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MULTIPLE SOLUTIONS FOR A HOMOGENEOUS SEMILINEAR
ELLIPTIC PROBLEM IN DOUBLE WEIGHTED SOBOLEV SPACES

ILDIKÓ ILONA MEZEI AND TÜNDE KOVÁCS

Abstract. In this paper we obtain multiple solutions in double weighted

Sobolev spaces for an elliptic semilinear eigenvalue problem on unbounded

domain, with sublinear growth of the nonlinear term. In the proofs of the

main results we use variational methods and some recent theorems from

the theory of best approximation in Banach spaces, established by Ricceri

in [11] and Tsar’kov in [12].

1. Introduction

A link between the critical point theory and the theory of best approximation

was established recently by Ricceri in [11] and Tsar’kov in [12]. In the latter it is

proved that, given a continuously Gâteaux differentiable functional J defined over a

real Hilbert space X, for each real σ within the range of J and x0 ∈ J−1(] −∞, σ[)

either there exists λ > 0 such that the energy functional Eλ(x) = ||x−x0||2
2 − λJ(x)

admits at least three critical points, or the set J−1([σ,+∞[) has a unique point

minimizing the distance from x0. The alternative is then resolved. Supposing that

J admits non-convex superlevel set, and applying the results of [12], yields that the

energy functional Eλ has at least three critical points for suitable x0 ∈ X and λ > 0.

This abstract result has a natural application in the field of differential equations.
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The result of Ricceri was applied and extended by several authors: Kristály in

[4] study a Schrödinger equation in RN , Faracci and Iannizzotto in [2] study boundary

value problems involving the p-Laplacian on unbounded domain, Faracci, Iannizzotto,

Lisei, Varga in [3] give a multiplicity result in alternative form for a class of locally

Lipschitz functionals, defined on Banach spaces and applied to hemivariational in-

equalities on unbounded domain.

In this paper we consider a semilinear elliptic eigenvalue problem on un-

bounded domain and we apply a topological minimax result of Ricceri [10] to obtain

a similar theorem (in alternative form) with the result of Ricceri presented above.

Then, as a consequence of the obtained theorem, using the results of Tsar’kov [12],

we obtain three different solutions of the considered problem.

The main problem we are confronting, is the lack of compact embeddings of

Sobolev spaces. In general, if Ω is unbounded, W 1,p(Ω) (the space of all functions

u ∈ Lp(Ω), such that |∇u| ∈ Lp(Ω)) is not compactly embedded in any Lr(Ω). We will

overcome this difficulty by using the double weighted Sobolev space W 1,2(Ω; v0, v1)

with such weight functions v0, v1, w that W 1,2(Ω; v0, v1) can be embedded compactly

in Lp(Ω; w) (for p ∈ [2, 2∗[).

2. The problem and preliminaries

Let Ω ⊂ RN , (N ≥ 2) be an unbounded domain with smooth boundary ∂Ω.

For the positive measurable functions u and w, both defined in Ω, we define the

weighted p-norm (1 ≤ p < ∞) as

||u||p,Ω,w =
(∫

Ω

|u(x)|pw(x)dx

) 1
p

and denote by Lp(Ω;w) the space of all measurable functions u such that ||u||p,Ω,w is

finite. If p = +∞ we consider the Sobolev space

L∞(Ω) = {u : Ω → R | u is measurable, ∃C > 0 such that |u(x)| ≤ C a.e. in Ω}

endowed with the norm

||u||∞ = inf{C : |u(x)| ≤ C for a.e. x ∈ Ω}.
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The double weighted Sobolev space

W 1,p(Ω; v0, v1)

is defined as the space of all functions u ∈ Lp(Ω; v0) such that all derivatives ∂u
∂xi

belong to Lp(Ω; v1). The corresponding norm is defined by

||u||p,Ω,v0,v1 =
(∫

Ω

|∇u(x)|pv1(x) + |u(x)|pv0(x)dx

) 1
p

.

