STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LIV, Number 4, December 2009

ON APPLICATIONS OF THE REPRODUCING KERNEL METHOD FOR CONSTRUCTION OF CUBATURE FORMULAS

EMIL A. DANCIU

Abstract. In this paper we use the method of Reproducing Kernel and *Gegenbauer* polynomials for constructing cubature formulas on the unit ball B^d , and on the standard simplex. Also we study the relation between interpolation polynomials based on the zeros of quasi-orthogonal *Cheby-shev* polynomials and the nodes of near minimal degree cubature formulas.

1. Introduction

1) The Reproducing Kernel of a Hilbert space of functions

One calls reproducing Kernel of the Hilbert space H of functions defined on D, real valued $(D \subset \mathbb{R}^d)$, a function $K = K(x, y) : D \times D \to \mathbb{R}$, which verifies the following conditions

i) $K(\cdot, y) \in H$, for any fixed $y \in D$,

ii)
$$\langle f, K(\cdot, y) \rangle = f(y), \ \forall f \in H$$

It is known that in the Hilbert space H are stated the following results.

Theorem 1.1. If the Hilbert space H has a Reproducing Kernel, then this kernel is unique and symmetric with respect to its arguments.

Theorem 1.2. If L is a linear and bounded functional defined on the Hilbert space H, which has a Reproducing Kernel, then the representation function corresponding to L is $g(x) = L_y[K(x, y)]$.

Received by the editors: 05.01.2009.

²⁰⁰⁰ Mathematics Subject Classification. 41A25, 41A36, 65D32.

Key words and phrases. Reproducing Kernel, cubature formulas, Gegenbauer polynomials on simplex, on ball.

We consider now, $H = \mathbb{P}_n^d$ the space of all polynomials of degree at most n, and $D \subset \mathbb{R}^d$.

It is known that $\dim \mathbb{P}_n^d(D) = \binom{n+d}{d}$, if and only if $int(D) \neq \emptyset$.

Let $f \in \mathbb{P}_n^d$ be a polynomial of degree exact n, and we denote

$$\mu = \mu(d, n) = \binom{n+d}{d} = \frac{(n+d)!}{n!d!}$$

It was shown that the number of terms in the representation of the polynomial f is equal to $\mu(d, n)$ and this number represents the number of the monomials in the expression of f = f(x).

Let $W = W(x) : D \to \mathbb{R}^+_0$, $(D \subset \mathbb{R}^d)$, be a weight function.

Theorem 1.3. For a given region (domain) $D, D \subset \mathbb{R}^d$ and a given weight function $W = W(x) : D \to \mathbb{R}_0^+$, exists and are unique $r(d, n) = \mu(d, n - 1) = \frac{(n-1+d)!}{(n-1)!d!}$ orthogonal polynomials of degree n, which are linearly independent.

Let now, $\{e_i(x)\}_{i=0}^{\infty}$, be the monomials which are ordered increasing, and for the same degree for certain terms, we use the lexicographic order.

So, the set $\{e_i(x)\}$, $i = \overline{1, \mu(d, n)}$ represents all the monomials of degree at most n.

By applying the Gram-Schmidt orthonormalization process, we can obtain an *orthonormalized* set with respect to the scalar product

$$(f,g) = I(f \cdot g) = \int_D f(x)g(x)W(x)dx.$$
(1.1)

2) The Gegenbauer (ultraspherical) orthogonal polynomials

We present now, some of the properties of *Gegenbauer* polynomials, which play an important role in the applications of the cubature formulas theory by using the Reproducing Kernel method.

The *Gegenbauer* polynomials are usually defined by the following generating function:

$$(1 - 2tz + z^2)^{-\lambda} = \sum_{n=0}^{\infty} C_n^{(\lambda)}(t) z^n, \qquad (1.2)$$

where $|z| < 1, |t| \le 1, \lambda > 0.$

The coefficients $C_n^{(\lambda)}(t)$ are algebraic polynomials of degree n which are called the *Gegenbauer* polynomials associated with λ . One can prove that the family of polynomials $\{C_n^{(\lambda)}\}_{n=0}^{\infty}$ is a complete orthogonal system for the weighted space $L_2(I, W)$, $I = [-1, 1], W(t) = W_{\lambda}(t) := (1 - t^2)^{\lambda - \frac{1}{2}}$, and we have

$$\int_{[-1,1]} C_n^{(\lambda)}(t) C_m^{(\lambda)}(t) W(t) dt = \begin{cases} 0, & m \neq n \\ \gamma_{n,\lambda} = \frac{\pi^{1/2} (2\lambda)_n \Gamma(\lambda + 1/2)}{(n+\lambda)n! \Gamma(\lambda)}, & m = n \end{cases}$$

where we use $(a)_{\lambda}$, the *Pockhammer* symbol,

$$(a)_0 := 0, \quad (a)_n := a(a+1)\dots(a+n-1) = \Gamma(a+n)/\Gamma(a).$$

Also we have,

$$C_n^{(\lambda)}(-t) = (-1)^n C_n^{(\lambda)}(t), \quad C_n^{(\lambda)}(1) = \frac{(2\lambda)n}{n!} \text{ and } C_0^{(\lambda)} = 1.$$
 (1.3)

The *Gegenbauer* polynomials can also be defined by the well known *Ro-drigues's* formula (see [7] $Szeg\ddot{o}$)

$$C_n^{(\lambda)}(t) = (-1)^n \alpha_{n,\lambda} (1-t^2)^{-\lambda+\frac{1}{2}} \frac{d^n}{dt^n} [(1-t^2)^{n+\lambda-\frac{1}{2}}]$$

where,

$$\alpha_{n,\lambda} = \frac{(2\lambda)_n}{n!2^n(\lambda + \frac{1}{2})_n}.$$

It is known that there exists the following identity which relates *Gegenbauer* polynomials with different weights

$$\frac{d^k}{dt^k} C_n^{(\lambda)}(t) = 2^k (\lambda)_k C_{n-k}^{(\lambda+k)}, \ k = 1, 2, \dots n.$$
(1.4)

For $\lambda = 1/2$, we can obtain the *Legendre* polynomial

$$P_n(t) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dt^n} [(1-t^2)^n] = C_n^{(1/2)}(t)$$

and for $\lambda = 1$ we obtain the *Chebyshev* polynomial of second kind U_n ,

$$U_n = \frac{\sin[(n+1)\arccos t]}{\sqrt{1-t^2}} = C_n^{(1)}(t).$$

Also, we can obtain the *Chebyshev* polynomial of the first kind

$$T_n(t) := \cos(n \operatorname{arccost}) = C_n^{(0)},$$

by considering $C_n^{(0)}$ associated with the weight function $W_0(t) = (1 - t^2)^{-1/2}$.

