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THE CHARACTERS OF THE BLASCHKE-GROUP
OF THE ARITHMETIC FIELD

ILONA SIMON

Abstract. We consider a locally compact metric space, B with arithmetic
addition and multiplication, which is closely related to the usual multiplica-
tion of real numbers in the dyadic system. This results a non-Archimedian
local field, the so-called 2-adic local field. Some orthogonal series are stud-
ied with respect the inner product defined with the Haar-measure pu. The
Blaschke-functions defined on the 2-adic field, B, (z) = “f:ra form a com-

etaex

mutative group with respect to the function composition, the so-called

Blaschke-group. We shall determine the characters of this group. By
means of the exponential and tangent functions on the 2-adic field and the
characters of its additive group we can identify the desired characters. We
consider Fourier-series with respect to these characters and summability
questions are examined. A simple recursion leads to the FFT-algorithm,

the so-called Fast-Fourier Transform.

1. Introduction

According to Volovich[4] some non-Archimedean normed fields must be used
for a global space-time theory in order to unify both microscopic and macroscopic
physics. Some problems occured with the practical applications of the classical fields
R and C, because in sciences there are absolute limitations on measurements like Plank
time, Plank length, Plank mass, and also there is a problem with the Archimedean

axiom on the microscopic level. Volovich proposes to base physics on a coalition of

Received by the editors: 11.01.2007.
2000 Mathematics Subject Classification. 11F85, 43A40.

Key words and phrases. p-adic theory, local fields, character groups, (C,1)-summability, Fast-Fourier

Transform.

This paper was presented at the 7-th Joint Conference on Mathematics and Computer Science,

July 3-6, 2008, Cluj-Napoca, Romania.

149



ILONA SIMON

non-Archimedean normed fields and classical fields as R or C. The so-called p-adic
field is a suitable non-Archimedean normed field. As p — oo, many of the fundamental
functions of p-adic analysis approach their counterparts in classical analysis. Thus
p-adic analysis could provide a bridge from microscopic to macroscopic physics. The
simplest example of a p-adic field is the 2-adic field used in this paper.

Characters are very useful in numerous branches of mathematics, for example

in many cases are used Fourier-series with respect to characters.

Denote by A := {0,1} the set of bits and by
B:={a=(a;,j€Z)]a; €Aand lim a; =0} (1)
j——00

the set of bytes. The numbers a; are called the additive digits of @ € B. The zero
element of B is 6 := (z;,j € Z) where z; =0 for j € Z, that is, § = (---,0,0,0,---).
The order of a byte 2 € B is defined in the following way: For a # 6 let 7(z) = n if
and only if z,, = 1 and z; = 0 for all j < n, furthermore set 7(§) = +oo. The norm

of a byte x is defined by
|z|| =2 for z € B\ {6}, and ||| := 0. (2)

The sets I,(z) := {y € B : yx, = zy, for k < n}, the so-called intervals in B of rank
n € Z and center x are of basic importance. Set I, := I,,(0) ={zx € B : ||z|| £ 27"}
for any n € Z. The unit ball I := I can be identified with the set of sequences
I = {a = (aj,j € N)| a; € A} via the map (...,0,0,a0,a1,...) — (ag,a1,...).
Furthermore S:={z € B: ||z|| =1} ={z € B: w(z) =0} = {zx € [ : 2y = 1} is the
unit sphere of the field.

We will use the normalized Haar-measure on B, which satisfies u(1,,(a)) :=
27", Some orthogonal series are studied with respect the inner product defined with

the Haar-measure u by

(f.9) = / f(@)g@)du(z).
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L]
Now, consider the 2-adic (or arithmetical) sum a + b of elements a = (a,,n €

Z),b = (b,n € Z) € B, defined by
at b= ($n,n €Z)

where the bits g, s, € A (n € Z) are obtained recursively as follows:

gn = Sn, =0 for n < m:=min{n(a),n(b)},

(3)

and a, + by + gn-1 = 2q, + 5, forn>m.

The 2-adic (or arithmetical) product of a,b € B is a @b := (p,,n € Z), where

the sequences g, € N and p, € A (n € Z) are defined recursively by
Gn=pn =0 (n<m:=mn(a)+ (b))

> (4)
and Y @b j+dn1 =200 +pn (n>=m).

j=—00

The reflection = of a byte z = (x;,j € Z) is defined by its additive digits:

xj, for j < m(x)

(x7); =

1—x;, forj>m(x).