We are choosing our weight functions from the so-called Muckenhoupt class

Ap, which is defined as the set of all positive functions v in RN satisfying

1
|Q|

(∫
Ω

v dx

) 1
p

(∫
Ω

v−
1

p−1 dx

) p−1
p

≤ C̄, if 1 < p < ∞

1
|Q|

∫
Ω

v dx ≤ C̄ ess inf
x∈Q

v(x), if p = 1,

for all cubes Q ∈ RN and some C̄ > 0.

In this paper we always assume that the weight functions v0, v1, w are defined

on Ω, belong to Ap and are chosen such that the following condition holds:

(E) for p ∈ [2, 2∗[ the embedding W 1,2(Ω; v0, v1) ↪→ Lp(Ω; w) is compact.

Such weight functions there exist, see for example [7], [8].

The best embedding constant is denoted by Cp,Ω, i.e. we have the inequality

||u||p,Ω,w ≤ Cp,Ω||u||v0,v1 , for all u ∈ W 1,2(Ω; v0, v1) (1)

where we used the abbreviation ||u||v0,v1 = ||u||2,Ω,v0,v1 .

We define on W 1,2(Ω; v0, v1) a continuous bilinear form associated with the operator

A(u) = −∆u + b(x)u as

〈u, v〉A =
∫

Ω

(∇u∇v + b(x)uv)dx (2)

and the corresponding norm with

||u||2A = 〈u, u〉A =
∫

Ω

(|∇u(x)|2 + b(x)|u(x)|2)dx. (3)

Now, we define the Banach space

XA = {u ∈ W 1,2(Ω; v0, v1) : ||u||A < ∞}, (4)
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endowed with the norm || · ||A.

We consider the following problem

For a given u0 ∈ XA and λ > 0 find u ∈ XA such that

(Pλ)


−∆(u− u0) + b(x)(u− u0) = λα(x)f(u) in Ω

u = 0 on ∂Ω,

where f : R → R is a continuous function, α : Ω → R and b : Ω → R are a positive

and measurable functions.

By the weak solution to this problem we mean a function u ∈ XA, such that

for every v ∈ XA we have

〈u− u0, v〉A − λ

∫
Ω

α(x)f(u(x))v(x)dx = 0.

We will study the problem (Pλ) assuming that f is sublinear at the origin,

that is

(f) f(0) = 0 and there is a positive measurable function f0 : Ω → R satisfying

f0 ∈ L
p

p−1 (Ω, w
1

1−p ), f0(x) ≤ Cfw(x) for a.e. x ∈ Ω, where Cf is a positive

constant and there exists q ∈]0, 1[ such that

|f(s)| ≤ f0(x)|s|q, for every s ∈ R and every x ∈ Ω;

Furthermore we consider the following assumptions:

(K) ellipticity condition: there is a positive constant K, such that

||u||2A ≥ 2K||u||2v0,v1
, for every u ∈ W 1,2(Ω; v0, v1);

(α) α ∈ L1(Ω, w) ∩ L∞(Ω).

In the sequel we prove several lemmas needed later.

Lemma 2.1. L1(Ω;w) ∩ L∞(Ω) ⊆ Lr(Ω;w), for every r ≥ 1.
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Proof. Let u ∈ L1(Ω; w) ∩ L∞(Ω). Then, for every r ≥ 1 we have

||u||r,Ω,w =
(∫

Ω

|u(x)|rw(x)dx

) 1
r

=
(∫

Ω

|u(x)|r−1|u(x)|w(x)dx

) 1
r

≤

≤
(∫

Ω

||u||r−1
∞ |u(x)|w(x)dx

) 1
r

= ||u||
r−1

r∞ ||u||
1
r
1,w,

which means that ||u||r,Ω,w is finite, so u ∈ Lr(Ω;w). �

Notation. Let ν =
p

p− (q + 1)
and we denote by ν′ = p

q+1 its conjugate, that is
1
ν + 1

ν′ = 1. Using the Lemma 2.1 we have that

L1(Ω; w) ∩ L∞(Ω) ⊆ Lν(Ω;w),

so α ∈ Lν(Ω;w).

We define the funtional J : XA → R by

J(u) =
∫

Ω

α(x)F (u(x))dx,

where F (t) =
∫ t

0
f(s)ds.

The next lemma summarize the properties of the functional J .

