ON THE DIVERGENCE OF THE PRODUCT QUADRATURE PROCEDURES

ALEXANDRU IOAN MITREA

Abstract

The main result of this paper emphasizes the phenomenon of the double condensation of singularities with respect to the productquadrature procedures associated to the spaces C and L^{1}; some estimations concerning the error of these procedures are given, too.

1. Introduction

Let us consider the Banach space C of all continuous functions $f:[-1,1] \rightarrow$ \mathbb{R}, endowed with the uniform norm $\|\cdot\|$. Denote by L^{1} the Banach space of all measurable functions (classes of functions) $g:[-1,1] \rightarrow \mathbb{R}$ so that $|g|$ is Lebesgue integrable on $[-1,1]$, endowed with the norm:

$$
\|g\|_{1}=\int_{-1}^{1}|g(x)| d x, \quad g \in L^{1}
$$

Let $\mathcal{M}=\left\{x_{n}^{k}: n \geq 1 ; 1 \leq k \leq n\right\}$ be a triangular node matrix, with $-1 \leq x_{n}^{1}<x_{n}^{2}<x_{n}^{3}<\cdots<x_{n}^{n} \leq 1, \forall n \geq 1$. For each integer $n \geq 1$, denote by $\Lambda_{n}:[-1,1] \rightarrow \mathbb{R}$ the Lebesgue function associated to the n-th row of \mathcal{M}, i.e.

$$
\Lambda_{n}(x)=\Lambda_{n}(\mathcal{M} ; x)=\sum_{k=1}^{n}\left|l_{n}^{k}(x)\right|, \quad|x| \leq 1,
$$

where $l_{n}^{k}=l_{n}^{k}(\mathcal{M} ; \cdot), 1 \leq k \leq n$, are the fundamental polynomials of Lagrange interpolation with respect to the nodes $x_{n}^{k}, 1 \leq k \leq n$. The real numbers

$$
\lambda_{n}=\lambda_{n}(\mathcal{M})=\left\|\Lambda_{n}\right\|, \quad n \geq 1
$$

are known as Lebesgue constants.
Starting from these data, let us consider the product-quadrature procedures described by the formulas

$$
\begin{equation*}
\int_{-1}^{1} g(x) f(x) d x=\int_{-1}^{1} g(x) L_{n}(f ; x) d x+R_{n}(f ; g), \quad f \in C, g \in L^{1}, n \geq 1 \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{n}(f ; x)=L_{n}(\mathcal{M}, f ; x)=\sum_{k=1}^{n} f\left(x_{n}^{k}\right) l_{n}^{k}(x), \quad n \geq 1 \tag{1.2}
\end{equation*}
$$

are the Lagrange interpolation polynomials associated to the node matrix \mathcal{M} and to the function f, while $R_{n}(f ; g), n \geq 1$, will be refered to as the errors of the productquadrature procedures described by (1.1).

Denoting by

$$
\begin{gather*}
a_{n}^{k}: L^{1} \rightarrow \mathbb{R}, \quad a_{n}^{k}(g)=\int_{-1}^{1} g(x) l_{n}^{k}(x) d x, \quad n \geq 1,1 \leq k \leq n \tag{1.3}\\
D_{n}: C \times L^{1} \rightarrow \mathbb{R}, \quad D_{n}(f ; g)=\sum_{k=1}^{n} f\left(x_{n}^{k}\right) a_{n}^{k}(g), \quad n \geq 1 \tag{1.4}\\
A: C \times L^{1} \rightarrow \mathbb{R}, \quad A(f ; g)=\int_{-1}^{1} g(x) f(x) d x \tag{1.5}
\end{gather*}
$$

the product quadrature formulas (1.1) become:

$$
\begin{equation*}
A(f ; g)=D_{n}(f ; g)+R_{n}(f ; g), \quad f \in C, g \in L^{1}, n \geq 1 \tag{1.6}
\end{equation*}
$$

