
STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 3, September 2009

ON THE DIVERGENCE OF THE PRODUCT QUADRATURE
PROCEDURES

ALEXANDRU IOAN MITREA

Abstract. The main result of this paper emphasizes the phenomenon

of the double condensation of singularities with respect to the product-

quadrature procedures associated to the spaces C and L1; some estima-

tions concerning the error of these procedures are given, too.

1. Introduction

Let us consider the Banach space C of all continuous functions f : [−1, 1] →

R, endowed with the uniform norm ‖ · ‖. Denote by L1 the Banach space of all

measurable functions (classes of functions) g : [−1, 1] → R so that |g| is Lebesgue

integrable on [−1, 1], endowed with the norm:

‖g‖1 =
∫ 1

−1

|g(x)|dx, g ∈ L1.

Let M = {xk
n : n ≥ 1; 1 ≤ k ≤ n} be a triangular node matrix, with

−1 ≤ x1
n < x2

n < x3
n < · · · < xn

n ≤ 1, ∀ n ≥ 1. For each integer n ≥ 1, denote by

Λn : [−1, 1] → R the Lebesgue function associated to the n-th row of M, i.e.

Λn(x) = Λn(M;x) =
n∑

k=1

|lkn(x)|, |x| ≤ 1,
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where lkn = lkn(M; ·), 1 ≤ k ≤ n, are the fundamental polynomials of Lagrange

interpolation with respect to the nodes xk
n, 1 ≤ k ≤ n. The real numbers

λn = λn(M) = ‖Λn‖, n ≥ 1

are known as Lebesgue constants.

Starting from these data, let us consider the product-quadrature procedures

described by the formulas∫ 1

−1

g(x)f(x)dx =
∫ 1

−1

g(x)Ln(f ;x)dx + Rn(f ; g), f ∈ C, g ∈ L1, n ≥ 1 (1.1)

where

Ln(f ;x) = Ln(M, f ;x) =
n∑

k=1

f(xk
n)lkn(x), n ≥ 1 (1.2)

are the Lagrange interpolation polynomials associated to the node matrix M and to

the function f , while Rn(f ; g), n ≥ 1, will be refered to as the errors of the product-

quadrature procedures described by (1.1).

Denoting by

ak
n : L1 → R, ak

n(g) =
∫ 1

−1

g(x)lkn(x)dx, n ≥ 1, 1 ≤ k ≤ n (1.3)

Dn : C × L1 → R, Dn(f ; g) =
n∑

k=1

f(xk
n)ak

n(g), n ≥ 1 (1.4)

A : C × L1 → R, A(f ; g) =
∫ 1

−1

g(x)f(x)dx, (1.5)

the product quadrature formulas (1.1) become:

A(f ; g) = Dn(f ; g) + Rn(f ; g), f ∈ C, g ∈ L1, n ≥ 1. (1.6)

Remark that the product-quadrature procedures described by (1.1) or (1.6)

are of interpolatory type with respect to the space C, i.e.:

A(P, g) = Dn(P, g), n ≥ 1, P ∈ Pn−1, g ∈ L1 (1.7)

where Pm is the space of all polynomials of degree at most m ∈ N.

I.H. Sloan and W.E. Smith, [7], have established important results concerning

the convergence of the product-quadrature procedures (1.6), for some node matrices
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M whose n-th rows consist of the roots of the orthogonal polynomials associated

to a weight-function w(x) satisfying given integral inequalities, particularly for some

Jacobi matrices M(α,β), α > −1, β > −1. Moreover, these authors proved the

existence of a pair (f0, g0) ∈ C × L1 so that the sequence (Dn(f0; g0))n≥1 does not

converge to A(f0, g0) in (1.6).

The aim of this paper is to establish the topological structure of the sets of

unbounded divergence in C and L1, corresponding to the product-quadrature proce-

dures described by (1.6). On this subject, remark the results obtained by I. Muntean

and S. Cobzaş for g(x) = 1, [1], [2].