We can also consider the *Gegenbauer* polynomials $C_n^{(\lambda)}$, for $\lambda < 0$, $\lambda \in \mathbb{Z}^-$ namely,

$$C_n^{(\lambda)}(t) := \alpha (1 - t^2)^{-\lambda + \frac{1}{2}} \frac{d^n}{dt^n} \left[(1 - t^2)^{n + \lambda - \frac{1}{2}} \right], \ \lambda < 0$$

where α is an constant independent of t and we can write the identity

$$\frac{d^k}{dt^k}C_n^{(\lambda)}(t) = cC_{n-k}^{(\lambda+k)}(t), \quad k = 1, 2..., n,$$

where c is independent of t.

3) The relation between Cubature Formulas and the Reproducing Kernels

The Reproducing Kernel method was first used by I.PMysovskikh ([3]) and later studied by $M\ddot{o}ller$ ([2]).

Let a given weight function W = W(x) be defined on a subset $D \subset \mathbb{R}^d$. Then, a cubature formula is a linear combination of function values on some points, that approximates $\int_D f(x)W(x)dx$.

Let $I^d[f] = \int_D f(x)W(x)dx$, $f \in C(D)$, $D \subset \mathbb{R}^d$ for which the moments $I^d[x^{\alpha}]$, $\alpha \in \mathbb{N}^d$ exists and W=W(x) is nonnegative.

We say that the cubature formula has the degree of exactness m, if it yields the exact value of the integrals for any function $f \in \mathbb{P}_m^d$, which is a polynomials of degree at most m.

We denote the space of polynomials of degree at most n by \mathbb{P}_n^d . Let

$$\{P_k^n : 1 \le k \le r(d,n)\}, \ 0 \le n < \infty,$$

(where $r(d, n) = \mu(d, n-1) = \binom{d+n-1}{d}$), denote a sequence of orthonormal polynomials of degree n with respect to the inner product (1.1), which are linearly independent, where the superscript n means that $P_k^n \in \mathbb{P}_n^d$ and let denote by $\mathbf{P}_n = (P_1^n, \ldots, P_{r(d,n)}^n)$, the vector of all these polynomials.

The n - th Reproducing Kernel $K_n(x, y)$ of the Hilbert space $H = \mathbb{P}_n^d$ is defined by:

$$K_n(x,y) = \sum_{k=0}^{n} \mathbf{P}_k^T(x) \mathbf{P}_k(y) = \sum_{k=0}^{n} \sum_{j=1}^{r(d,k)} P_j^k(x) P_j^k(y), \ \forall \ x, y \in \mathbb{R}^d.$$
(1.5)

The method of Reproducing Kernel requires to choose d points: $a^{(1)}, \ldots, a^{(d)} \in \mathbb{R}^d$, such that the hypersurfaces H_1, \ldots, H_d , where H_i is the surface defined by $H_i = \{x \in \mathbb{R}^d : K_n(x, a^{(i)}) = 0\}$, intersect at n^d points. The points $a^{(1)}, \ldots, a^{(d)}$ are chosen as follows.

For $a^{(1)}$ we choose any point that is not a common zero of the polynomial set \mathbf{P}_n . If the points $a^{(1)}, \ldots, a^{(r-1)}$ have been chosen, then we choose $a^{(r)} \in \bigcap_{k=1}^{r-1} H_k$, and $a^{(r)}$ may be any point of this set, which is not a common zero of \mathbf{P}_n .

We assume that the infinity is not a common point of H_1, \ldots, H_d .

We present now the following results.

a) The Method of Reproducing Kernel

If H_1, \ldots, H_d defined by $a^{(1)}, \ldots, a^{(d)}$, intersect at n^d distinct points: $\{x^{(i)}, i = \overline{1, n^d}\}$, then there is a cubature formula of degree 2n,

$$Q_n(f) = \sum_{i=1}^d \lambda_i f(a^{(i)}) + \sum_{j=1}^{n^d} \mu_j f(x^{(j)}), \ \forall f \in \mathbb{P}_{2n}^d,$$
(1.6)

where $\lambda_i = 1/K_n(a^{(i)}, a^{(i)})$.

If the weight function W = W(x) is centrally symmetric, that is, W = W(x)and its support set D satisfy $\forall x \in D \Rightarrow -x \in D$, W(-x) = W(x), then there is a modified method of Reproducing Kernel due to *Möller* ([2]).

Let $\widetilde{K_n}$ denote:

$$\widetilde{K_n}(x,y) = \sum_{k=0}^{n} \sum_{j=0}^{r(d,k)'} P_j^k(x) P_j^k(y), \ \forall x, y \in \mathbb{R}^d,$$
(1.7)

where \sum' means that the summation is taken over those j so that the corresponding P_j^k has the same parity as n. We choose the points $a^{(i)}$ as before except that we replace H_i by the *hypersurface* $\widetilde{H_i}$ defined by $\widetilde{H_i} = \{x \in \mathbb{R}^d : \widetilde{K_n}(x, a^{(i)}) = 0\}$ and 31

we suppose that the infinity is not a common point of $\widetilde{H}_1, \ldots, \widetilde{H}_d$. Then we have, if W = W(x) is centrally symmetric on $D \subset \mathbb{R}^d$.

b) The Modified method of Reproducing Kernel

If $\widetilde{H_1}, \ldots, \widetilde{H_d}$ defined by $a^{(1)}, \ldots, a^{(d)}$ intersect at n^d distinct points: $\{x^{(i)}, i = \overline{1, n^d}\}$, then there is a cubature formula of degree 2n + 1,

$$Q_n(f) = \sum_{i=1}^d \lambda_i [f(a^{(i)}) + f(-a^{(i)})]/2 + \sum_{j=1}^{n^d} \mu_j f(x^{(j)}), \ \forall f \in \mathbb{P}^d_{2n+1},$$
(1.8)

where $\lambda_i = 1/\widetilde{K_n}(a^{(i)}, a^{(i)})$.

If d = 2, then the method requires to choose two points $a^{(1)}$ and $a^{(2)}$ so that the polynomial surface $\widetilde{K_n}(x, a^{(1)})$ and $\widetilde{K_n}(x, a^{(2)})$ have n^2 common zeros.

In the paper [12] Y. Xu was presented a compact formula of the Reproducing Kernel for the *Jacobi* type weight functions on the unit ball and on the standard simplex.

The method of Reproducing Kernel yields cubature formulas of degree 2n + 1or 2n with $n^d + dn$ or $n^d + dn - 1$ nodes, which is greater than the theoretic lower bound for the number of nodes.

2. Cubature formulas on the unit ball using the reproducing kernel method

Let $x, y \in \mathbb{R}^d$ and we use the following notations:

 $\langle x, y \rangle = x_1 y_1 + \dots + x_d y_d$, the usual Euclidian inner product,

 $\|x\|^2 = \parallel x \parallel^2 \ = < x, x >,$ the Euclidian norm.

