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OPTIMIZATION PROBLEMS AND η-APPROXIMATED
OPTIMIZATION PROBLEMS

DOREL I. DUCA AND EUGENIA DUCA

Abstract. In this paper, a so-called η-approximated optimization problem

(Ref. [1] and [3]) associated to an optimization problem is considered.

The equivalence between the saddle points of the lagrangian of the η-

approxiated optimization problem and optimal solutions of the original

optimization problem is established.

1. Introduction

We consider the optimization problem

min f (x)

s.t. x ∈ X

gi (x) 5 0, i ∈ {1, ...,m},

(P )

where X is a subset of Rn and f, g1, ..., gm : X → R are functions.

Let

F (P ) := {x ∈ X : gi (x) 5 0, i ∈ {1, ...,m}}

denote the set of all feasible solutions of Problem (P ) .

For solving optimization problem (P ) , there are various manners to approach.

One of these manners is that for Problem (P ) one attaches another optimization

problem, problem whose solutions give us the (information about) optimal solutions

of the initial problem (P ).
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Assuming that X is open, and that f and g are differentiable on X, Man-

gasarian (Ref. [11]) attached to Problem (P ) and the point x0 ∈ X, the problem

min f
(
x0

)
+

〈
u,∇f

(
x0

)〉
s.t. u ∈ Rn

g
(
x0

)
+

[
∇g

(
x0

)]
(u) 5 0.

He took the dual of this linear optimization problem and then considered x0 to be a

variable in X. This last problem is precisely the classical dual of the nonlinear opti-

mization problem, introduced in a different way by Wolfe (Ref. [13]) and investigated

extensively (see, for example Ref. [10]). Connections between optimal solutions of

the dual and the primal are known (see, for example Ref. [10]).

The above process is repeated but taking nonlinear instead of linear approx-

imation of f and g around some fixed x0 ∈ X and taking the dual of the resulting

optimization problem. One takes the dual of this nonlinear optimization problem and

then one considers x0 be a variable in X. One obtains the so called higher-order

dual problem of Problem (P ). In Ref. [11], there are given connections between the

optimal solutions of higher-order dual and initial problem (P ) . D.I. Duca (Ref. [7])

used this idea for optimization problems in complex space.

Another idea came from Antczak (Ref. [3], [2], [1]), who attached to Problem

(P ) and the point x0 ∈ X, the following problem

min f
(
x0

)
+

〈
∇f

(
x0

)
, η (x)

〉
s.t. x ∈ X

g
(
x0

)
+

[
∇g

(
x0

)]
(η (x)) 5 0,

(Pη

(
x0

)
)

where η = ηx0 : X → X is a function. He studied the connections between the saddle

points of Problem
(
Pη

(
x0

))
and optimal solutions of Problem (P ) .

We attach to Problem (P ) , the Lagrange function (or the lagrangian) L :

X × Rm
+ → R defined by

L (x, v) := f (x) + 〈v, g (x)〉 , for all (x, v) ∈ X × Rm
+ ,

where g = (g1, ..., gm) .

50
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Definition 1. We say that
(
x0, v0

)
∈ X × Rm

+ is a saddle point of the lagrangian L

(or of Problem (P )) if

L
(
x0, v

)
5 L

(
x0, v0

)
5 L

(
x, v0

)
, for all (x, v) ∈ X × Rm

+ .

The saddle points of the lagrangian L of Problem (P ) have been studied by

many authors (see for example Ref. [10], [4] and others). A fundamental result of

optimization theory is that, in certain conditions, the point x0 is an optimal solution

of Problem (P ) if and only if there exists a point v0 ∈ Rm
+ such that

(
x0, v0

)
is a

saddle point of its lagrangian.

More precisely, we have the following results, results which play an important

role in optimization theory and economics.

Theorem 2. If
(
x0, v0

)
∈ X × Rm

+ is a saddle point of the lagrangian L of Problem

(P ) then x0 is an optimal solution of Problem (P ) .

Proof. See, for example, Ref. [10]. �

Theorem 3. Let x0 be an optimal solution of Problem (P ) . Assume that f, g1, ..., gm

are convex at x0 and a suitable constraint qualification (CQ, Ref. [10]) is satisfied

at x0. Then there exists a point v0 ∈ Rm
+ such that

(
x0, v0

)
is a saddle point of the

lagrangian of Problem (P ) .

Proof. See, for example, Ref. [10]. �

In the last few years, attempts have been made to weaken the convexity

hypotheses and thus to explore the existence of optimality conditions applicability.