2. Estimations concerning the norm of the functionals and operators

involved in the product quadrature procedures

2.1. Firstly, let us consider the functionals ak
n given by (1.3). It is clear that

ak
n are linear functionals for each n ≥ 1 and k ∈ {1, 2, 3, . . . , n}. On the other hand,

the inequality

|ak
n(g)| ≤ ‖lkn‖ · ‖g‖1 (2.1)

proves the continuity of ak
n and leads to the inequality

‖ak
n‖ ≤ ‖lkn‖ (2.2)

Conversely, let u ∈ [−1, 1] and h > 0 be given real numbers so that u + h ∈

[−1, 1]. Defining the function g0 ∈ L1 with ‖g0‖1 = 1 by:

g0(x) =

 1/h; u ≤ x ≤ u + h

0, otherwise
(2.3)

we deduce:

‖ak
n‖ = sup{|ak

n(g)| : g ∈ L1, ‖g‖1 ≤ 1} ≥ |ak
n(g0)|

=

∣∣∣∣∣ 1h
∫ u+h

u

lkn(x)dx

∣∣∣∣∣ , ∀ h > 0, ∀ u ∈ [−1, 1] with u + h ∈ [−1, 1],

which implies:

‖ak
n‖ ≥ lim

h↘0

∣∣∣∣∣ 1h
∫ u+h

u

lxn(x)dx

∣∣∣∣∣ = |lkn(u)|, ∀ u ∈ [−1, 1],
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so:

‖ak
n‖ ≥ ‖lkn‖ (2.4)

The relations (2.2) and (2.4) give:

‖ak
n‖ = ‖lkn‖ (2.5)

2.2. Further, let C∗ be the Banach space of all linear and continuous func-

tionals defined on C. Let us introduce the operators Tn : L1 → C∗, g 7→ Tng, g ∈ L1,

n ≥ 1, where

(Tng)(f) =
n∑

k=1

ak
n(g)f(xk

n), f ∈ C (2.6)

The linearity of the operators Tn, n ≥ 1, follows from the corresponding

property of the functionals ak
n, 1 ≤ k ≤ n. For each given n ≥ 1, Tn is a continuous

operator, too; indeed, the inequality

|(Tng)(f)| ≤

(
n∑

k=1

|ak
n(g)|

)
‖f‖

is valid for all f ∈ C and it implies:

‖Tng‖ ≤
n∑

k=1

|ak
n(g)|, ∀ n ≥ 1, ∀ g ∈ L1 (2.7)

Now, the relations (2.7) and (2.5) give:

‖Tng‖ ≤

(
n∑

k=1

‖lkn‖

)
‖g‖1,

which proves the continuity of Tn, n ≥ 1.

Now, let us establish the equality:

‖Tng‖ =
n∑

k=1

|ak
n(g)|, n ≥ 1. (2.8)

It remains to prove the converse inequality of (2.7). To this end, let consider

for each n ≥ 1, the function fn ∈ C, ‖fn‖ = 1, defined by:

fn(x) =


sign ak

n(g), if x ∈ {xk
n : 1 ≤ k ≤ n}

1, if x ∈ {−1, 1} \ {xk
n : 1 ≤ k ≤ n}

linear, otherwise

130



ON THE DIVERGENCE OF THE PRODUCT QUADRATURE PROCEDURES

We obtain, in accordance with (2.6):

‖Tng‖ = sup{|(Tng)(f)| : f ∈ C, ‖f‖ ≤ 1} ≥ |(Tng)(fn)| =
n∑

k=1

|ak
n(g)|;

so, the equality (2.8) is true.

2.3. Finally, let us deduce the norm of the operator Tn, n ≥ 1. Taking into

account the relations (2.8) and (2.3), we have:

‖Tn‖ = sup

{
n∑

k=1

|ak
n(g)| : g ∈ L1, ‖g‖1 ≤ 1

}
≥

n∑
k=1

|ak
n(g0)|

=
n∑

k=1

∣∣∣∣∣ 1h
∫ u+h

u

lkn(x)dx

∣∣∣∣∣ , ∀ h > 0,

therefore:

‖Tn‖ ≥ lim
h↘0

n∑
k=1

∣∣∣∣∣ 1h
∫ u+h

u

lkn(x)dx

∣∣∣∣∣ =
n∑

k=1

|lkn(u)|, ∀ u ∈ [−1, 1]

which leads to the inequality

‖Tn‖ ≥ λn, ∀ n ≥ 1 (2.9)

Conversely, we obtain from (2.6) and (1.3), by using the classic equality

λn = sup{‖Ln(f ; ·)‖ : f ∈ C, ‖f‖ ≤ 1}, n ≥ 1, [6], [8], [3] :

‖Tng‖ = sup
{∣∣∣∣∫ 1

−1

g(x)Ln(f ;x)dx

∣∣∣∣ : f ∈ C, ‖f‖ ≤ 1
}

≤ ‖g‖1 · sup{‖Ln(f ; ·)‖ : f ∈ C, ‖f‖ ≤ 1} = λn‖g‖1,

which shows that the opposite inequality of (2.9) is also true; so, we have:

‖Tn‖ = λn, ∀ n ≥ 1. (2.10)

A lower bound of the Lebesgue constants λn, n ≥ 1, is given by Theorem of

Lozinski-Harsiladze, [6], [8], [3]:

λn ≥
2
π2

lnn, ∀ n ≥ 1. (2.11)
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3. Superdense unbounded divergence of the product quadrature

procedures

The main result of this paper is the following:

Theorem 3.1. Given a node matrix M in the interval [−1, 1], there exists a super-

dense set X0 in C so that for each f in X0 the set

Y0(f) = {g ∈ L1 : sup{|Dn(f ; g)| : n ≥ 1} = ∞}

is superdense in L1.

Proof. Firstly, we shall use the following principle of condensation of the singulari-

ties, deduced from [1, Theorem 5.4]:

If X is a Banach space, Y is a normed space and (An)n≥1 is a sequence of

continuous linear operators from X into Y so that the set of norms {‖An‖ : n ≥ 1}

is unbounded, then the set of singularities of the family {An : n ≥ 1}, i.e.

S(An) = {x ∈ X : sup{‖An(x)‖ : n ≥ 1} = ∞},

is superdense in X.

Take X = L1, Y = C∗ and An = Tn : L1 → C∗. The set {‖Tn‖ : n ≥ 1} is

unbounded, in accordance with (2.10) and (2.11); consequently, the set

S(Tn) = {g ∈ L1 : sup{‖Tng‖ : n ≥ 1} = ∞} (3.1)

is superdense in L1.

Next, let us apply the following principle of the double condensation of sin-

gularities [1], [2]:

Suppose that X is a Banach space, Y is a normed space and T is a nonvoid

separable complete metric space without isolated points.

Let {An : n ≥ 1} be a family of mappings of X × T into Y satisfying the

following conditions:

(i) For each t ∈ T and n ≥ 1, the operator At
n : X → Y , At

n(x) = An(x, t),

is linear and continuous.
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(ii) For each x ∈ X and n ≥ 1, the operator Ax
n : T → Y , Ax

n(t) = An(x, t),

is continuous.

(iii) There exists a dense set T0 in T so that

sup{‖At
n‖ : n ≥ 1} = ∞, ∀ t ∈ T0.

Then, there exists a superdense set X0 in X so that for each x ∈ X the set

Y0(x) = {t ∈ T : sup{‖An(x, t)‖ : n ≥ 1} = ∞}

is superdense in T .

Take X = (C, ‖ · ‖), T = (L1, ‖g‖1), Y = R and An = Dn : C × L1 → R,

n ≥ 1, see (1.4). Let us verify the validity of the previous hypotheses.

(i) We have:

Dg
n = Tng, g ∈ L1, n ≥ 1 (3.2)

The linearity of Dg
n follows from (2.6) and (1.3), while its continuity is a

consequence of (2.7).

(ii) Taking into account (2.1), we deduce

|Df
n| =

∣∣∣∣∣
n∑

k=1

ak
n(g)f(xk

n)

∣∣∣∣∣ ≤ ‖g‖1 · ‖f‖ ·
n∑

k=1

‖lkn‖,

which proves the continuity of the linear functional Df
n.