We consider cubature formulas on the unit ball $B^d = \{x \in \mathbb{R}^d : \|x\| \le 1\}$, with respect to the normalized weight function

$$W_{\mu}(x) = w_{\mu}(1 - ||x||^2)^{\mu - \frac{1}{2}}, \ \mu \ge 0, \ x \in B^d,$$
(2.1)

where w_{μ} is a constant chosen so that the integral $\int_{B^d} W_{\mu}(x) dx = 1$, and we have

$$w_{\mu} = \frac{2}{\omega_{d-1}} \frac{\Gamma(\mu + \frac{d+1}{2})}{\Gamma(\mu + \frac{1}{2})\Gamma(\frac{d}{2})} = \frac{\Gamma(\mu + \frac{d+1}{2})}{\pi^{d/2}\Gamma(\mu + \frac{1}{2})}$$

where $\omega_{d-1} = 2\pi^{d/2}/\Gamma(d/2)$ is the surface area of the unit sphere in \mathbb{R}^d . 32

Let $K_n(.,.)$ be the n-th Reproducing Kernel with respect to weight function W_{μ} . In [12] is presented the following compact formula for the representation of this kernel.

$$K_{n}(W_{\mu}; x, y) = c_{\mu} \int_{-1}^{1} \left[C_{n}^{(\mu + \frac{d+1}{2})}(\langle x, y \rangle + \sqrt{1 - || x ||^{2}} \sqrt{1 - || y ||^{2}} t) + (2.2) + C_{n-1}^{(\mu + \frac{d+1}{2})}(\langle x, y \rangle + \sqrt{1 - || x ||^{2}} \sqrt{1 - || y ||^{2}} t) \right] (1 - t^{2})^{\mu - 1} dt,$$

where $c_{\mu} = 1/\int_{-1}^{1} (1-t^2)^{\mu-1} dt$ and $C_n^{(\lambda)}$ is the *Gegenbauer* polynomial of degree *n* defined by the generating function (1.2), which have the property

$$C_n^{(\lambda)}(-t) = (-1)^n C_n^{(\lambda)}(t)$$

If we take in consideration the expressions: $K_n(W_\mu; x, y) \pm K_n(W_\mu; x, -y)$ for *n* being even and odd, respectively then it follows from the formula (1.5) and (1.7) that the modified Reproducing Kernel function $\widetilde{K_n}(W_\mu; ...)$ is given by the formula

$$\widetilde{K_n}(W_{\mu}; x, y) = c_{\mu} \int_{-1}^{1} C_n^{(\mu + \frac{d+1}{2})} (\langle x, y \rangle + \sqrt{1 - \|x\|^2} \sqrt{1 - \|y\|^2} t) (1 - t^2)^{\mu - 1} dt.$$
(2.3)

For $\mu \to 0$, in (2.2) and (2.3), one can use the limit

$$\lim_{\mu \to 0} c_{\mu} \int_{-1}^{1} f(t)(1-t^2)^{\mu-1} dt = \frac{f(1)+f(-1)}{2}.$$
 (2.4)

In the case $\mu = \frac{1}{2}$, we have: $W_{1/2}(x) = d/\omega_{d-1}$. If $\mu = 0$ we have: $W_0(x) = w_0(1 - ||x||)^{-1/2}$ and we obtain:

$$\widetilde{K_n}(W_0; x, y) = \frac{1}{2} \bigg[C_n^{(3/2)}(\langle x, y \rangle + \sqrt{1 - \| x \|^2} \sqrt{1 - \| y \|^2}) + (2.5) + C_n^{(3/2)}(\langle x, y \rangle - \sqrt{1 - \| x \|^2} \sqrt{1 - \| y \|^2}) \bigg].$$

If we consider ||a|| = 1, we have

$$\widetilde{K}_{n}(W_{\mu}; x, a) = C_{n}^{(\mu + (d+1)/2)}(\langle x, a \rangle).$$
(2.6)

In this case, if || a || = 1 then *a* is not a common zero of the polynomial set \mathbf{P}_n , because that \mathbf{P}_n has no common zeros if *n* is even, and it has only origin as common zero if *n* is odd.

2.1 The construction of a family of cubature formulas on B^d by using the *Gegenbauer* polynomials

One can use the properties of the *Gegenbauer* polynomial $C_n^{(\lambda)}(t)$, $\lambda = \mu + (d+1)/2$, that all its zeros are inside (-1, 1), and we denote these zeros by:

$$-1 < t_{1,n} < t_{2,n} < \cdots < t_{n,n} < 1$$
, where $\lambda = \mu + (d+1)/2$.

It is known that these zeros are symmetric with respect to the origin, that is, they satisfy the relation $t_{i,n} = -t_{n-(i-1),n}$. So, in [12] was given the following strategy to choose the points $a^{(1)}, \ldots, a^{(d)}$ as follows.

Let n be fixed and let $t_{*,n}$ be a fixed zero of $C_n^{(\mu+(d+1)/2)}(t)$, and let define:

$$a^{(1)} = (1, 0, \dots, 0), \quad a^{(k)} = (b_1, \dots, b_{k-1}, \sqrt{1 - b_1^2 - \dots - b_{k-1}^2}, 0, \dots, 0),$$

 $0 \leq k \leq d$, where the components b_1, \ldots, b_{d-1} are determined inductively by the conditions: $\langle a^{(k)}, a^{(k+1)} \rangle = t_{*,n}$, which is equivalent with

$$b_1^2 + \dots + b_{k-1}^2 + \sqrt{1 - b_1^2 - \dots - b_{k-1}^2} \ b_k = t_{*,n}, \ k = \overline{1, d-1},$$

from which are obtained:

$$b_1 = t_{*,n}, \ b_2 = (t_{*,n} - b_1^2) / \sqrt{1 - b_1^2}, \ \dots, \ \text{and we have } b_k \le \sqrt{1 - b_1^2 - \dots - b_{k-1}^2},$$

because $t_{*,n} < 1$, hence $a^{(k+1)}$ is well defined. It follows that

$$\bigcap_{i=1}^{k} H_k = \{ x \in \mathbb{R}^d : \langle x, a^{(1)} \rangle = t_{i_1, n}, \dots, \langle x, a^{(k)} \rangle = t_{i_k, n}, \ 1 \le i_1, \dots, i_k \le n \}$$

for $k = \overline{2, d}$. If we assume that $a^{(k)} \in H_1 \cap \cdots \cap H_{k-1}$, and we require that $a^{(k+1)} \in \bigcap_{i=1}^k H_i$, one observe that $a^{(2)} = (t_{*,n}, \sqrt{1 - t_{*,n}^2}, 0, \dots, 0) \in H_1$.