Remark that the product-quadrature procedures described by (1.1) or (1.6) are of interpolatory type with respect to the space C, i.e.:

$$
\begin{equation*}
A(P, g)=D_{n}(P, g), \quad n \geq 1, P \in \mathcal{P}_{n-1}, g \in L^{1} \tag{1.7}
\end{equation*}
$$

where \mathcal{P}_{m} is the space of all polynomials of degree at most $m \in \mathbb{N}$.
I.H. Sloan and W.E. Smith, [7], have established important results concerning the convergence of the product-quadrature procedures (1.6), for some node matrices 128
\mathcal{M} whose n-th rows consist of the roots of the orthogonal polynomials associated to a weight-function $w(x)$ satisfying given integral inequalities, particularly for some Jacobi matrices $\mathcal{M}^{(\alpha, \beta)}, \alpha>-1, \beta>-1$. Moreover, these authors proved the existence of a pair $\left(f_{0}, g_{0}\right) \in C \times L^{1}$ so that the sequence $\left(D_{n}\left(f_{0} ; g_{0}\right)\right)_{n \geq 1}$ does not converge to $A\left(f_{0}, g_{0}\right)$ in (1.6).

The aim of this paper is to establish the topological structure of the sets of unbounded divergence in C and L^{1}, corresponding to the product-quadrature procedures described by (1.6). On this subject, remark the results obtained by I. Muntean and S. Cobzaş for $g(x)=1,[1],[2]$.

2. Estimations concerning the norm of the functionals and operators involved in the product quadrature procedures

2.1. Firstly, let us consider the functionals a_{n}^{k} given by (1.3). It is clear that a_{n}^{k} are linear functionals for each $n \geq 1$ and $k \in\{1,2,3, \ldots, n\}$. On the other hand, the inequality

$$
\begin{equation*}
\left|a_{n}^{k}(g)\right| \leq\left\|l_{n}^{k}\right\| \cdot\|g\|_{1} \tag{2.1}
\end{equation*}
$$

proves the continuity of a_{n}^{k} and leads to the inequality

$$
\begin{equation*}
\left\|a_{n}^{k}\right\| \leq\left\|l_{n}^{k}\right\| \tag{2.2}
\end{equation*}
$$

Conversely, let $u \in[-1,1]$ and $h>0$ be given real numbers so that $u+h \in$ $[-1,1]$. Defining the function $g_{0} \in L^{1}$ with $\left\|g_{0}\right\|_{1}=1$ by:

$$
g_{0}(x)= \begin{cases}1 / h ; & u \leq x \leq u+h \tag{2.3}\\ 0, & \text { otherwise }\end{cases}
$$

we deduce:

$$
\begin{gathered}
\left\|a_{n}^{k}\right\|=\sup \left\{\left|a_{n}^{k}(g)\right|: g \in L^{1},\|g\|_{1} \leq 1\right\} \geq\left|a_{n}^{k}\left(g_{0}\right)\right| \\
=\left|\frac{1}{h} \int_{u}^{u+h} l_{n}^{k}(x) d x\right|, \forall h>0, \forall u \in[-1,1] \text { with } u+h \in[-1,1],
\end{gathered}
$$

which implies:

$$
\left\|a_{n}^{k}\right\| \geq \lim _{h \searrow 0}\left|\frac{1}{h} \int_{u}^{u+h} l_{n}^{x}(x) d x\right|=\left|l_{n}^{k}(u)\right|, \forall u \in[-1,1],
$$

so:

$$
\begin{equation*}
\left\|a_{n}^{k}\right\| \geq\left\|l_{n}^{k}\right\| \tag{2.4}
\end{equation*}
$$

The relations (2.2) and (2.4) give:

$$
\begin{equation*}
\left\|a_{n}^{k}\right\|=\left\|l_{n}^{k}\right\| \tag{2.5}
\end{equation*}
$$

2.2. Further, let C^{*} be the Banach space of all linear and continuous functionals defined on C. Let us introduce the operators $T_{n}: L^{1} \rightarrow C^{*}, g \mapsto T_{n} g, g \in L^{1}$, $n \geq 1$, where

$$
\begin{equation*}
\left(T_{n} g\right)(f)=\sum_{k=1}^{n} a_{n}^{k}(g) f\left(x_{n}^{k}\right), \quad f \in C \tag{2.6}
\end{equation*}
$$