(iii) In accordance with (3.1) and (3.2) and taking T0 = S(Tn) we have:

sup{‖Dg
n‖ : n ≥ 1} = sup{‖Tng‖ : n ≥ 1} = ∞, ∀ g ∈ T0.

Now, let us apply the previous principle of the double condensation of singu-

larities, which completes the proof of this theorem.

Remark 3.2. A dual-type result with respect to the Theorem 3.1 is also true [3]:

Given a node matrix M in the interval [−1, 1], there exists a superdense set

X1 in L1 so that for each g ∈ X1 there exists a superdense set Y1(g) in C satisfying

the equality

lim sup
n→∞

|Dn(f ; g)| = ∞, for each g ∈ X1 and f ∈ Y1(g).
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4. Estimations for the error of the product-quadrature procedures

In accordance with (1.6) and (1.7), writing

|Rn(f ; g) = A(f − P ; g) + Dn(P − f ; g),

with an arbitrary P ∈ Pn−1, we deduce:

|Rn(f ; g)| ≤ |A(f − P ; g)|+ |Dn(f − P ; g)|. (4.1)

Let s ≥ 0 be an integer and denote by Cs the Banach space of all functions

f : [−1, 1] → R which are continuous together with their derivatives up to the order

s, endowed with the norm:

‖f‖(s) = ‖f (s)‖+
s−1∑
i=0

‖f (i)(0)|, if s ≥ 1

and ‖f‖(0) = ‖f‖.

It follows from the Theorem of Jackson [6], [8], [9], that there exist a polyno-

mial P ∈ Pn−1 and a positive number M which does not depend on n so that:

‖f (j) − P (j)‖ ≤ M

ns−j
ω

(
f (s);

1
n

)
, 0 ≤ j ≤ s, (4.2)

for sufficient large n ≥ 1, where ω(h; ·) is the modulus of continuity of a function

h ∈ C.

Now, we deduce for each i ∈ {0, 1, 2, 3, . . . , s}, see also [4]:

‖f − P‖(i) ≤
i∑

j=0

‖f (j) − P (j)‖ ≤ 2Mni−sω

(
f (s);

1
n

)
(4.3)

Taking Ag = A(·, g) : Cs → R, with a given g ∈ L1, we deduce from (4.1):

|Rn(f ; g)| ≤ ‖Ag‖ · ‖f − P‖(s) +

(
n∑

k=1

|ak
n(g)|

)
· ‖f − P‖ (4.4)

Next, combining (4.2), (4.3) and (4.4), we obtain:

|Rn(f, g)| ≤ M

(
2‖Ag‖+ n−s

n∑
k=1

|ak
n(g)|

)
ω

(
f (s);

1
n

)
(4.5)
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A simple exercise leads to the inequalities:

‖Ag‖ ≤ ‖g‖1,
n∑

k=1

|ak
n(g)| ≤ λn‖g‖1,

which, together with (4.5), give for each f ∈ Cs and g ∈ L1:

|Rn(f ; g)| ≤ M(2 + λn · n−s)‖g‖1 · ω
(

f (s);
1
n

)
. (4.6)

Denote by DL(C) the subset of C which consists of all functions f ∈ C

satisfying a Dini-Lipschitz condition

lim
δ↘0

ω(f ; δ) ln δ = 0.

We are in a position to prove the following statement.

Theorem 4.1. Suppose that M = MT is the Chebyshev node matrix, namely its

n-th row consists of the roots of the Chebyshev polynomial

Pn(x) = cos(n arccos x), n ≥ 1.

The product-quadrature procedures described by (1.6) are convergent for each

pair (f, g) ∈ DL(C)× L1 and for each pair (f, g) ∈ Cs × L1, if s ≥ 1.

Proof. If s = 0, we obtain from (4.6) and λn ∼ lnn, [5], [8], [3]:

|Rn(f ; g)| ≤ M(2 + lnn)‖g‖1 · ω
(

f ;
1
n

)
,

so

lim
n→∞

Rn(f ; g) = 0

for each f ∈ DL(C) and g ∈ L1. If s ≥ 1, remark that λnn−s ∼ n−s lnn and use

again (4.6).
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