Inductively, if we assume that $a^{(k)} \in \bigcap_{i=1}^{k-1} H_i$, that is

$$< a^{(i)}, a^{(k)} >= t_{*,n}, \ 1 \le i \le k - 1.$$

Since $a^{(k+1)}$ satisfies $\langle a^{(k)}, a^{(k+1)} \rangle = t_{*,n}$ it follows that:

$$< a^{(i)}, a^{(k+1)} >= t_{*,n}, \quad i = \overline{1,k},$$

that is $a^{(k+1)} \in H_1 \bigcap \cdots \bigcap H_k$.

One can observe that $H_1 \cap \cdots \cap H_d$ contains n^d distinct points, which are given by the relations:

$$\langle x, a^{(1)} \rangle = t_{i_1,n}, \dots, \langle x, a^{(d)} \rangle = t_{i_d,n}, \ 1 \le i_1, \dots, i_d \le n.$$
 (2.7)

Theorem 2.1. Let $a^{(1)}, \ldots, a^{(d)}$ be defined as above and let H_k be the surface defined by $H_k = \{x \in \mathbb{R}^d : \widetilde{K_n}(W_\mu; x, a^{(k)}) = 0\}$. Then the modified method of the Reproducing Kernel yields, a cubature formula of degree 2n+1, based on $a^{(1)}, \ldots, a^{(d)}$ and the n^d distinct points determined by (2.7) and have the form

$$Q_n(f) = \sum_{i=1}^d \lambda_i [f(a^{(i)}) + f(-a^{(i)})]/2 + \sum_{j=1}^{n^d} \mu_j f(x^{(j)}), \ \forall f \in \mathbb{P}^d_{2n+1},$$
(2.8)

where $\lambda_i = 1/\widetilde{K_n}(a^{(i)}, a^{(i)})$.

We obtain by using (2.6) that

$$\lambda_i = 1/\widetilde{K_n}(W_{\mu}; a^{(i)}, a^{(i)}) = 1/C_n^{(\mu+(d+1)/2)}(1) = 1/\binom{n+2\mu+d}{n}.$$
 (2.9)

For fixed d and n, the others weights μ_j in (2.8) can be determined by solving a linear system of equations.

From the fact that in definition of $a^{(k)}$, if we use the condition

$$< a^{(k-1)}, a^{(k)} >= t_{*,n},$$

we remark that one can choose $t_{*,n}$ to be any zero of the polynomial $C_n^{(\mu+(d+1)/2)}(t)$ and we can get many different formulas from this method.

Remark 2.1. When *n* is an odd integer, then $C_n^{(\mu+(d+1)/2)}$ is an odd polynomial, and it follows that t = 0 is a zero of this polynomial.

If we take $t_{*,n} = 0$ in the definition of $a^{(k)}$ in the above construction, then we obtain: $a^{(1)} = e_1, \ldots, a^{(d)} = e_d$, where $\{e_i, i = \overline{1, d}\}$ is the standard basis of \mathbb{R}^d , that is, $e_1 = (1, 0, \ldots, 0), \quad e_2 = (0, 1, 0, \ldots, 0), \ldots, e_d = (0, \ldots, 0, 1).$

But from (2.6) it follows that

$$\widetilde{K}_{n}(W_{\mu}; x, e_{k}) = C_{n}^{(\mu + (d+1)/2)}(x_{k}), \ k = \overline{1, d}$$

and we observe that the n^d intersection points of $H_1 \cap \cdots \cap H_d$, namely $\{x^{(i)}, i = \overline{1, n^d}\}$, are the tensor product of the zeros obtained from (2.7).

Let *n* be an odd integer and let $t_{1,n}, \ldots, t_{n,n}$ be the zeros of $C_n^{(\mu+(d+1)/2)}(t)$. Then there is a cubature of degree 2n + 1 on B^d of the form:

$$\int_{B^d} f(x) W_{\mu}(x) dx = \frac{1}{\left(n+2\mu+d\right)} \sum_{k=1}^n \left[f(e_k) + f(-e_k) \right] / 2 +$$

$$+ \sum_{k_1=1}^n \cdots \sum_{k_d=1}^n \mu_{k_1,\dots,k_d} f(t_{k_1,n},\dots,t_{k_d,n}), \ \forall f \in \mathbb{P}_{2n+1}^d.$$
(2.10)

The weights μ_j in the formula (2.10) can be computed by solving a linear system equations for a given n and d.

In the case d = 2, we can consider the polynomials $l_{k,n}$ defined by:

$$l_{k,n} = \prod_{i=1, i \neq k}^{n} \frac{x - t_{i,n}}{t_{k,n} - t_{i,n}} = \frac{C_n^{(\mu + (d+1)/2)}(t)}{(2\mu + d + 1)C_{n-1}^{\mu + (d+3)/2)}(t_{k,n})(x - t_{k,n})},$$

which are the fundamental interpolation polynomials based on the zeros of $C_n^{(\mu+(d+1)/2)}(t)$ which satisfies the interpolation conditions: $l_{k,n}(t_{j,n}) = \delta_{k,j}$, by using (1.4).

One observe that the polynomial $l_{k_1,n}(x_1)l_{k_2,n}(x_2)(1-x_1^2-x_2^2)$ is of degree 2(n-1)+2=2n, then it will be integrated exactly by the cubature formula (2.10), and from the interpolation property of $l_{k,n}$ we will obtain the values of the weights are

$$\mu_{k_1,k_2} = \int_{B^2} l_{k_1,n}(x_1) l_{k_2,n}(x_2) (1 - x_1^2 - x_2^2) W_{\mu}(x_1, x_2) dx_1 dx_2.$$

The formula (2.10) uses the tensor product of nodes of an one variable quadrature rule. The points $\{t_{1,n}, \ldots, t_{n,n}\}$ are nodes of a Gaussian quadrature formula of degree 2n-1 on [-1,1] for the measure: $W(x) = (1-x^2)^{\mu+d/2} dx$ on [-1,1]. Moreover, $\{-1, t_{1,n}, \ldots, t_{n,n}, 1\}$ form the nodes of a *Gauss - Lobatto* type quadrature formula of degree 2n + 1,

$$\int_{-1}^{1} f(x)(1-x^2)^{\mu+d/2} dx = Af(-1) + \sum_{k=1}^{n} \lambda_k f(t_{k,n}) + Af(1), \ \forall f \in \mathbb{P}^1_{2n+1}.$$
 (2.11)

The tensor product of $\{-1, t_{1,n}, ..., t_{n,n}, 1\}$, can be used as nodes in the following product formula of degree 2n + 1 for the product weight function:

$$W(x) = \prod_{k=1}^{d} (1 - x_k)^{\mu + d/2} \text{ on } [-1, 1]^d,$$
$$\prod_{k=1}^{d} (1 - x_k)^{\mu + d/2} dx = \sum_{k=1}^{n+1} \cdots \sum_{k=1}^{n+1} \lambda_k, \dots, \lambda_k, f(t_k, y_1, \dots, t_k)$$

 $\int_{[-1,1]^d} f(x) \prod_{k=1}^d (1-x_k)^{\mu+d/2} dx = \sum_{k_1=0}^{n+1} \cdots \sum_{k_d=0}^{n+1} \lambda_{k_1} \dots \lambda_{k_d} f(t_{k_1,n},\dots,t_{k_d,n}), \quad (2.12)$ for $\forall f \in \mathbb{P}_{2n+1}^d$, where $t_{0,n} = -1$, $t_{n+1,n} = 1$ and $\lambda_0 = \lambda_{n+1} = A$.