The linearity of the operators $T_{n}, n \geq 1$, follows from the corresponding property of the functionals $a_{n}^{k}, 1 \leq k \leq n$. For each given $n \geq 1, T_{n}$ is a continuous operator, too; indeed, the inequality

$$
\left|\left(T_{n} g\right)(f)\right| \leq\left(\sum_{k=1}^{n}\left|a_{n}^{k}(g)\right|\right)\|f\|
$$

is valid for all $f \in C$ and it implies:

$$
\begin{equation*}
\left\|T_{n} g\right\| \leq \sum_{k=1}^{n}\left|a_{n}^{k}(g)\right|, \forall n \geq 1, \forall g \in L^{1} \tag{2.7}
\end{equation*}
$$

Now, the relations (2.7) and (2.5) give:

$$
\left\|T_{n} g\right\| \leq\left(\sum_{k=1}^{n}\left\|l_{n}^{k}\right\|\right)\|g\|_{1}
$$

which proves the continuity of $T_{n}, n \geq 1$.
Now, let us establish the equality:

$$
\begin{equation*}
\left\|T_{n} g\right\|=\sum_{k=1}^{n}\left|a_{n}^{k}(g)\right|, \quad n \geq 1 \tag{2.8}
\end{equation*}
$$

It remains to prove the converse inequality of (2.7). To this end, let consider for each $n \geq 1$, the function $f_{n} \in C,\left\|f_{n}\right\|=1$, defined by:

$$
f_{n}(x)= \begin{cases}\operatorname{sign} a_{n}^{k}(g), & \text { if } x \in\left\{x_{n}^{k}: 1 \leq k \leq n\right\} \\ 1, & \text { if } x \in\{-1,1\} \backslash\left\{x_{n}^{k}: 1 \leq k \leq n\right\} \\ \text { linear, } & \text { otherwise }\end{cases}
$$

We obtain, in accordance with (2.6):

$$
\left\|T_{n} g\right\|=\sup \left\{\left|\left(T_{n} g\right)(f)\right|: f \in C,\|f\| \leq 1\right\} \geq\left|\left(T_{n} g\right)\left(f_{n}\right)\right|=\sum_{k=1}^{n}\left|a_{n}^{k}(g)\right|
$$

so, the equality (2.8) is true.
2.3. Finally, let us deduce the norm of the operator $T_{n}, n \geq 1$. Taking into account the relations (2.8) and (2.3), we have:

$$
\begin{gathered}
\left\|T_{n}\right\|=\sup \left\{\sum_{k=1}^{n}\left|a_{n}^{k}(g)\right|: g \in L^{1},\|g\|_{1} \leq 1\right\} \geq \sum_{k=1}^{n}\left|a_{n}^{k}\left(g_{0}\right)\right| \\
=\sum_{k=1}^{n}\left|\frac{1}{h} \int_{u}^{u+h} l_{n}^{k}(x) d x\right|, \forall h>0,
\end{gathered}
$$

therefore:

$$
\left\|T_{n}\right\| \geq \lim _{h \searrow 0} \sum_{k=1}^{n}\left|\frac{1}{h} \int_{u}^{u+h} l_{n}^{k}(x) d x\right|=\sum_{k=1}^{n}\left|l_{n}^{k}(u)\right|, \forall u \in[-1,1]
$$

which leads to the inequality

$$
\begin{equation*}
\left\|T_{n}\right\| \geq \lambda_{n}, \forall n \geq 1 \tag{2.9}
\end{equation*}
$$

Conversely, we obtain from (2.6) and (1.3), by using the classic equality

$$
\begin{gathered}
\lambda_{n}=\sup \left\{\left\|L_{n}(f ; \cdot)\right\|: f \in C,\|f\| \leq 1\right\}, \quad n \geq 1, \quad[6],[8],[3]: \\
\left\|T_{n} g\right\|=\sup \left\{\left|\int_{-1}^{1} g(x) L_{n}(f ; x) d x\right|: f \in C,\|f\| \leq 1\right\} \\
\leq\|g\|_{1} \cdot \sup \left\{\left\|L_{n}(f ; \cdot)\right\|: f \in C,\|f\| \leq 1\right\}=\lambda_{n}\|g\|_{1},
\end{gathered}
$$

which shows that the opposite inequality of (2.9) is also true; so, we have:

$$
\begin{equation*}
\left\|T_{n}\right\|=\lambda_{n}, \forall n \geq 1 \tag{2.10}
\end{equation*}
$$