Various classes of generalized convex functions have been suggested for the purpose

of weakening the convexity limitation in this result. Among these, the concept of an

invex function proposed by Hanson (Ref. [9]) has received more attention. The name

of invex (invariant convex) function was given by Craven (Ref. [6])

Definition 4. Let X be a subset of Rn, x0 be an interior point of X, f : X → R be

a differentiable function at x0 and η = ηx0 : X → Rn be a function. We say that f is

invex at x0 with respect to η if

f (x)− f
(
x0

)
=

〈
∇f

(
x0

)
, η (x)

〉
, for all x ∈ X. (1)
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Hanson defined invex functions which allow the use of the Kuhn-Tucker con-

ditions as sufficient conditions for optimality in constrained optimization problems.

Later, Martin (Ref. [12]) proved that invexity hypotheses are not only sufficient but

also necessary when using the Kuhn-Tucker optimality conditions for unconstrained

optimization problems.

After the works of Hanson and Craven, other types of differentiable functions

have appeared with the intent of generalizing invex function from different points of

view.

Ben-Israel and Mond (Ref. [5]) defined the so-called pseudoinvex functions,

generalizing pseudoconvex functions in the same way that invex functions generalize

convex functions.

Definition 5. Let X be a subset of Rn, x0 be an interior point of X, η = ηx0 : X →

Rn, and f : X → R be a differentiable function at x0. We say that f is pseudoinvex

at x0 with respect to η if, for each x ∈ X with the property that〈
∇f

(
x0

)
, η (x)

〉
= 0,

we have

f (x) = f
(
x0

)
.

Definition 6. Let X be a subset of Rn, x0 be an interior point of X, η = ηx0 : X →

Rn, and f : X → R be a differentiable function at x0. We say that f is quasiinvex at

x0 with respect to η if, for each x ∈ X with the property that

f (x) 5 f
(
x0

)
,

we have 〈
∇f

(
x0

)
, η (x)

〉
5 0.

Remark 7. Note that, in general, there exists no unique function η such that the

function f is invex, respectively pseudoinvex and quasiinvex at the point x0 ∈ X.

Indeed, the function f : R → R defined by

f (x) = exp x, for all x ∈ R,
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is invex at x0 = 0 with respect to the function η : R → R defined by

η (x) = x− x0 = x, for all x ∈ R.

Also, the function f is invex at x0 = 0 with respect to the function η : R → R

defined by

η (x) = x +
x2

2
+

x3

6
, for all x ∈ R.

And also, the function f is invex at x0 with respect to the function η : R → R

defined by

η (x) = x− 2, for all x ∈ R.

In this paper, in more general hypotheses that in Ref. [3], the equivalence be-

tween the saddle points of the lagrangian of the η-approximated optimization problem

and optimal solutions of the original optimization problem is established.

2. η−approximated optimization problem

In what follows x0 is an interior point of X, and f and g are differentiable

at x0.

For the function η = ηx0 : X → Rn, we attach to Problem (P ) the

optimization problem
(
Pη

(
x0

))
, called η-approximated at x0 of Problem (P ) .

Remark 8. If X = Rn and η (x) = x− x0, for all x ∈ X, then Problem
(
Pη

(
x0

))
is

linear.

Let

F
(
Pη

(
x0

))
:= {x ∈ X : gi

(
x0

)
+

〈
∇gi

(
x0

)
, η (x)

〉
5 0, i ∈ {1, ...,m}},

denote the set of all feasible solutions of Problem
(
Pη

(
x0

))
.

The lagrangian of Problem
(
Pη

(
x0

))
will be denoted by Lη, i.e. Lη : X ×

Rm
+ → R is defined by

Lη (x, v) := f
(
x0

)
+

〈
∇f

(
x0

)
, η (x)

〉
+

〈
v, g

(
x0

)〉
+

〈
v,

[
∇g

(
x0

)]
(η (x))

〉
,

for all (x, v) ∈ X × Rm
+ .
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Example 9. Let us consider the optimization problem

min f (x) = exp x

s.t. x ∈ X = R

g1 (x) = x2 − x 5 0.

(P )

We have that F
(
P

)
= [0, 1] and x0 = 0 is the unique optimal solution of Problem(

P
)
.

The functions f and g1 are invex at x0 = 0 with respect to the function

η = ηx0 : R → R defined by

η (x) = x, for all x ∈ R.

Then the η-approximated optimization problem is

min (1 + x)

s.t. x ∈ X = R

− x 5 0,

(P η

(
x0

)
)

which has the optimal solution x0 = 0.

On the other hand, the lagrangian Lη of Problem
(
P η

(
x0

))
is defined by

Lη (x, v) = 1 + x− vx, for all (x, v) ∈ R× R+.