It was showed that some nodes of the cubature formulas constructed above can lie outside of the unit ball B^d . But we can choose different values $a^{(k)}$ in order to construct formulas with all nodes inside of B^d .

2.2 Samples of cubature formulas of lower degree with nodes inside B^d

We use the modified method of the Reproducing Kernel to construct cubature formulas of lower degree with nodes inside B^d .

a. Formulas of degree 5

We choose $a^{(1)} = (0, 0, \dots, 0)$ the origin of \mathbb{R}^d and we define $a^{(k+1)}, 1 \le k \le d-1$ by

$$a^{(k+1)} = \left(\sqrt{\frac{1}{2\mu + d + 3}}, \dots, \sqrt{\frac{1}{2\mu + d + 3}}, \sqrt{\frac{d + 3 - k}{2\mu + d + 3}}, 0\dots, 0\right)$$
(2.13)

which has d - k zero components.

From the properties of the *Gegenbauer* polynomials [7], we have:

$$C_2^{(\lambda)}(t) = \lambda [2(\lambda+1)t^2 - 1], \text{ for } n = 2,$$

where $\lambda = \mu + (d+1)/2$, and follows that

$$\tilde{K}_{2}(W_{\mu}; x, y) = \lambda \bigg[(2\mu + d + 3) < x, y >^{2} + (2\mu + d + 3)(1 - |x|^{2})(1 - |y|^{2})/(2\mu + 1) - 1 \bigg].$$
(2.14)

If we take, $a^{(1)} = (0, ..., 0)$, it follows from the formula of $\tilde{K}_2(W_\mu; x, y)$ that $H_1 = \{x : K_2(x, a^{(1)}) = 0\} = \{x : |x|^2 = (d+2)/(2\mu + d + 3)\}$ and we require that the chosen point $a^{(k+1)}$ from (2.13), belongs to H_k and we obtain:

$$\tilde{K}_2(W_{\mu}; x, a^{k+1}) = \left(\mu + \frac{d+1}{2}\right) \left[x_1^2 + \dots + x_{k-1}^2 + (d+3-k)x_k^2 - \|x\|^2 \right],$$
37

from which we obtain $a^{(k+1)} \in \bigcap_{i=1}^{k} H_i$ and

$$\bigcap_{i=1}^{d} H_i = \{(\pm \sqrt{\frac{1}{2\mu + d + 3}}, \dots, \pm \sqrt{\frac{1}{2\mu + d + 3}}, \pm \sqrt{\frac{3}{2\mu + d + 3}})\}$$
(2.15)
Thus,
$$\bigcap_{i=1}^{d} H_i \text{ has the } 2^d \text{ intersection points obtained from (2.15).}$$

Now we can apply the modified Reproducing Kernel method, from which one results that the nodes of the cubature formula are $\{a^{(i)}, i = \overline{1,d}\}$ from (2.13) and $(x^{(j)}, j = 1, 2^d)$ from (2.15) and these nodes generates a cubature formula of degree 5 on B^d of the form (2.8). Using the formula of $\tilde{K}_2(W_\mu; x, y)$ one get the coefficients of the formula for this choice of the nodes $a^{(k+1)}$, if we consider n = 2

$$\lambda_1 = 1/\tilde{K}_2(W_\mu; 0, 0) = \frac{2(2\mu + 1)}{(2\mu + d + 1)(d + 2)},$$
(2.16)

$$\lambda_{k+1} = 1/\tilde{K}_2(W_{\mu}; a_{k+1}, a_{k+1}) = \frac{2(2\mu + d + 3)}{(2\mu + d + 1)(d + 2 - k)(d + 3 - k)}, \ k = \overline{2, d}$$

Then there exists the weights μ_{ξ} such that the following cubature formula is of degree 5 for W_{μ} on B^d [12].

$$\int_{B^d} f(x) W_{\mu}(x) dx = \frac{2(2\mu+1)}{(2\mu+d+1)(d+2)} f(0) + \frac{2\mu+d+3}{2\mu+d+1} \sum_{k=1}^{d-1} \frac{f(a^{(k+1)}) + f(-a^{(k+1)})}{(d+2-k)(d+3-k)} + \sum_{\xi \in \{-1,1\}^d} \mu_{\xi} f\left(\xi_1 \sqrt{\frac{1}{2\mu+d+3}}, \dots, \xi_{d-1} \sqrt{\frac{1}{2\mu+d+3}}, \xi_d \sqrt{\frac{3}{2\mu+d+3}}\right).$$
(2.17)

In this formula the weights μ_{ξ} , $\xi = (\xi_1, \dots, \xi_d) \in \{-1, 1\}^d$ can be determined by the condition that the formula must be exact for polynomials of degree 5.

In the case of d = 2, we have the explicit formula

$$\int_{B^2} f(x) W_{\mu}(x) dx = \frac{2(2\mu+1)}{4(2\mu+3)} f(0) + \frac{2\mu+5}{12(2\mu+3)} \left[f(2/\sqrt{2\mu+5}, 0) \right] + f(-2/\sqrt{2\mu+5}, 0) + \frac{2\mu+5}{12(2\mu+3)} \sum f(\pm 1/\sqrt{2\mu+5}, \pm \sqrt{3}/\sqrt{2\mu+5}).$$
(2.18)

The formula on B^d uses $N = 2^d + 2d - 1$ nodes. According with *Möller's* lower bound [2], the cubature formula of degree 5 must have at least $N^* \ge d(d+1)+1$ nodes, then the formula (2.18) which have $N = 2^2 + 2 \cdot 2 - 1 = 7$ is minimal.

For d = 3, the cubature formula on B^3 , which was constructed by using (2.10) in [12], have N = 13 nodes and is minimal; for d = 5, $N = 2^5 + 2 \cdot 5 - 1 = 41$ nodes which is more that the lower bound of $N^* = 5(5+1) + 1 = 31$.

Finally we obtain the formula (2.17). To determine the other coefficients, one can require that the formula be exact for the polynomials of degree at most 5.

For d = 3, we can choose f(x) to be the test functions $x_1, x_1x_2, x_1^2, x_1x_2x_3$.

