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THE CHARACTERS OF THE BLASCHKE-GROUP
OF THE ARITHMETIC FIELD

ILONA SIMON

Abstract. We consider a locally compact metric space, B with arithmetic

addition and multiplication, which is closely related to the usual multiplica-

tion of real numbers in the dyadic system. This results a non-Archimedian

local field, the so-called 2-adic local field. Some orthogonal series are stud-

ied with respect the inner product defined with the Haar-measure µ. The

Blaschke-functions defined on the 2-adic field, Ba(x) = x
•
+a

e
•
+a•x

form a com-

mutative group with respect to the function composition, the so-called

Blaschke-group. We shall determine the characters of this group. By

means of the exponential and tangent functions on the 2-adic field and the

characters of its additive group we can identify the desired characters. We

consider Fourier-series with respect to these characters and summability

questions are examined. A simple recursion leads to the FFT-algorithm,

the so-called Fast-Fourier Transform.

1. Introduction

According to Volovich[4] some non-Archimedean normed fields must be used

for a global space-time theory in order to unify both microscopic and macroscopic

physics. Some problems occured with the practical applications of the classical fields

R and C, because in sciences there are absolute limitations on measurements like Plank

time, Plank length, Plank mass, and also there is a problem with the Archimedean

axiom on the microscopic level. Volovich proposes to base physics on a coalition of

Received by the editors: 11.01.2007.

2000 Mathematics Subject Classification. 11F85, 43A40.

Key words and phrases. p-adic theory, local fields, character groups, (C,1)-summability, Fast-Fourier

Transform.

This paper was presented at the 7-th Joint Conference on Mathematics and Computer Science,

July 3-6, 2008, Cluj-Napoca, Romania.

149



ILONA SIMON

non-Archimedean normed fields and classical fields as R or C. The so-called p-adic

field is a suitable non-Archimedean normed field. As p→∞, many of the fundamental

functions of p-adic analysis approach their counterparts in classical analysis. Thus

p-adic analysis could provide a bridge from microscopic to macroscopic physics. The

simplest example of a p-adic field is the 2-adic field used in this paper.

Characters are very useful in numerous branches of mathematics, for example

in many cases are used Fourier-series with respect to characters.

Denote by A := {0, 1} the set of bits and by

B := {a = (aj , j ∈ Z) | aj ∈ A and lim
j→−∞

aj = 0} (1)

the set of bytes. The numbers aj are called the additive digits of a ∈ B. The zero

element of B is θ := (xj , j ∈ Z) where xj = 0 for j ∈ Z, that is, θ = (· · · , 0, 0, 0, · · · ).

The order of a byte x ∈ B is defined in the following way: For x 6= θ let π(x) = n if

and only if xn = 1 and xj = 0 for all j < n, furthermore set π(θ) = +∞. The norm

of a byte x is defined by

‖x‖ := 2−π(x) for x ∈ B \ {θ}, and ‖θ‖ := 0. (2)

The sets In(x) := {y ∈ B : yk = xk for k < n}, the so-called intervals in B of rank

n ∈ Z and center x are of basic importance. Set In := In(θ) = {x ∈ B : ‖x‖ 5 2−n}

for any n ∈ Z. The unit ball I := I0 can be identified with the set of sequences

I = {a = (aj , j ∈ N)| aj ∈ A} via the map (. . . , 0, 0, a0, a1, . . . ) 7→ (a0, a1, . . . ).

Furthermore S := {x ∈ B : ‖x‖ = 1} = {x ∈ B : π(x) = 0} = {x ∈ I : x0 = 1} is the

unit sphere of the field.

We will use the normalized Haar-measure on B, which satisfies µ(In(a)) :=

2−n. Some orthogonal series are studied with respect the inner product defined with

the Haar-measure µ by

〈f, g〉 :=
∫

I
f(x)g(x)dµ(x).
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Now, consider the 2-adic (or arithmetical) sum a
•
+ b of elements a = (an, n ∈

Z), b = (bn, n ∈ Z) ∈ B, defined by

a
•
+ b := (sn, n ∈ Z)

where the bits qn, sn ∈ A (n ∈ Z) are obtained recursively as follows:

qn = sn = 0 for n < m := min{π(a), π(b)},

and an + bn + qn−1 = 2qn + sn for n ≥ m.
(3)

The 2-adic (or arithmetical) product of a, b ∈ B is a • b := (pn, n ∈ Z), where

the sequences qn ∈ N and pn ∈ A (n ∈ Z) are defined recursively by

qn = pn = 0 (n < m := π(a) + π(b))

and
∞∑

j=−∞
ajbn−j + qn−1 = 2qn + pn (n ≥ m).