Obviously,
(
x0, v0

)
= (0, 1) is a saddle point of the lagrangian Lη.

In this section we show the equivalence between saddle points of the la-

grangian Lη, of Problem
(
Pη

(
x0

))
, and optimal solutions of Problem

(
Pη

(
x0

))
.

By Theorem 2, the following saddle point theorem follows:

Theorem 10. If
(
x0, v0

)
∈ X×Rm

+ is a saddle point of the lagrangian Lη of Problem(
Pη

(
x0

))
, then x0 is an optimal solution of Problem

(
Pη

(
x0

))
.

Remark 11. We established Theorem 10, without any assumption about the functions

involved in Problem
(
Pη

(
x0

))
.

In order to prove that if x0 ∈ X is an optimal solution of Problem
(
Pη

(
x0

))
,

then there exists a point v0 ∈ Rm
+ such that

(
x0, v0

)
is a saddle point of the lagrangian
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of Problem
(
Pη

(
x0

))
, let us denote by F,G1, ..., Gm : X → R the functions defined

by

F (x) := f
(
x0

)
+

〈
∇f

(
x0

)
, η (x)

〉
,

Gi (x) := gi

(
x0

)
+

〈
∇gi

(
x0

)
, η (x)

〉
, i ∈ {1, ...,m},

for all x ∈ X.

Obviously, Problem
(
Pη

(
x0

))
can be written as

minF (x)

s.t. x ∈ X

Gi (x) 5 0, i ∈ {1, ...,m}.

Now, we can state the converse theorem of Theorem 10.

Theorem 12. Let x0 ∈ X be an optimal solution of Problem
(
Pη

(
x0

))
, µ = µx0 :

X → Rn be a function. Assume that η : X → Rn is differentiable at x0, the functions

F,G1, ..., Gm : X → R are invex at x0 with respect to µ and a suitable constraint

qualification (CQ, Ref [10]) is satisfied at x0. Then there exists a point v0 ∈ Rm
+ such

that
(
x0, v0

)
is a saddle point of Problem

(
Pη

(
x0

))
.

Proof. Let G = (G1, ..., Gm) . In view of Karush-Kuhn-Tucker theorem, there exists

a point v0 ∈ Rm
+ such that

∇F
(
x0

)
+

[
∇G

(
x0

)]T (
v0

)
= 0, (2)

〈
v0, G

(
x0

)〉
= 0, (3)

i.e.

∇f
(
x0

)
+

〈
v0,

[
∇g

(
x0

)] (
∇η

(
x0

))〉
= 0,〈

v0, g
(
x0

)
+

[
∇g

(
x0

)] (
η

(
x0

))〉
= 0.

The functions F, G1, ..., Gm are invex at x0 with respect to µ, then, for each

x ∈ X, we have

F (x)− F
(
x0

)
=

〈
∇F

(
x0

)
, µ (x)

〉
, (4)

Gi (x)−Gi

(
x0

)
=

〈
∇Gi

(
x0

)
, µ (x)

〉
, i ∈ {1, ...,m}. (5)
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Since v0 ∈ Rm
+ , by (5) , we obtain〈

v0, G (x)
〉
−

〈
v0, G

(
x0

)〉
=

〈
v0,

[
∇G

(
x0

)]
(µ (x))

〉
, for all x ∈ X. (6)

Then, for each x ∈ X,

Lη

(
x, v0

)
− Lη

(
x0, v0

)
=

= F (x) +
〈
v0, G (x)

〉
− F

(
x0

)
−

〈
v0, G

(
x0

)〉
= (by (4) , and (6))

=
〈
∇F

(
x0

)
, µ (x)

〉
+

〈
v0,

[
∇G

(
x0

)]
(µ (x))

〉
=

=
〈
∇F

(
x0

)
+

[
∇G

(
x0

)]T (
v0

)
, µ (x)

〉
= (by (2))

= 0.

Consequently, the second inequality in the definition of saddle point is satis-

fied.

In order to prove the first inequality of the definition of saddle point, let

v ∈ Rm
+ . Then

Lη

(
x0, v0

)
− Lη

(
x0, v

)
=

=
〈
v0, G

(
x0

)〉
−

〈
v,G

(
x0

)〉
= (by (3))

= −
〈
v,G

(
x0

)〉
=

= 0,

because G
(
x0

)
5 0 �

3. Equivalence between saddle points of η-approximated problem and of

the original problem

In this section we will prove the equivalence between the original op-

timization problem (P ) and its associated η-approximated optimization problem(
Pη

(
x0

))
. We establish the results where one assumes that the function η = ηx0

satisfies only the condition η
(
x0

)
= 0.