For the case of d > 3, it is useful the following formula for the nonzero moments of the weight function $W_{\mu} = W_{\mu}(x)$ ([12])

$$\int_{B^d} x_1^{2k_1} \dots x_d^{2k_d} W_\mu(x) dx = \frac{\Gamma(\mu + (d+1)/2) \ \Gamma(k_1 + 1/2) \dots \ \Gamma(k_d + 1/2)}{\pi^{d/2} \Gamma(\mu + (d+1)/2 + k_1 + \dots + k_d)}$$

3. Cubature formulas on the triangle using the reproducing kernel method

We consider now, cubature formulas on the triangle using the compact formula in [12], for a family of weight functions on a *d*-dimensional simplex. We use the following notations: $x \in \mathbb{R}^d$, $|x|_1 = |x_1| + \cdots + |x_d|$, the l^1 norm of x, $|\alpha|_1 = \alpha_1 + \cdots + \alpha_d$, the length of multiindex $\alpha \in \mathbb{N}^d$ and the standard simplex:

$$T^d = \{x \in \mathbb{R}^d : x_1 \ge 0, \dots, x_d \ge 0, \ 1 - |x|_1 \ge 0\}.$$

We remark that, for d = 2 we have T^2 which is the triangle with vertices (0,0), (1,0) and (0,1).

In [12] was found the compact formula for the Reproducing Kernel with respect to the weight function:

$$W_{\alpha}(x) = w_{\alpha} x_1^{\alpha_1 - 1/2} \dots x_d^{\alpha_d - 1/2} (1 - |x|_1)^{\alpha_{d+1} - 1/2}, \ \alpha_i \ge 0,$$
(3.1)

where w_{α} is the normalization constant such that $\int_{T^d} W_{\alpha}(x) dx = 1$, namely,

$$w_{\alpha} = \frac{\Gamma(|\alpha|_{1} + (d+1)/2)}{\Gamma(\alpha_{1} + 1/2) \dots \Gamma(\alpha_{d+1} + 1/2)}.$$

Then the reproducing Kernel $K_n(W_\alpha)$ given in terms of *Gegenbauer* polynomials, has the expression [12]:

$$K_n(W_{\alpha}; x, y) = \int_{[-1,1]^{d+1}} C_{2n}^{(|\alpha|_1 + (d+1)/2)} (\sqrt{x_1 y_1} \ t_1 + \dots + \sqrt{x_{d+1} y_{d+1}} \ t_{d+1}). \quad (3.2)$$
$$\cdot \prod_{i=1}^{d+1} c_{\alpha_i} (1 - t_i^2)^{\alpha_i - 1} dt,$$

where

$$x, y \in T^d, x_{d+1} = 1 - |x|_1, y_{d+1} = 1 - |y|_1$$

and we use limit (2.4) in the case when have one $\alpha_i = 0$.

If we take $y = e_i = (0, ..., 0, 1, 0, ..., 0)$, the *i*-th element of the standard basis, with the i-th component =1, of \mathbb{R}^d , $1 \le i \le d$, then we have the following explicit formula:

$$K_n(W_{\alpha}; x, e_i) = A_{\alpha,i} P_n^{(|\alpha|_1 + d/2 - \alpha_i, \alpha_i - 1/2)} (2x_i - 1)$$

where

$$A_{\alpha,i} = C_{2n}^{(|\alpha|_1 + (d+1)/2)}(0) / P_n^{(|\alpha|_1 + d/2 - \alpha_i, \alpha_i - 1/2)}(-1)$$

(see [12]).

This formula was derived in [14] from (3.2) using a product formula for *Jacobi* polynomials.

We observe that, e_i is not a common zero of \mathbf{P}_n . This follows from the expression of $\mathbf{P}_n^T(x)\mathbf{P}_n(y) = \sum_k P_k^n(x)P_k^n(y)$.

Let d = 2 and $\alpha_1 = \alpha_2 = \alpha_3 = 1/2$. Then the weight function W_{α} becomes a multiple of unit weight function, denoted by $W_{1/2}$, and we have: $W_{1/2}(x) = 2$.

In this case, the Reproducing Kernel takes the form:

$$K_n(W_{1/2}; x, y) = \frac{1}{\pi^3} \int_{[-1,1]^3} C_{2n}^{(3)}(\sqrt{x_1y_1}t_1 + \sqrt{x_2y_2}t_2 + \sqrt{x_3y_3}t_3) \prod_{i=1}^3 (1-t_i^2)^{-1/2} dt$$

For $\alpha = 0$, we have $W_0(x) = (x_1 x_2 x_3)^{-1/2} / 2\pi$.

In [11] was shown that any cubature formula for W_0 with all nodes inside T^2 corresponds to a cubature formula on a sphere S^2 . In this case, the Reproducing 40

Kernel can be represented in the following simple form:

$$K_n(W_0; x, y) = \frac{1}{4} \sum C_{2n}^{(3/2)}(\sqrt{x_1 y_1} \pm \sqrt{x_2 y_2} \pm \sqrt{x_3 y_3}),$$

where the sum is over all possible sign changes, and this formula follows from (3.2) by taking limits (2.4).

Samples of cubature formulas on the triangle

For n = 2, we have the following explicit formula for $K_n(W_{1/2}; x, y)$

$$+x_2x_3y_2y_3) + 15(x_1^2y_1^2 + x_2^2y_2^2 + x_3^2y_3^2)).$$

If we take $a^{(1)} = (1,0)$, one obtain that $K_2(W_{1/2}, x, (1,0))$ has two zeros,

$$z_1 = (5 - \sqrt{10})/15, \ z_2 = (5 + \sqrt{10})/15.$$

From this fact, it follows that $K_2(W_{1/2}, x, (1, 0))$ and $K_2(W_{1/2}, x, (z_1, 0))$ have 4 distinct common zeros:

$$\left((5 - \sqrt{10})/15, (70 - 7\sqrt{10} \pm \sqrt{10(233 - 62\sqrt{10})}/90 \right)$$
$$\left((5 + \sqrt{10})/15, (30 - 3\sqrt{10} \pm \sqrt{3(110 - 20\sqrt{10})}/90 \right).$$

4. The construction of cubature formulas by using the *Chebyshev* orthogonal polynomials and the reproducing kernel method

Let us consider, the Chebyshev polynomial of degree n,

$$T_n^*(x) = \cos n\theta, \ x = \cos \theta,$$

that is

$$T_n^*(x) = \cos(n \arccos x).$$

The zeros of T_n^* are $x_k = \frac{(2k-1)\pi}{2n}$, $k = \overline{1,n}$, and T_n^* are orthogonal with respect to the *Chebyshev* weight function $w_1(x) = (1-x^2)^{-1/2}$ on [-1,1].