A lower bound of the Lebesgue constants $\lambda_{n}, n \geq 1$, is given by Theorem of Lozinski-Harsiladze, [6], [8], [3]:

$$
\begin{equation*}
\lambda_{n} \geq \frac{2}{\pi^{2}} \ln n, \forall n \geq 1 \tag{2.11}
\end{equation*}
$$

3. Superdense unbounded divergence of the product quadrature procedures

The main result of this paper is the following:
Theorem 3.1. Given a node matrix \mathcal{M} in the interval $[-1,1]$, there exists a superdense set X_{0} in C so that for each f in X_{0} the set

$$
Y_{0}(f)=\left\{g \in L^{1}: \sup \left\{\left|D_{n}(f ; g)\right|: n \geq 1\right\}=\infty\right\}
$$

is superdense in L^{1}.
Proof. Firstly, we shall use the following principle of condensation of the singularities, deduced from [1, Theorem 5.4]:

If X is a Banach space, Y is a normed space and $\left(A_{n}\right)_{n \geq 1}$ is a sequence of continuous linear operators from X into Y so that the set of norms $\left\{\left\|A_{n}\right\|: n \geq 1\right\}$ is unbounded, then the set of singularities of the family $\left\{A_{n}: n \geq 1\right\}$, i.e.

$$
\mathcal{S}\left(A_{n}\right)=\left\{x \in X: \sup \left\{\left\|A_{n}(x)\right\|: n \geq 1\right\}=\infty\right\}
$$

is superdense in X.
Take $X=L^{1}, Y=C^{*}$ and $A_{n}=T_{n}: L^{1} \rightarrow C^{*}$. The set $\left\{\left\|T_{n}\right\|: n \geq 1\right\}$ is unbounded, in accordance with (2.10) and (2.11); consequently, the set

$$
\begin{equation*}
\mathcal{S}\left(T_{n}\right)=\left\{g \in L^{1}: \sup \left\{\left\|T_{n} g\right\|: n \geq 1\right\}=\infty\right\} \tag{3.1}
\end{equation*}
$$

is superdense in L^{1}.
Next, let us apply the following principle of the double condensation of singularities [1], [2]:

Suppose that X is a Banach space, Y is a normed space and T is a nonvoid separable complete metric space without isolated points.

Let $\left\{A_{n}: n \geq 1\right\}$ be a family of mappings of $X \times T$ into Y satisfying the following conditions:
(i) For each $t \in T$ and $n \geq 1$, the operator $A_{n}^{t}: X \rightarrow Y, A_{n}^{t}(x)=A_{n}(x, t)$, is linear and continuous.
(ii) For each $x \in X$ and $n \geq 1$, the operator $A_{n}^{x}: T \rightarrow Y, A_{n}^{x}(t)=A_{n}(x, t)$, is continuous.
(iii) There exists a dense set \mathcal{T}_{0} in T so that

$$
\sup \left\{\left\|A_{n}^{t}\right\|: n \geq 1\right\}=\infty, \forall t \in \mathcal{T}_{0}
$$

Then, there exists a superdense set X_{0} in X so that for each $x \in X$ the set

$$
Y_{0}(x)=\left\{t \in T: \sup \left\{\left\|A_{n}(x, t)\right\|: n \geq 1\right\}=\infty\right\}
$$

is superdense in T.
Take $X=(C,\|\cdot\|), T=\left(L^{1},\|g\|_{1}\right), Y=\mathbb{R}$ and $A_{n}=D_{n}: C \times L^{1} \rightarrow \mathbb{R}$, $n \geq 1$, see (1.4). Let us verify the validity of the previous hypotheses.
(i) We have:

$$
\begin{equation*}
D_{n}^{g}=T_{n} g, \quad g \in L^{1}, n \geq 1 \tag{3.2}
\end{equation*}
$$