In Ref. [1] one proves the following statement:
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Theorem 13. Let x0 be a feasible solution of Problem (P ) . We assume that f and

g are invex at x0 on F (P ) with respect to η = ηx0 : X → Rn satisfying the condition

η
(
x0

)
= 0. If

(
x0, v0

)
∈ F (P )×Rm

+ is a saddle point of the η-approximated optimiza-

tion problem
(
Pη

(
x0

))
, then x0 is an optimal solution of the original optimization

problem (P ) .

This theorem is true in more general hypotheses.

If x0 is a feasible solution of Problem (P ) , then

I
(
x0

)
= {i ∈ {1, ...,m} : gi

(
x0

)
= 0}

denote the indices of the active restrictions at x0.

The following statement is true

Theorem 14. Let x0 ∈ X, η = ηx0 : X → Rn such that η
(
x0

)
= 0, f : X → R be

pseudoinvex at x0 with respect to η and g1, ..., gm : X → R such that gi, i ∈ I
(
x0

)
are quasiinvex at x0 with respect to η.

If
(
x0, v0

)
∈ X × Rm

+ is a saddle point of the lagrangian Lη of Problem(
Pη

(
x0

))
, then x0 is an optimal solution of the original problem (P ) .

Proof. The point
(
x0, v0

)
∈ X×Rm

+ is a saddle point of the lagrangian Lη of Problem(
Pη

(
x0

))
; then

Lη

(
x0, v

)
5 Lη

(
x0, v0

)
, for all v ∈ Rm

+ ,

i.e. (
v − v0

)
g

(
x0

)
5 0, for all v ∈ Rm

+ , (7)

because η
(
x0

)
= 0.

Let i ∈ {1, ...,m}, and ei = (0, ..., 1, ..., 0) ∈ Rm be the i-th unit vector of

Rm. Then, for v = ei + v0 ∈ Rm
+ , relation (7) becomes gi

(
x0

)
5 0. Hence

gi

(
x0

)
5 0, for all i ∈ {1, ...,m}.

Consequently,

x0 ∈ F (P ) .
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If follows that 〈
v0, g

(
x0

)〉
5 0, (8)

because v0 ∈ Rm
+ . But, from (7) we deduce〈

v0, g
(
x0

)〉
= 0, (9)

because v = 0 ∈ Rm
+ .

Thus, by (8) and (9) 〈
v0, g

(
x0

)〉
= 0. (10)

From (10) it follows that

v0
i = 0, for all i ∈ {1, ...,m}\I

(
x0

)
. (11)

On the other hand, from

Lη

(
x0, v0

)
5 Lη

(
x, v0

)
, for all x ∈ X,

we deduce that〈
∇f

(
x0

)
, η (x)

〉
+

〈
v0,

[
∇g

(
x0

)]
(η (x))

〉
= 0, for all x ∈ X. (12)

In order to prove that x0 is an optimal solution of Problem (P ) , let x ∈ F (P ) .

Then

gi (x) 5 0, for all i ∈ {1, ...,m}.

Let i ∈ I
(
x0

)
. Since

gi (x)− gi

(
x0

)
= gi (x) 5 0,

and gi is quasiinvex at x0 with respect to η, we have〈
∇gi

(
x0

)
, η (x)

〉
5 0,

hence

v0
i

〈
∇gi

(
x0

)
, η (x)

〉
5 0,

because v0
i = 0. Then 〈

v0,
[
∇g

(
x0

)]
(η (x))

〉
5 0, (13)
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because v0
i = 0, for all i ∈ {1, ...,m}\I

(
x0

)
.

From (12) and (13) it follows that

〈
∇f

(
x0

)
, η (x)

〉
= −

〈
v0,

[
∇g

(
x0

)]
(η (x))

〉
= 0. (14)

But, the function f is pseudoinvex at x0 with respect to η, and then, by (14) ,

we deduce that

f (x) = f
(
x0

)
.

Consequently, x0 is an optimal solution of the original problem (P ) . The theorem is

proved. �

Remark 15. If the functions f, g1, ..., gm are invex at x0 with respect to η, then

the hypotheses that f is pseudoinvex at x0 with respect to η and gi, i ∈ I
(
x0

)
are

quasiinvex at x0 with respect to η are satisfied.

Remark 16. The assumption that the function η satisfies the condition η
(
x0

)
= 0 is

essential in order to have the equivalence between the saddle points of the lagrangian

Lη of Problem
(
Pη

(
x0

))
, and the optimal solutions of the original problem (P ) . (see

Example 3.4 from Ref. [1])

Now, we show that, if x0 is an optimal solution of the original problem (P ) ,

then under certain conditions, there exists a point v0 ∈ Rm
+ such that

(
x0, v0

)
is a

saddle point of the η-approximated problem
(
Pη

(
x0

))
.