The zeros of T_n^* can be selected as the nodes of the Gaussian quadrature formula with respect to w(x) and these zeros can be used to construct a compact interpolation formula. Let we denote the classical *Chebyshev* weight of the first kind

$$w_1(x) = \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}}, \ x \in (-1,1)$$

Then the orthonormal polynomials with respect to w_1 are

$$T_0(x) = 1, \ T_k(x) = \sqrt{2}cosk\theta, \ k \ge 1, \ x = cos\theta$$
 and $\int_{-1}^1 w_1(x)dx = 1.$

Next, we can consider the product *Chebyshev* weight function on $[-1,1]^2$ defined by

$$W^{(2)}(x,y) = w_1(x)w_1(y) = \frac{1}{\pi^2} \frac{1}{\sqrt{1-x^2}} \frac{1}{\sqrt{1-y^2}}, \ (x,y) \in [-1,1]^2.$$
(4.1)

One can verify that the polynomials defined by

$$P_k^n(x,y) = T_{n-k}(x)T_k(y), \ k = \overline{0,n}, \ n \in \mathbb{N}_0,$$

$$(4.2)$$

where P_k^n is of degree exactly n are orthogonal with respect to $W^{(2)}(x, y)$.

In [10] was established the following relations. If we denote $\mathbf{P}_n = (P_0^n, ..., P_n^n)^T, n \in \mathbb{N}_0$, the vector of the polynomials of degree exactly n in (4.2) and the matrices,

$$A_{n,1} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ 0 & 0 & \dots & \sqrt{2} & 0 \end{bmatrix}, \qquad A_{n,2} = \frac{1}{2} \begin{bmatrix} 0 & \sqrt{2} & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ 0 & 0 & \dots & \dots & 1 \end{bmatrix},$$

it can be verified that product *Chebyshev* polynomials satisfy the three-term relation

$$x_i \mathbf{P}_n(x) = A_{n,i} \mathbf{P}_{n+1}(x) + A_{n-1,i}^T \mathbf{P}_{n-1}(x), \ i = 1, 2, x = (x_1, x_2) \text{ or } x = (x, y)$$
(4.3)

For $x, y \in \mathbb{R}^2$, the Reproducing Kernel of the product *Chebyshev* polynomials is defined by

$$K_n(x,y) = \sum_{k=0}^{n-1} \sum_{j=0}^k P_j^k(x) P_j^k(y) = \sum_{k=0}^{n-1} \mathbf{P}_k^T(x) \mathbf{P}_k(y)$$

and $\mathbf{P}_n^T(x)\mathbf{P}_n(y) = K_n(x,y) - K_{n-1}(x,y).$ 42

If one consider $x = (\cos\theta_1, \cos\theta_2), y = (\cos\varphi_1, \cos\varphi_2)$, then we have the compact formula [10].

$$K_n(x,y) = D_n(\theta_1 + \varphi_1, \theta_2 + \varphi_2) + D_n(\theta_1 + \varphi_1, \theta_2 - \varphi_2) + D_n(\theta_1 - \varphi_1, \theta_2 + \varphi_2)$$
$$+ D_n(\theta_1 - \varphi_1, \theta_2 - \varphi_2),$$

where the function D_n has the form

$$D_n(\theta_1, \theta_2) = \frac{1}{2} \frac{\cos(n - \frac{1}{2})\theta_1 \cos\frac{\theta_1}{2} - \cos(n - \frac{1}{2})\theta_2 \cos\frac{\theta_2}{2}}{\cos\theta_1 - \cos\theta_2}$$

One can use these formulas in order to obtain a compact formula for the Lagrange interpolation, which will be used to construct a cubature formula of degree 2n - 1with respect to $W^{(2)}(x, y)$ of the form

$$I_n(f) = \int_{[-1,1]^2} f(x,y) W^{(2)}(x,y) dx dy \simeq Q_n(f),$$
(4.4)

where $Q_n(f) = \sum_{k=0}^N \lambda_k f(x_k), \ \lambda_k > 0, \ x_k \in \mathbb{R}^2$, so that we have

$$I_n(P) = Q_n(P), \ \forall P \in \mathbb{P}^2_{2n-1}.$$

According to a general result of *Möller* for centrally symmetric weight functions, for example one can consider $W^{(2)}(x,y) = w_1(x)w_1(y)$, the number of nodes in the cubature formula satisfies

$$N \ge \dim \mathbb{P}_{n-1}^2 + [n/2] = \binom{n+1}{2} + [n/2].$$

Let consider z_k be the points $z_k = z_{k,n} = \cos \frac{k\pi}{n}, \ k = \overline{0, n}.$

In [10] was stated, based on the three-term recurrence relation (4.3), that a cubature formula exists when the following matrix equations in the variable V are solvable

$$A_{n-1,1}(VV^{T} - I)A_{n-1,2}^{T} = A_{n-1,2}(VV^{T} - I)A_{n-1,1}^{T}$$
(4.5)
and $V^{T}A_{n-1,1}^{T}A_{n-1,2}V = V^{T}A_{n-1,2}^{T}A_{n-1,1}V,$

where V is a matrix of size $(n + 1) \times \sigma$, $\sigma = [n/2]$ or $\sigma = [n/2] + 1$.

If n = 2m in [10] was showed that a solution of (4.5) is

$$T_{n-(k-1)}(x)T_{k-1}(y) - T_{k-1}(x)T_{n-(k-1)}(y), 1 \le k \le n/2 + 1,$$
(4.6)

which corresponds to (A), and if n = 2m - 1, a solution of (4.5) is

$$T_{n-(k-1)}(x)T_{k-1}(y) - T_{k-1}(x)T_{n-(k-1)}(y), \quad 1 \le k \le (n+1)/2, \tag{4.7}$$

corresponds to (B).

If a cubature formula exists, we can consider the Lagrange interpolation problem based on the nodes of the cubature formula which consists in construction of a unique polynomial which is the solution of the problem to determining P = P(x) so that $P(x_k) = f(x_k), \ k = \overline{1, N}$.

In [8], was proved that one can consider the subspace

$$\mathcal{V}_n^2 = \mathbb{P}_{n-1}^2 \bigcup span\{V^+ \mathbf{P}_n\},$$

where V^+ is the unique *Moore-Penrose* generalized inverse of V, and in our case we have V with full rank and we have $V^+ = (V^T V)^{-1} V^T$.

For $(x, y) \in \mathbb{R}^2$, was used the following expression of the Reproducing Kernel

$$K_n^*(x,y) = K_n(x,y) + [V^+ \mathbf{P}_n(x)]^T V^+ \mathbf{P}_n(y).$$
(4.8)

Using a modified *Christoffel-Darboux* formula, was showed in [10] that $K_n^*(x_k, x_j) = 0$ for $k \neq j$ and $K_n^*(x_k, x_k) \neq 0$.