Lemma 2.2. Let conditions (f), (K), (α) be satisfied.Then, the functional J is well

defined and it is sequentially weakly continuous.

Proof. From the assumption (f) we have

|F (u(x))| ≤
∫ u(x)

0

|f(s)|ds ≤ f0(x)
∫ u(x)

0

|s|qds ≤ f0(x)|u(x)|q+1. (5)

Then, using the conditions (f), (E) and the Hölder’s inequality, we get

|J(u)| =
∣∣∣∣∫

Ω

α(x)F (u(x))dx

∣∣∣∣ ≤ ∫
Ω

α(x)f0(x)|u(x)|q+1dx ≤

≤ Cf

∫
Ω

α(x)|u(x)|q+1w(x)dx ≤ Cf

∫
Ω

α(x)w(x)
1
ν |u(x)|q+1w(x)

1
ν′ dx ≤

≤ Cf

(∫
Ω

α(x)νw(x)dx

) 1
ν

(∫
Ω

|u(x)|ν
′(q+1)w(x)dx

) 1
ν′

=

= Cf ||α||ν,Ω,w

(∫
Ω

|u(x)|pw(x)dx

) q+1
p

= Cf ||α||ν,Ω,w||u||q+1
p,Ω,w ≤

≤ Cf ||α||ν,Ω,wCq+1
p,w ||u||q+1

v0,v1
≤ Cf ||α||ν,Ω,wCq+1

p,w (2K)−
q+1
2 ||u||q+1

A =
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= C||u||q+1
A ,

which means that the functional J is well defined over XA.

We prove now, that J is sequentially weakly continuous. Let {un} be a

sequence in XA, weakly convergent to some u ∈ XA. Then, by the embedding (E),

it follows that ||un − u||p,Ω,w → 0.

We use the following result: for all s ∈ (0,∞) there is a constant Cs > 0 such

that

(x + y)s ≤ Cs(xs + ys), for any x, y ∈ (0,∞). (6)

Applying the (6), the Hölder inequalities and the Mean Value Theorem, we

obtain

|J(un)− J(u)| =
∣∣∣∣∫

Ω

α(x)F (un(x))dx−
∫

Ω

α(x)F (u(x))dx

∣∣∣∣ ≤
≤

∫
Ω

α(x)|F (un(x))− F (u(x))|dx =

=
∫

Ω

α(x)|f((1− θ)un(x) + θu(x))||un(x)− u(x)|dx ≤

≤
∫

Ω

α(x)f0(x) |(1− θ)un(x) + θu(x)|q |un(x)− u(x)|dx ≤

≤
∫

Ω

α(x)f0(x) ((1− θ)|un(x)|q + θ|u(x)|q) |un(x)− u(x)|dx ≤

≤ Cf

∫
Ω

α(x)w(x)
1
ν (|un(x)|q + |u(x)|q) |un(x)− u(x)|w(x)

1
ν′ dx ≤

≤ Cf ||α||ν,Ω,w

(∫
Ω

(|un(x)|q + |u(x)|q)ν′ |un(x)− u(x)|ν
′
w(x)dx

) 1
ν′

=

= Cf ||α||ν,Ω,wC1·

·
[∫

Ω

(
|un(x)|

pq
q+1 + |u(x)|

pq
q+1

)
w(x)

q
q+1 (|un(x)− u(x)|p)

1
q+1 w(x)

1
q+1 dx

] 1
ν′

≤

≤ Cf ||α||ν,Ω,wC1

[(∫
Ω

|un(x)|pw(x)dx

) q
q+1

+
(∫

Ω

|u(x)|pw(x)dx

) q
q+1

] 1
ν′

·

·
(∫

Ω

|un(x)− u(x)|pw(x)dx

) 1
q+1 ·

1
ν′

=

= Cf ||α||ν,Ω,wC1

(
||un||

pq
q+1
p,Ω,w + ||u||

pq
q+1
p,Ω,w

) q+1
p

||un − u||p,Ω,w ≤

≤ Cf ||α||ν,Ω,wC1C2

(
||un||qp,Ω,w + ||u||qp,Ω,w

)
||un − u||p,Ω,w ≤
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≤ Cf ||α||ν,Ω,wC1C2C
q
p,w

(
||un||qv0,v1

+ ||u||qv0,v1

)
||un − u||p,Ω,w,

≤ Cf ||α||ν,Ω,wC1C2C
q
p,w(2K)

−q
2 (||un||qA + ||u||qA) ||un − u||p,Ω,w,

where θ ∈]0, 1[ is the constant from the Mean Value Theorem, C1, C2 are the constants

from the inequality (6) and K is the constant from the ellipticity condition (K).