(4)

The reflection x− of a byte x = (xj , j ∈ Z) is defined by its additive digits:

(x−)j =

xj , for j 5 π(x)

1− xj , for j > π(x).

Note, that x− is the additive inverse of an x ∈ B.

The operations
•
+, • are commutative. Notice, that

π(a • b) = π(a) + π(b). (5)

Moreover, (B,
•
+, •) is a non-Archimedian normed field with respect the (2) norm, that

is,

‖x
•
+ y‖ ≤ max{‖x‖, ‖y‖}, ‖x • y‖ = ‖x‖ · ‖y‖ (6)

with equality if and only if ‖x‖ 6= ‖y‖ See [2]. The operations
•
+, • are continuous

with respect the metric introduced by the norm (2), that is, (B,
•
+, •) is a topological

field. (S, •) is a subgroup of (B, •).

We will use the following notation: a
•
− b := a

•
+ b−.

The multiplicative identity of B is the element e = e0 = (δn0, n ∈ Z), where

δnk is the Kronecker-symbol. Furthermore we will use the elements ek := (δnk, n ∈ Z)
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for some k ∈ Z. We can observe, that ek • em = ek+m for all k,m ∈ Z. In general,

multiplication by ek shifts bytes: ek • a = (an−k, n ∈ Z). We will represent infinite

products on this field by
∏∞

n=1
• αj := limn→∞(α1 • α2 • · · · • αn).

A character of a topological group (G,+) is a continuous function φ : G → C

which satisfies |φ(x)| = 1 and φ(x+ y) = φ(x)φ(y) for all x, y ∈ G.

2. The characters of the Blaschke-group

For x ∈ I and a ∈ I1 we have by (6) and (5) that e
•
− a •x 6= θ, thus e

•
− a •x

has a multiplicative inverse in B. For a ∈ I1 define the Blaschke function on I:

Ba(x) := (x
•
− a) • (e

•
− a • x)−1 =

x
•
− a

e
•
− a • x

. (x ∈ I) (7)

The Blaschke function Ba : I → I is a bijection for any a ∈ I1. The com-

position of two Blaschke-functions is also a Blaschke-function: Ba ◦ Bb = Bc where

c = a
•
+b

e
•
+a•b

is also in I1 for a, b ∈ I1. Thus the maps Ba (a ∈ I1) form a commutative

group with respect to the function composition. See[3]. We will call

B := {Ba, a ∈ I1} (8)

the Blashke-group of the field (I,
•
+, •).

We will determine the characters of the Blashke-group (B, ◦), where ◦ denotes

the function composition.

Using the notation x / y := x
•
+y

e
•
+x•y

(x, y ∈ I1), the map

B : (I1, /) → (B, ◦), a 7→ Ba

is an isomorphism, which is continuous, consequently it is useful if we define the

character group of (I1, /).

We already know the characters of (I1,
•
+) and for this reason it is suitable to

find a continuous isomorphism from (I1,
•
+) onto (I1, /), that is a function γ satisfying
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the equation

γ(x
•
+ y) =

γ(x)
•
+ γ(y)

e
•
+ γ(x) • γ(y)

. (x, y ∈ I1) (9)

This equation is the analogue of the function equation of the tangent function

on C, where the tangent function can be expressed by the exponential function in the

following way:

tan(x) =
exp(ix)− exp(−ix)
i(exp(ix) + exp(−ix))

=
exp(2ix)− 1
i(exp(2ix) + 1)

. (x ∈ C)

Furthermore, we will use the function ζ, expressed in the following infinite

product form:

ζ(x) :=
∞∏

j=1

• b
xj

j (x = (xj , j ∈ Z) ∈ I1) (10)

where

b1 := e
•
+ e2, bn := bn−1 • bn−1 (n ≥ 2). (11)

We will call the function ζ the (S, •)-valued exponential function on I1, which

is a continuous function satisfying the function-equation

ζ(x
•
+ y) = ζ(x) • ζ(y) (x, y ∈ I1). (12)

This function ζ satisfies indeed (12) on I1, which can be easily seen analogous to [2],

pp 59-60, where we find in a way different basis (bn, n ≥ 1). Since bn = e
•
+ cn (n ≥ 1)

with π(cn) = n+ 1, the function ζ has the following representation:

ζ(x) =
∞∏

j=1

• (e
•
+ cj)xj =

∞∏
j=1

• (e
•
+ xjcj). (13)

Let us denote S̃ := {x ∈ S : x1 = 0}. We can see as in Theorem 2 in [2] that

ζ is 1-1 and continuous from I1 onto S̃.