More exactly, the following statement is true:

Theorem 17. Let x0 ∈ X be an optimal solution of the original problem (P ) and

assume that a suitable constraint qualification is satisfied at x0 (CQ in Ref. [10]). If

the function η = ηx0 : X → Rn satisfies:

(i)
〈
∇f

(
x0

)
, η

(
x0

)〉
5 0;

(ii) g
(
x0

)
+

[
∇g

(
x0

)] (
η

(
x0

))
5 0 (i.e. x0 ∈ F

(
Pη

(
x0

)
)
)
,

then there exists a point v0 ∈ Rm
+ such that

(
x0, v0

)
is a saddle point of the lagrangian

Lη of the η-approximated problem
(
Pη

(
x0

))
.
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Proof. Since x0 is an optimal solution of Problem (P ) , and some suitable constraint

qualification at x0 is satisfied, by Karush-Kuhn-Tucker’ Theorem, there exists a point

v0 ∈ Rm
+ such that

∇f
(
x0

)
+

[
∇g

(
x0

)]T (
v0

)
= 0, (15)

〈
v0, g

(
x0

)〉
= 0. (16)

Let x ∈ X. Then, from (15) , we have

Lη

(
x, v0

)
− Lη

(
x0, v0

)
=

〈
∇f

(
x0

)
+

[
∇g

(
x0

)]T (
v0

)
, η

(
x0

)〉
= 0.

Consequently, the second inequality from the saddle point definition is true.

In order to prove the first inequality from the saddle point definition, let

v ∈ Rm
+ . Then

Lη

(
x0, v0

)
− Lη

(
x0, v

)
=

=
〈
v0, g

(
x0

)〉
−

〈
v, g

(
x0

)〉
+

〈
v0,

[
∇g

(
x0

)] (
η

(
x0

))〉
−

〈
v,

[
∇g

(
x0

)] (
η

(
x0

))〉
=

= −
〈
v, g

(
x0

)〉
+

〈
η

(
x0

)
,
[
∇g

(
x0

)]T (
v0

)〉
−

〈
v,

[
∇g

(
x0

)] (
η

(
x0

))〉
=

= −
〈
v, g

(
x0

)〉
−

〈
∇f

(
x0

)
, η

(
x0

)〉
−

〈
v,

[
∇g

(
x0

)] (
η

(
x0

))〉
=

= −
〈
∇f

(
x0

)
, η

(
x0

)〉
−

〈
v, g

(
x0

)
+

[
∇g

(
x0

)] (
η

(
x0

))〉
=

= −
〈
∇f

(
x0

)
, η

(
x0

)〉
=

= 0.

Consequently,
(
x0, v0

)
is a saddle point of the lagrangian of Problem(

Pη

(
x0

))
. �

Remark 18. If η
(
x0

)
= 0, then the hypotheses (i) and (ii) from Theorem 17 are

satisfied.

Remark 19. If f, g1, ..., gm are invex at x0 with respect to η, then the hypotheses (i)

and (ii) from Theorem 17 are satisfied.
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Remark 20. The hypothesis that the original problem (P ) satisfies a suitable con-

straint qualification at x0 is essential. Indeed, for the problem

min f (x) = x2

s.t. x ∈ X = R2

g1 (x) = x1 + x2
2 5 0,

g2 (x) = −x1 + x2
2 5 0,

(P̂ )

we have the set of all feasible solutions F
(
P̂

)
= {(0, 0)}, and hence x0 = (0, 0) is

the unique optimal solution. Let us remark that Problem
(
P̂

)
is convex, and then the

functions f, g1, g2 are invex at x0 = (0, 0) with respect to η : R2 → R2 defined by

η (x) = x, for all x ∈ R2.

In this case, the η-approximated optimization problem is

min x2

s.t. (x1, x2) ∈ R2

− x1 5 0,

x1 5 0.

(P̂η

(
x0

)
)

Thus, L̂η : R2 × R2
+ → R is defined by

L̂η (x, v) = x2 − v1x1 + v2x1, for all (x, v) = ((x1, x2) , (v1, v2)) ∈ R2 × R2
+,

and
(
x0, v0

)
, where v0 =

(
v0
1 , v0

2

)
= 0, is not a saddle point of the lagrangian of

Problem
(
P̂η

(
x0

))
.

4. Conclusions

In this paper one shows that the invexity hypotheses from paper [3] can be

weaker.
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