Note, that ™~ is the additive inverse of an = € B.

The operations J.r, e are commutative. Notice, that
m(a e b) =m(a)+ w(b). (5)

Moreover, (B, :L, e) is a non-Archimedian normed field with respect the (2) norm, that
is,

|z + yll < max{|lz], Iy}, lzoyl =zl -yl (6)
with equality if and only if ||z|| # ||y|| See [2]. The operations —T—, e are continuous

with respect the metric introduced by the norm (2), that is, (B, J.r, e) is a topological
field. (S, e) is a subgroup of (B, e).

We will use the following notation: a *bi=a —.# b~.
The multiplicative identity of B is the element e = ey = (d,0,n € Z), where
Onk is the Kronecker-symbol. Furthermore we will use the elements ey := (d,k,n € Z)
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for some k € Z. We can observe, that ey ® e,,, = €4, for all k,m € Z. In general,
multiplication by ey shifts bytes: e @ a = (a,—x,n € Z). We will represent infinite
products on this field by [[,7; ® o :=lim, .oc(a1 02 @ - @ y,).

A character of a topological group (G, +) is a continuous function ¢ : G — C

which satisfies |¢p(x)| = 1 and ¢(x + y) = ¢(x)p(y) for all 2,y € G.

2. The characters of the Blaschke-group

For z € I and a € I; we have by (6) and (5) that e Zaex # 0, thus e Zaex

has a multiplicative inverse in B. For a € II; define the Blaschke function on I:

By(z):=(x—a)e(e—aex) = (. (x €0 (7)

The Blaschke function B, : I — I is a bijection for any a € I;. The com-

position of two Blaschke-functions is also a Blaschke-function: B, o B, = B. where

¢ = -2tb g also in I for a,b € I;. Thus the maps B, (a € ;) form a commutative
e+aeb

group with respect to the function composition. See[3]. We will call

B:={B,acl)} (8)

the Blashke-group of the field (I, 1, o).
We will determine the characters of the Blashke-group (B, o), where o denotes

the function composition.

Using the notation z <y := % (z,y € I;), the map

etzeoy

B : (I,<) — (B,o), a — B,

is an isomorphism, which is continuous, consequently it is useful if we define the
character group of (Iy,<).

We already know the characters of (I, J.r) and for this reason it is suitable to
find a continuous isomorphism from (I, —T—) onto (I, <), that is a function -~ satisfying
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the equation
o dy) = @D W)
e (@) eq(y)

This equation is the analogue of the function equation of the tangent function

A(z,yely) (9)

on C, where the tangent function can be expressed by the exponential function in the

following way:

_exp(iz) —exp(—ir)  exp(2iz) —1 .
tan(z) = e piz) T exp(—iz)) ~ Hep@in) + 1) * €O

Furthermore, we will use the function (, expressed in the following infinite

product form:

((z) =] * v (x=(zj,j €Z)€Ty) (10)
j=1
where
bi:=e —T— €, bp :=bp_10b,_1 (n > 2). (11)

We will call the function ¢ the (S, e)-valued exponential function on I, which

is a continuous function satisfying the function-equation
((x+y)=Cx)elly) (z,yeh). (12)
This function ¢ satisfies indeed (12) on I;, which can be easily seen analogous to [2],

pp 59-60, where we find in a way different basis (b,,n > 1). Since b, = e T cn (n>1)

with 7(c,) = n + 1, the function ¢ has the following representation:
() =] *(e+c) =]] * (e +mjcy). (13)
j=1 j=1

Let us denote S := {z € S: z; = 0}. We can see as in Theorem 2 in [2] that

¢ is 1-1 and continuous from I; onto S.

Now, we will call the function
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the tangent-like function on (I, 4.—) and

tan(z) = Clao) —e (z €1p) (15)

¢*(x) +e

+ e

the tangent function on (I, +).