Now, we will call the function

γ(x) :=
ζ(x)

•
− e

ζ(x)
•
+ e

(x ∈ I1) (14)
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the tangent-like function on (I1,
•
+) and

tan(x) :=
ζ2(x)

•
− e

ζ2(x)
•
+ e

(x ∈ I1) (15)

the tangent function on (I1,
•
+).

Lemma 1. For any a, b ∈ B, x ∈ I1, and y ∈ I1 holds

a)
a
•
+ a

b
•
+ b

=
a

b

b) a
•
+ a = e1 • a

c) ζ2(x) = ζ(e1 • x)

d)
e
•
+ y

e
•
− y

∈ S̃,

(16)

where ζ2(x) = ζ(x) • ζ(x).

Proof. a) The relation holds, because a • (b
•
+ b) = b • (a

•
+ a) is satisfied by the

commutativity and distributivity of the operations.

b) Using the notations of the recursive definition for the addition
•
+, we have

(a
•
+ a)n = 0 if and only if qn−1 = 0. But qn−1 = 0 is equivalent with an−1 = 0,

which holds exactly when (e1•a)n = 0, because multiplication by e1 shifts a. Similarly

(a
•
+ a)n = 1 ⇔ qn−1 = 1 ⇔ an−1 = 1 ⇔ (e1 • a)n = 1.

c) It is a simple consequence of b) or directly: bj • bj = bj+1 (j ≥ 1),

thus using the commutativity and associativity of • we have ζ2(x) =
(∏∞

j=1
• b

xj

j

)
•(∏∞

j=1
• b

xj

j

)
=
∏∞

j=1
• b

xj

j+1 = ζ(e1 • x) (x ∈ I1)

d) It can be easily established, that for y = (0, y1, y2 . . .) ∈ I1 holds:

e
•
+ y = (1, y1, y2, y3, . . .)

and

e
•
− y = (1, y1, (y−)2, . . .) = e

•
+ y−.
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Applying the notation

e
•
+ y

e
•
− y

= z,

we can state first, that π(z) = π(e
•
+ y)− π(e

•
− y) = 0 that is, z ∈ S, and then

e
•
+ y = z • (e

•
− y).

Now, examining the 0th and the 1-st digits of the right and left side, we find that: 1 = z0 · 1

y1 = z0 · y1 + z1 · 1 ( mod 2)

which means, that z0 = 1 and z1 = 0, and so z ∈ S̃. Note, that z = e⇔ y = θ.

�

With Lemma 1 c) we can see, that the the tangent-like function γ is closely

related to tan: namely γ(x) = tan(e−1 • x) (x ∈ I1).

Theorem 1. The function γ is a continuous isomorphism from (I1,
•
+) onto (I1, /).

Proof.

γ(x) / γ(y) =
γ(x)

•
+ γ(y)

e
•
+ γ(x) • γ(y)

=

ζ(x)
•
−e

ζ(x)
•
+e

•
+ ζ(y)

•
−e

ζ(y)
•
+e

e
•
+ ζ(x)

•
−e

ζ(x)
•
+e

• ζ(y)
•
−e

ζ(y)
•
+e

=
ζ(x) • ζ(y)

•
+ ζ(x) • ζ(y)

•
− e

•
− e

ζ(x) • ζ(y)
•
+ ζ(x) • ζ(y)

•
+ e

•
+ e

=
ζ(x) • ζ(y)

•
− e

ζ(x) • ζ(y)
•
+ e

= γ(x
•
+ y)

where we used Lemma 1 a).

The function γ is a 1-1 map from (I1,
•
+) onto (I1, /). To see, that γ is a 1-1

map, we have from

ζ(x)
•
− e

ζ(x)
•
+ e

=
ζ(y)

•
− e

ζ(y)
•
+ e

the equation

ζ(x)
•
+ ζ(x) = ζ(y)

•
+ ζ(y).
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Taking in consideration, that f(a) := a
•
+ a is 1-1, satisfying a

•
+ a = e1 • a, we have

ζ(x) = ζ(y),

which gives that x = y.