Finally, it follows that

$$(L_n f)(x) = \sum_{k=1}^{N} \frac{K_n^*(x, x_k)}{K_n^*(x_k, x_k)} f(x_k)$$
(4.9)

and we have

$$\int_{[-1,1]^2} (L_n f)(x) W_0(x) dx = \sum_{k=1}^N \lambda_k f(x_k) = I_n(f)$$

From the condition on P_j^k and the definition of $K_n^*(\cdot, \cdot)$ it follows that the coefficients in the cubature formula are given by the expression $\lambda_k = 1/K_n^*(x_k, x_k)$

If n = 2m, the interpolation nodes are

$$x_{2i,2j+1} = (z_{2i}, z_{2j+1}), \quad i = \overline{0, m}, \ j = \overline{0, m-1}$$
 (4.10)

$$x_{2i+1,2j} = (z_{2i+1}, z_{2j}), \quad i = \overline{0, m-1}, \ j = \overline{0, m}.$$

From (4.7) and the expression of $K_n^\ast(x,y)$ one can obtain

$$K_n^*(x, x_{k,l}) = \frac{1}{2} [K_n(x, x_{k,l}) + K_{n-1}(x, x_{k,l})] - \frac{1}{2} (-1)^k [T_n(x) - T_n(y)].$$

Finally, one can obtain

$$K_n^*(x_{0,2j+1}, x_{0,2j+1}) = n^2, \ K_n^*(x_{2i,2j+1}, x_{2i,2j+1}) = n^2/2,$$

 $K_n^*(x_{2i+1,0}, x_{2i+1,0}) = n^2, \ K_n^*(x_{2i+1,2j}, x_{2i+1,2j}) = n^2/2, \ i > 0, j > 0.$

If n = 2m - 1, the interpolation nodes are

$$x_{2i,2j} = (z_{2i}, z_{2j}), \quad i, j = \overline{0, m-1}$$
$$x_{2i+1,2j+1} = (z_{2i+1}, z_{2j+1}), \quad i, j = \overline{0, m-1},$$

from which, was derived

$$K_n^*(x, x_{k,l}) = \frac{1}{2} [K_n(x, x_{k,l}) + K_{n-1}(x, x_{k,l})] - \frac{1}{2} (-1)^k [T_n(x) + T_n(y)],$$

from which was obtained

$$K_n^*(x_{2i,2j}, x_{2i,2j}) = \begin{cases} n^2/2, & \text{if } 0 < i, j \le m-1 \\ n^2, & \text{if } i = 0 \text{ or } j = 0, \ i+j > 0 \\ 2n^2, & \text{if } i = j = 0, \end{cases}$$
$$\binom{n^2/2, & \text{if } 0 \le i, j \le m-1 \end{cases}$$

$$K_n^*(x_{2i+1,2j+1}, x_{2i+1,2j+1}) = \begin{cases} n^2/2, & \text{if } 0 \le i, j < m-1 \\ n^2, & \text{if } i = m-1 \text{ or } j = m-1, i+j < 2m-2 \\ 2n^2, & \text{if } i = j = m-1. \end{cases}$$

In [14] was proved the mean convergence of Lagrange interpolation formula corresponding to the weight function $W^{(2)}(x, y)$ and by integrating this formula one can arrive to the following cubature formulas

Based on the nodes (x_i, x_j) , we obtain the cubature formulas:

A) For n = 2m,

$$(A) \ \frac{1}{\pi^2} \int_{-1}^{1} \int_{-1}^{1} f(x,y) \frac{dxdy}{\sqrt{1-x^2}\sqrt{1-y^2}} = \frac{2}{n^2} \sum_{i=0}^{\frac{n}{2}} \sum_{j=0}^{\frac{n}{2}-1} f(z_{2i}, z_{2j+1}) + \frac{2}{n^2} \sum_{i=0}^{\frac{n}{2}-1} \sum_{i=0}^{\frac{n}{2}} \sum_{j=0}^{\prime\prime} f(z_{2i+1}, z_{2j}), \forall f \in \mathbb{P}^2_{2n-1}$$

B) For n = 2m - 1,

$$(B) \ \frac{1}{\pi^2} \int_{-1}^{1} \int_{-1}^{1} f(x,y) \frac{dxdy}{\sqrt{1-x^2}\sqrt{1-y^2}} = \frac{2}{n^2} \sum_{i=0}^{\frac{n-1}{2}} \sum_{j=0}^{\frac{n-1}{2}} f(z_{2i}, z_{2j}) + \frac{2}{n^2} \sum_{i=0}^{\frac{n-1}{2}} \sum_{j=0}^{\frac{n-1}{2}} f(z_{n-2i}, z_{n-2j}), \forall f \in \mathbb{P}^2_{2n-1},$$

where Σ' means that the first term in summation is halved.

References

- Cools, R., Mysovskikh, I.P., Schmid, H.J., Cubature Formulae and Orthogonal Polynomials, J.Comput.& Appl. Math, 127(2001), 121-152.
- [2] Möller, H.M., Polynomideale und Kubaturformeln, Thesis, Univ. Dortmund, 1973.
- [3] Mysovskikh, I.P., Interpolatory Cubature formulas, Nauka, Moscow, (1981), (Russian).
- [4] Mysovskikh, I.P., A representation of the reproducing Kernel of a sphere, Comp. Math. Math. Phys., 36(1996), 303-308.
- [5] Stancu, D.D., Generalizarea unor formule de interpolare pentru funcțiile de mai multe variabile şi unele considerații asupra formulelor de integrare numerică a lui Gauss, Ed. Acad. R.P.R., Bul.Şt. Sec. St. Mat. şi Fiz., 2(1957).
- [6] Stroud, A.H., Approximate calculation of multiple integrals, Prentice Hall, Englewood Cliffs, NJ, (1971).
- [7] Szegö, H., Orthogonal polynomials, 4th ed., Amer. Math. Soc. Collaq. Publ. vol. 23, Providence, RI, (1975).
- [8] Xu, Y., Common zeros of polynomials in several variables and Higher dimensional quadrature, Pitman Research Notes in Mathematics series, Longman, Essex, (1994).
- [9] Xu, Y., A Class of Bivariate orthogonal polynomials and cubature formulas, Numer.Math., 69(1994), 233-241.
- [10] Xu, Y., Lagrange interpolation on Chebyshev points of two variables, J. Approx. Theory, 87(1996), 220-238.
- 46

- [11] Xu, Y., Orthogonal polynomials and cubature formulae on spheres and on balls, SIAM J. Math. Anal., 29(1998), 779-793.
- [12] Xu, Y., Constructing cubature formulae by the method of reproducing kernel, Numer. Math., 85(2000), 155-173.
- [13] Xu, Y., Li Sumability of the product Jacobi series, J. Approx Theory, 104(2000), 287-301.
- [14] Xu, Y., Summability of Fourier orthogonal series for Jacobi weight on a ball in \mathbb{R}^d , Trans. Amer. Math. Soc.
- [15] Xu, Y., Representation of reproducing Kernels and the Lebesque constants on the Ball, J. Approx. Theory, 112(2001), 295-310.

V. GOLDIŞ 51 A, 510018, Alba-Iulia, Romania *E-mail address*: emil_danciu@yahoo.com