Lemma 1. For any a,b € B,x € 11, and y € 1; holds

2) a—T—a:g
bibp b
b)a;a:eloa
(16)
¢) (*(z) = ¢(er o x)
@efyeS
e—y

where (%(z) = ((z) o ((x).
Proof. a) The relation holds, because a o (b i b) =be(a i a) is satisfied by the
commutativity and distributivity of the operations.

b) Using the notations of the recursive definition for the addition —T—, we have
(a —T— a), = 0 if and only if ¢,—1 = 0. But ¢,—; = 0 is equivalent with a,_; = 0,
which holds exactly when (e;ea),, = 0, because multiplication by e shifts a. Similarly
(a;ra)n:1<:>qn_1:1<:>an_1:1<:>(€10a)n:1.

c) It is a simple consequence of b) or directly: b; e b; = bj41 (j > 1),
thus using the commutativity and associativity of e we have (?(x) = (HOO 1 bjz-j ) .
(M2 = 67) = T132, = 5% = Cler o) (e L)

d) It can be easily established, that for y = (0,y1,y2...) € I; holds:

e+y= (1aylay23y37"')

and
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Applying the notation

+ e

ery

:Z’

e—y
we can state first, that 7(z) = 7(e + y) —m(e : y) = 0 that is, z € S, and then

cty=zeley).
Now, examining the Oth and the 1-st digits of the right and left side, we find that
1=2-1
y1=20-y1+2z-1 ( mod?2)

which means, that zo = 1 and z; = 0, and so z € S. Note, that z=e <y =0

O

With Lemma 1 ¢) we can see, that the the tangent-like function + is closely
related to tan: namely y(x) = tan(e_; o x) (z € I;).

Theorem 1. The function vy is a continuous isomorphism from (I, —T—) onto (Iy,<)
Proof.

@ 1) C@)e 3 Cw)e

y(x) + vy T .e .e

(@) ar(y) = — PR
e+ y(z)ey(y) ¢+ LE)=e g Cly)=e

C@te  Cly)te
C(:v)oé(y):e:e C(w)°<(y):eiv(x+y)
C(x)eC(y) +e+e ((x)el(y) +

() ey T
() o Cy) +
where we used Lemma 1 a).

The function v is a 1-1 map from (I, J.r) onto (Iy,<). To see, that v is a 1-1
map, we have from

@

the equation
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Taking in consideration, that f(a) := a Yais 1-1, satisfying a Ya= e1 ® a, we have

which gives that z = y.
To see, that for any y € I; there is an 2 € I such that y(z) = y, we have to

solve in x the equation:

(@) =e
(x) T e
thus
(o) = 1Y
e—y
Now,

x:§_1 (e—z—y>.
e—y

Thus we proved that + is onto if (7! (ef—y) € I; which holds in consequence of Lemma
e—y
1 d). Thus we proved that v is an isomorphism from (I, J.r) onto (I, <).

O

We consider e(t) := exp(2mit) (¢t € R). The characters of the group (Iy,+)

are given by the product system (v,,, m € P) generated by the functions

Ty Ty x
von () ::5<7+ 221 +"'+271:,> (x=(0,21,22...) €1,n €P),

that is, the functions vy, (x) = H;‘;l(vzj (x))™ (m € P). [2] Recall, that P is the set
of positive numbers, P := N\ {0}.
Theorem 2. The characters of the group (I,<) are the functions
v, 0y 1 (n €P).
Corollary 1. The characters of (B,o) are the functions

vpoy Lo B (n € P),
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where (B,o) denotes the Blaschke-group of the arithmetic field (]I,—T—,O), and B :
(Iy,<) — (B, o) is the function a — B,.

3. Recursion

In (13) we used the notation b, = e i ¢n (n>1) where w(c,) =n+ 1, now
consider b, = e T €nt1 7 dy,, (n > 1) where w(d,) > n + 2. Now the function ¢ has

the following representation:

o0

:H €—|—6]+1+d ‘:H e+z]e]+1—|—x]d)(d € L420)
Jj=1

Easy inductive arguments establish that ((z) is a simple recursion:
(C(@)y = @not + f@1ee e ws) (0> 1) (17)

and (C(z)), = 1. Thus z := C(z) — e = (C(&) + e7) = (1,0,(2,Cs..0) +

(1,1,1,1,...) = (0,0,¢(2,(3,C4, - - .) can also be written as a simple recursion:
Zn:xnfl'i_f(mlv"wxan) (TLZ2)

Analogous, l:= C(.’E) —T_ €= (17 07 C2a C3v . ) —T_ (170707 01 e ) = (01 ]-7(27 437 C47 e ) as a
simple recursion:

tn:xn—1+f(x17~-~7xn—2) (TLZZ)

The multiplicative inverse element of ¢ € I; is also a simple recursion:

(t ™Y =2pi + f21,. .., 2)
for some function f. See[[2], pp. 39-40.]
Using (t71)_1 = 1 and (y(2))n = 22t D2+ . + 2nr1(t7H 1 + gn-1 (
mod 2), follows that
(v(x)),, = xn + f(x1,..., 2H_1). (18)

Denote with A the o-algebra generated by the intervals I,,(a) (a € I,n € N).
Let p(I,(a)) = 27" be the measure of I,,(a). Extending this measure to A we get a
probability measure space (I, 4, u). Let A, be the sub-o-algebra of A generated by
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the intervals I,(a) (a € T). Let L(A,) denote the set of A,,-measurable functions on

I. The conditional expectation of an f € L'(I) with respect to A, is of the form

1
EDE@) = 7 o /1 Lz

A sequence of functions (f,,n € N) is called a dyadic martingale if each f,

is A,-measurable and
(gnfnJrl) = fn (n € N)'

The sequence of martingale differences of f,, (n € N) is the sequence

¢nifn+17fn (TLGN)

We notice that every dyadic martingale difference sequence has the form ¢, =
rngn (n € N) where (gn,n € N) is a sequence of functions such that each g, is

A,-measurable and (r,,n € N) denotes the Rademacher system on I:
rn(z) = (=1)*" (n € N).

The martingale difference sequence (¢,,n € N) is called a unitary dyadic
martingale difference sequence or a UDMD sequence if |¢,(x)] = 1 (n € N). Thus
(¢n,n € N) is a UDMD sequence if and only if

On = Tndn, gn € L(An)a |gn| =1 (n € N) (19)

Let us call a system 1 = (¢,,, m € N) a UDMD product system if it is a
product system generated by a UDMD system, i.e., there is a UDMD system (¢,,,n €
N) such that for each m € N, with binary expansion is given by m = Z;io mj2j (mj €

A, j € N), the function 1, satisfies

Um =[] 07" (meN).
j=0

By (18) the byte v~!(z) can also be written by a simple recursion for any
x € I, therefore we have the following:
Corollary 2. The functions v, oy~ '(n € P), the characters of (Iy,<) form a UDMD
product system.
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Proof. The (vgn 0y~ 1, n € P) functions satisfy the requirements of a UDMD-system:
von (y(z)) = € (%”) g(x1,.. ;1) = (=1 g(z1,...,24_1), with some g € L(A,),
and |g(z1,...,2h-1)] = 1.

U

As (v, oy~ 1, n € P) is a UDMD product system, the discrete Fourier coeffi-
cients with respect this system can be computed with the Fast Fourier Algorithm.
4. (C,1) summability

By (18) v : I,(x) — I, (y(z)) is a bijection (x € I,n € N), thus for any dyadic
interval E holds u(t € I; : v(t) € F) = pu(F) and this follows for any E measurable sets
also. Therefore the variable transformation (z) is measure preserving. Consequently,

it holds

11 fordu= H fdp. (20)

The Gamma-Fourier coefficients of an f € L!(I;) are defined by
fr(n) = i f@oa(y(@) Ddp(x)  (neP).
1

We have by (20):
fr(n) = foryn), (21)
where f(n) are the well-known Fourier coefficients of an f € L(I). [1]

The Gamma-Fourier series of an f € L*(Iy) is the series
S =Y P koeor,
k=0
and the n-th partial sums of the Gamma-Fourier series S7 is
n—1 -
$1f= 3 Pltkyoeoy™ (neP).
k=0
It follows by (21) that

Saf =1Su(fom)]on™! (22)

where S,, is the well-known n-th partial sum of the Walsh-Fourier series. See[1] .
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If the Gamma-Cesaro (or (G — C,1)) means of S7f are defined by oof =0

and
1 n
S 2 P
onf n;Skf, (neP)

then it follows by (22) that

n

o7 f () = = S [Sk(F o] (@) = on(f 0 ) (7L (@), (23)

n
k=1

where 0,, means the well known n-th Cesaro mean of Sf. [1]
Now, we use the theorem of the (C, 1)-summability of the Walsh-Fourier series

on the field (I, —T—, o) due to Gy. G4t [5]: lim (0, f)(x) = f(x) a.e. for any f € L'(I).

Thus with (23) we have nli_)ngoagf(x) = nll_{rgo on(for)(v M (x) = (foyo
v H(z) = f(x) a.e. for any f € LY(Ty).

Theorem 3. On the field (]Il,—T—, o) holds lim o) f(x) = f(z) a.e. for any f € L'(I;).
n—oo
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