To see, that for any y ∈ I1 there is an x ∈ I1 such that γ(x) = y, we have to

solve in x the equation:

ζ(x)
•
− e

ζ(x)
•
+ e

= y,

thus

ζ(x) =
e
•
+ y

e
•
− y

.

Now,

x = ζ−1

(
e
•
+ y

e
•
− y

)
.

Thus we proved that γ is onto if ζ−1
(

e
•
+y

e
•
−y

)
∈ I1 which holds in consequence of Lemma

1 d). Thus we proved that γ is an isomorphism from (I1,
•
+) onto (I1, /).

�

We consider ε(t) := exp(2πit) (t ∈ R). The characters of the group (I1,
•
+)

are given by the product system (vm,m ∈ P) generated by the functions

v2n(x) := ε
(xn

2
+
xn−1

22
+ · · ·+ x1

2n

)
(x = (0, x1, x2 . . .) ∈ I1, n ∈ P),

that is, the functions vm(x) =
∏∞

j=1(v2j (x))mj (m ∈ P). [2] Recall, that P is the set

of positive numbers, P := N \ {0}.

Theorem 2. The characters of the group (I1, /) are the functions

vn ◦ γ−1(n ∈ P).

Corollary 1. The characters of (B, ◦) are the functions

vn ◦ γ−1 ◦B−1(n ∈ P),
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where (B, ◦) denotes the Blaschke-group of the arithmetic field (I,
•
+, •), and B :

(I1, /) → (B, ◦) is the function a 7→ Ba.

3. Recursion

In (13) we used the notation bn = e
•
+ cn (n ≥ 1) where π(cn) = n+ 1, now

consider bn = e
•
+ en+1

•
+ dn (n ≥ 1) where π(dn) ≥ n + 2. Now the function ζ has

the following representation:

ζ(x) =
∞∏

j=1

• (e
•
+ ej+1

•
+ dj)xj =

∞∏
j=1

• (e
•
+ xjej+1

•
+ xjdj). (dj ∈ In+2)

Easy inductive arguments establish that ζ(x) is a simple recursion:

(ζ(x))n = xn−1 + f(x1, . . . , xn−2) (n ≥ 1) (17)

and (ζ(x))0 = 1. Thus z := ζ(x)
•
− e = (ζ(x)

•
+ e−) = (1, 0, ζ2, ζ3, . . .)

•
+

(1, 1, 1, 1, . . .) = (0, 0, ζ2, ζ3, ζ4, . . .) can also be written as a simple recursion:

zn = xn−1 + f(x1, . . . , xn−2) (n ≥ 2).

Analogous, t := ζ(x)
•
+ e = (1, 0, ζ2, ζ3, . . .)

•
+ (1, 0, 0, 0, . . .) = (0, 1, ζ2, ζ3, ζ4, . . .) as a

simple recursion:

tn = xn−1 + f(x1, . . . , xn−2) (n ≥ 2).

The multiplicative inverse element of t ∈ I1 is also a simple recursion:

(t−1)n = xn+1 + f(x1, . . . , xn)

for some function f . See[[2], pp. 39-40.]

Using (t−1)−1 = 1 and (γ(x))n = z2(t−1)n−2 + . . . + zn+1(t−1)−1 + qn−1 (

mod 2), follows that

(γ(x))n = xn + f(x1, . . . , xn−1). (18)

Denote with A the σ-algebra generated by the intervals In(a) (a ∈ I, n ∈ N).

Let µ(In(a)) .= 2−n be the measure of In(a). Extending this measure to A we get a

probability measure space (I,A, µ). Let An be the sub-σ-algebra of A generated by
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the intervals In(a) (a ∈ I). Let L(An) denote the set of An-measurable functions on

I. The conditional expectation of an f ∈ L1(I) with respect to An is of the form

(Enf)(x) =
1

µ(In(x))

∫
In(x)

fdµ.

A sequence of functions (fn, n ∈ N) is called a dyadic martingale if each fn

is An-measurable and

(Enfn+1) = fn (n ∈ N).

The sequence of martingale differences of fn (n ∈ N) is the sequence

φn
.= fn+1 − fn (n ∈ N).