The linearity of D_{n}^{g} follows from (2.6) and (1.3), while its continuity is a consequence of (2.7).
(ii) Taking into account (2.1), we deduce

$$
\left|D_{n}^{f}\right|=\left|\sum_{k=1}^{n} a_{n}^{k}(g) f\left(x_{n}^{k}\right)\right| \leq\|g\|_{1} \cdot\|f\| \cdot \sum_{k=1}^{n}\left\|l_{n}^{k}\right\|
$$

which proves the continuity of the linear functional D_{n}^{f}.
(iii) In accordance with (3.1) and (3.2) and taking $\mathcal{T}_{0}=\mathcal{S}\left(T_{n}\right)$ we have:

$$
\sup \left\{\left\|D_{n}^{g}\right\|: n \geq 1\right\}=\sup \left\{\left\|T_{n} g\right\|: n \geq 1\right\}=\infty, \forall g \in \mathcal{T}_{0}
$$

Now, let us apply the previous principle of the double condensation of singularities, which completes the proof of this theorem.
Remark 3.2. A dual-type result with respect to the Theorem 3.1 is also true [3]:
Given a node matrix \mathcal{M} in the interval $[-1,1]$, there exists a superdense set X_{1} in L^{1} so that for each $g \in X_{1}$ there exists a superdense set $Y_{1}(g)$ in C satisfying the equality

$$
\limsup _{n \rightarrow \infty}\left|D_{n}(f ; g)\right|=\infty, \text { for each } g \in X_{1} \text { and } f \in Y_{1}(g)
$$

4. Estimations for the error of the product-quadrature procedures

In accordance with (1.6) and (1.7), writing

$$
\mid R_{n}(f ; g)=A(f-P ; g)+D_{n}(P-f ; g)
$$

with an arbitrary $P \in \mathcal{P}_{n-1}$, we deduce:

$$
\begin{equation*}
\left|R_{n}(f ; g)\right| \leq|A(f-P ; g)|+\left|D_{n}(f-P ; g)\right| \tag{4.1}
\end{equation*}
$$

Let $s \geq 0$ be an integer and denote by C^{s} the Banach space of all functions $f:[-1,1] \rightarrow \mathbb{R}$ which are continuous together with their derivatives up to the order s, endowed with the norm:

$$
\|f\|^{(s)}=\left\|f^{(s)}\right\|+\sum_{i=0}^{s-1} \| f^{(i)}(0) \mid, \text { if } s \geq 1
$$

and $\|f\|^{(0)}=\|f\|$.
It follows from the Theorem of Jackson [6], [8], [9], that there exist a polynomial $P \in \mathcal{P}_{n-1}$ and a positive number M which does not depend on n so that:

$$
\begin{equation*}
\left\|f^{(j)}-P^{(j)}\right\| \leq \frac{M}{n^{s-j}} \omega\left(f^{(s)} ; \frac{1}{n}\right), \quad 0 \leq j \leq s \tag{4.2}
\end{equation*}
$$

for sufficient large $n \geq 1$, where $\omega(h ; \cdot)$ is the modulus of continuity of a function $h \in C$.

Now, we deduce for each $i \in\{0,1,2,3, \ldots, s\}$, see also [4]:

$$
\begin{equation*}
\|f-P\|^{(i)} \leq \sum_{j=0}^{i}\left\|f^{(j)}-P^{(j)}\right\| \leq 2 M n^{i-s} \omega\left(f^{(s)} ; \frac{1}{n}\right) \tag{4.3}
\end{equation*}
$$

Taking $A_{g}=A(\cdot, g): C^{s} \rightarrow \mathbb{R}$, with a given $g \in L^{1}$, we deduce from (4.1):

$$
\begin{equation*}
\left|R_{n}(f ; g)\right| \leq\left\|A_{g}\right\| \cdot\|f-P\|^{(s)}+\left(\sum_{k=1}^{n}\left|a_{n}^{k}(g)\right|\right) \cdot\|f-P\| \tag{4.4}
\end{equation*}
$$

