.1, the equilibrium equations can be re-

duced to the following systems:

vy _ _

azt2 — %A’Ul =0

5@;;2 — feAvy =0 (2.1)
Pw _ p _

W 00 A’LU =0
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and
? B Po 5
)= mAw 6 ¢;_ . (2.2)
- B mTy
T= OCl poa AT PoCl Aq) PoCL Q/J

The last one can be decomposed into

b = ¢
A —l— 2,u Jé]
C = AD + p01/1 — %T
= (2.3)
. _ _ é
F To m mdig
T= Pocz pocr AT — poCqu) PoCL ¢
which is equivalent to
d=¢
: /\
¢ - by D
1/) =T . (24)
— _i
poXAz/J + ﬁA(I) ¢;‘
__k_ _mig
T Pocz AT + PoCi TAD = PoCr ¢

Write the system (2.2) as an evolution system of order 1 associated to a
strongly elliptic operator A on a Hilbert space.

Define D(A) := (H?(X) x HY(X)) x (H?(X) x H(X)) x H*(X) =: V() and
for W = (®,¢, v, 7,T)t € D(A), let

AW == MAW,
0 0 0 0 O
Po
where M = 0 0 0 0 O
b @
~70 g pox 0 2
0 “pa 00 poci
Denote by ||| - [|| the norm || - [|y(s) in the product space V().
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The system (2.4) is an evolution system associated to the operator —A [8]

and can be written in the operatorial form:

ow _
W —AW:F(t,Il,I’Q,W), (25)
01 0 0 0
b _B
- 00 Po 0 Po
for F(t,x1,22, W) := NW, where N=|0 0 0 1 0
_£ m
00 Po 0 Po
00 o -2
Consider the initial data W (0, z1,22) = Wy(x1,22) on ¥ and the boundary

condition W (¢, z1,z2) = 0 for (z1,22) € 0. Following Pazy [8] (chapters 7, 8), we

can state:

Proposition 2.1. Let ¥ be a domain in R? with smooth boundary and F =
(F1, Fy, F3, Fy, F5, Fg) with every component continuous locally Lipschitz function of
all its arguments. Assume that there is some continuous functions n; : RxR — Ry,

1 <i <5, such that
[Fi(t, z1, 20, W)l <t [[[W]]), 1<i<5
and
|Fi(t, 1, 2, W) = Fi(t, w1, w2, Wa)| < nit, [[[Wall| + [[[Well]), 1<i<5.
For every Wy € (H*(X) x H}(X)) X ... x (H*(X) x H3(X)), the initial value problem

%ItM—AW:F(t,Il,IQ,W)
W(0,x1,22) = Wy(z1,22) on X

i): has a unique solution W = (®,(, v, 7, T)t € (H*(X) x L3(X)) x (H?(X) x
L3(%)) x H2(X), if F; € C°(X) for every 1 < i < 5;

ii): has a unique solution W = (®,(,,7,T) € V(X), if F € (HY(X) x
L2(%)) x (HY(Z) x L3(%)) x HY(Z).
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3. Numerical results

We shall give a numerical modeling and simulation for the thermal stress of
an elastic, thin, porous plate made up of magnesium, using FreeFem-++-.

Assume that the heat transport is realized by conduction as long as there
exists an internal thermic source whose temperature is constant.

Consider the following initial conditions:
So = 998 K - thermal source
Ty = 298 K - initial temperature of plate
O(z1,22,0) =0
Y(x1,22,0) = 1,0011507 - porosity

The physical constants of the material and the parameters of voids can be
found in [6].

We shall model the case when the body forces are uniformly distributed
orthogonal to the median plane of the plate.

The dependence on temperature of the deformations, of the stresses and of
the change in volume fraction field are further showed.

One can notice that after a number of iterations, the plate reached a thermal
equilibrium state.

The numerical results are presented in the nearby graphics.
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hange in volume fracton fsd:teraton 1 at mament 0.001 change in volume fracion feld:eraton 9 at momen 0.000
\\\\\\\\\\\\\\

\\\\\\\\\\\\\\

vertical displacement: iteration 1 vertical displacement: iteration 9

Final remarks
As the absolute temperature inside the plate is growing, the plate is deforming

more and more until it reaches the thermal equilibrium state.
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