We notice that every dyadic martingale difference sequence has the form φn =

rngn (n ∈ N) where (gn, n ∈ N) is a sequence of functions such that each gn is

An-measurable and (rn, n ∈ N) denotes the Rademacher system on I:

rn(x) .= (−1)xn (n ∈ N).

The martingale difference sequence (φn, n ∈ N) is called a unitary dyadic

martingale difference sequence or a UDMD sequence if |φn(x)| = 1 (n ∈ N). Thus

(φn, n ∈ N) is a UDMD sequence if and only if

φn = rngn, gn ∈ L(An), |gn| = 1 (n ∈ N). (19)

Let us call a system ψ = (ψm,m ∈ N) a UDMD product system if it is a

product system generated by a UDMD system, i.e., there is a UDMD system (φn, n ∈

N) such that for eachm ∈ N, with binary expansion is given bym =
∑∞

j=0mj2j (mj ∈

A, j ∈ N), the function ψm satisfies

ψm =
∞∏

j=0

φ
mj

j (m ∈ N).

By (18) the byte γ−1(x) can also be written by a simple recursion for any

x ∈ I1, therefore we have the following:

Corollary 2. The functions vn ◦ γ−1(n ∈ P), the characters of (I1, /) form a UDMD

product system.
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Proof. The (v2n ◦γ−1, n ∈ P) functions satisfy the requirements of a UDMD-system:

v2n (γ(x)) = ε
(

xn

2

)
g(x1, . . . , xn−1) = (−1)xng(x1, . . . , xn−1), with some g ∈ L(An),

and |g(x1, . . . , xn−1)| = 1.

�

As (vn ◦ γ−1, n ∈ P) is a UDMD product system, the discrete Fourier coeffi-

cients with respect this system can be computed with the Fast Fourier Algorithm.

4. (C,1) summability

By (18) γ : In(x) → In(γ(x)) is a bijection (x ∈ I1, n ∈ N), thus for any dyadic

interval E holds µ(t ∈ I1 : γ(t) ∈ E) = µ(E) and this follows for any E measurable sets

also. Therefore the variable transformation γ(x) is measure preserving. Consequently,

it holds ∫
I1
f ◦ γdµ =

∫
I1
fdµ. (20)

The Gamma-Fourier coefficients of an f ∈ L1(I1) are defined by

f̂γ(n) .=
∫

I1
f(x)vn(γ(x)−1)dµ(x) (n ∈ P).

We have by (20):

f̂γ(n) = f̂ ◦ γ(n), (21)

where f̂(n) are the well-known Fourier coefficients of an f ∈ L1(I). [1]

The Gamma-Fourier series of an f ∈ L1(I1) is the series

Sγf
.=
∞∑

k=0

f̂γ(k)vk ◦ γ−1,

and the n-th partial sums of the Gamma-Fourier series Sγ is

Sγ
nf

.=
n−1∑
k=0

f̂γ(k)vk ◦ γ−1 (n ∈ P).

It follows by (21) that

Sγ
nf = [Sn(f ◦ γ)] ◦ γ−1 (22)

where Sn is the well-known n-th partial sum of the Walsh-Fourier series. See[1] .
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If the Gamma-Cesaro (or (G − C, 1)) means of Sγf are defined by σ0f
.= 0

and

σγ
nf

.=
1
n

n∑
k=1

Sγ
kf, (n ∈ P)

then it follows by (22) that

σγ
nf(x) =

1
n

n∑
k=1

[Sk(f ◦ γ)] (γ−1(x)) = σn(f ◦ γ)(γ−1(x)). (23)

where σn means the well known n-th Cesaro mean of Sf . [1]

Now, we use the theorem of the (C, 1)-summability of the Walsh-Fourier series

on the field (I,
•
+, •) due to Gy. Gát [5]: lim

m→∞
(σmf)(x) = f(x) a.e. for any f ∈ L1(I).

Thus with (23) we have lim
n→∞

σγ
nf(x) = lim

n→∞
σn(f ◦ γ)(γ−1(x)) = (f ◦ γ ◦

γ−1)(x) = f(x) a.e. for any f ∈ L1(I1).

Theorem 3. On the field (I1,
•
+, •) holds lim

n→∞
σγ

nf(x) = f(x) a.e. for any f ∈ L1(I1).
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Institute of Mathematics and Informatics

Hungary, 7624 Pécs, Ifjúság u. 6
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