Next, combining (4.2), (4.3) and (4.4), we obtain:

$$
\begin{equation*}
\left|R_{n}(f, g)\right| \leq M\left(2\left\|A_{g}\right\|+n^{-s} \sum_{k=1}^{n}\left|a_{n}^{k}(g)\right|\right) \omega\left(f^{(s)} ; \frac{1}{n}\right) \tag{4.5}
\end{equation*}
$$

ON THE DIVERGENCE OF THE PRODUCT QUADRATURE PROCEDURES

A simple exercise leads to the inequalities:

$$
\left\|A_{g}\right\| \leq\|g\|_{1}, \quad \sum_{k=1}^{n}\left|a_{n}^{k}(g)\right| \leq \lambda_{n}\|g\|_{1}
$$

which, together with (4.5), give for each $f \in C^{s}$ and $g \in L^{1}$:

$$
\begin{equation*}
\left|R_{n}(f ; g)\right| \leq M\left(2+\lambda_{n} \cdot n^{-s}\right)\|g\|_{1} \cdot \omega\left(f^{(s)} ; \frac{1}{n}\right) . \tag{4.6}
\end{equation*}
$$

Denote by $D L(C)$ the subset of C which consists of all functions $f \in C$ satisfying a Dini-Lipschitz condition

$$
\lim _{\delta \backslash 0} \omega(f ; \delta) \ln \delta=0
$$

We are in a position to prove the following statement.
Theorem 4.1. Suppose that $\mathcal{M}=\mathcal{M}^{T}$ is the Chebyshev node matrix, namely its n-th row consists of the roots of the Chebyshev polynomial

$$
P_{n}(x)=\cos (n \arccos x), \quad n \geq 1
$$

The product-quadrature procedures described by (1.6) are convergent for each pair $(f, g) \in D L(C) \times L^{1}$ and for each pair $(f, g) \in C^{s} \times L^{1}$, if $s \geq 1$.

Proof. If $s=0$, we obtain from (4.6) and $\lambda_{n} \sim \ln n$, [5], [8], [3]:

$$
\left|R_{n}(f ; g)\right| \leq M(2+\ln n)\|g\|_{1} \cdot \omega\left(f ; \frac{1}{n}\right)
$$

so

$$
\lim _{n \rightarrow \infty} R_{n}(f ; g)=0
$$

for each $f \in D L(C)$ and $g \in L^{1}$. If $s \geq 1$, remark that $\lambda_{n} n^{-s} \sim n^{-s} \ln n$ and use again (4.6).

References

[1] Cobzas, S. and Muntean, I., Condensation of singularities and divergence results in Approximation Theory, J. Approx. Theory, 31(1981), 138-153.
[2] Cobzas, S. and Muntean, I., Superdense A.E. Unbounded Divergence of some Approximation Process of Analysis, Real Analysis Exchange, 25(1999/2000), 501-512.
[3] Mitrea, A.I., Convergence and Superdense Unbounded Divergence in Approximation Theory, Transilvania Press (Cluj-Napoca), 1998.
[4] Mitrea, A.I., On the convergence of a class of approximation procedures, PU.M.A., vol. 15, no.2-3(2005), 225-234.
[5] Natanson, G.I., Two-sided estimates for Lebesgue function of Lagrange interpolation processes based on Jacobi nodes (Russian), Izv. Vyss. Ucebn. Zaved. Matematika, 11(1967), 67-74.
[6] Schönhage, A., Approximationstheorie, Berlin, Walter de Gruyter, 1971.
[7] Sloan, I.H., Smith W.E., Properties of interpolatory product integration rules, SIAM J. Numer. Anal., 19(1982), 427-442.
[8] Szabados, J. and Vertesi, P., Interpolation of Functions, World Sci. Publ. Co., Singapore, 1990.
[9] Szegö, G., Orthogonal Polynomials, Amer. Math. Soc. Providence, R.I., 1975.

Technical University, Department of Mathematics,
Str. C. Daicoviciu Nr. 15,400020 Cluj-Napoca, Romania
E-mail address: alexandru.ioan.mitrea@math.utcluj.ro