Since {un} is weakly convergent to u ∈ XA, we can assume without loss of

generality that there exist a constant M > 0 such that

||un||A ≤ M and ||un − u||A ≤ M, for all n ∈ N.

Then we have

|J(un)− J(u)| ≤ ||α||ν,Ω,wCfC1C2C
q
p,w(2K)

−q
2 2Mq · ||un − u||p,Ω,w,

concluding that J(un) → J(u), whenever n →∞. �

Now, for a given u0 ∈ XA and for λ > 0, we can define the energy functional

Eλ : XA → R related to the problem (Pλ) by

Eλ(u) =
1
2
||u− u0||2A − λJ(u).

We observe, that for every v ∈ XA, we have

〈E ′λ(u), v〉A = 〈u− u0, v〉A − λ

∫
Ω

α(x)f(u(x))v(x)dx. (7)

Hence the critical points of the energy functional Eλ are exactly the weak

solutions of the problem (Pλ). Therefore, instead of looking for solutions of the

problem (Pλ), we are seeking for the critical points of Eλ.

In the next lemmas we prove two properties of the energy functional, namely

that Eλ is coercive and it satisfies the Palais-Smale condition, for every λ > 0.

Lemma 2.3. Let the conditions (f), (K), (α) be satisfied. Then the functional Eλ is

coercive, for every λ > 0.
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ILDIKÓ ILONA MEZEI AND TÜNDE KOVÁCS

Proof. Using again the Hölder’s inequality combined with the conditions (f) and

(E), we obtain

Eλ(u) =
1
2
||u− u0||2A − λ

∫
Ω

α(x)F (u(x))v(x)dx ≥

≥ 1
2
||u− u0||2A − λ

∫
Ω

α(x)f0(x)|u(x)|q+1dx ≥

≥ 1
2
||u− u0||2A − λCf

∫
Ω

α(x)w(x)
1
ν |u(x)|q+1w(x)

1
ν′ dx ≥

≥ 1
2
||u− u0||2A − λCf

(∫
Ω

α(x)νw(x)dx

) 1
ν

(∫
Ω

|u(x)|(q+1)ν′w(x)dx

) 1
ν′

=

=
1
2
||u− u0||2A − λCf ||α||ν,Ω,w||u||q+1

p,Ω,w ≥

≥ 1
2
||u− u0||2A − λCfCq+1

p,w ||α||ν,Ω,w||u||q+1
v0,v1

≥

≥ 1
2
||u− u0||2A − λCfCq+1

p,w ||α||ν,Ω,w(2K)
−q−1

2 ||u||q+1
A .

Therefore Eλ(u) →∞, whenever ||u||A →∞, since q + 1 < 2. �

Lemma 2.4. Assume that (f), (K), (α) are satisfied. Then Eλ satisfies the Palais-

Smale condition for every λ > 0.

Proof. Let {un} ⊂ XA be an arbitrary Palais-Smale sequence for Eλ, i.e.

(a) {Eλ(un)} is bounded;

(b) E ′λ(un) → 0, as n →∞.

We will prove that {un} contains a strongly convergent subsequence in XA.

From the coercivity of Eλ, it follows that {un} is bounded, hence we can find a

subsequence, which we still denote by {un}, weakly convergent to a point u ∈ XA.

Then by the embedding condition (E), {un} tends strongly to u in Lp(Ω;w), so

||un − u||p,Ω,w → 0, as n →∞.

Since the sequence from (b) tends to 0, for n ∈ N big enough, we have∣∣∣∣〈E ′λ(un),
un

||un||A
〉A

∣∣∣∣ ≤ ε,

or equivalently

|〈E ′λ(un), un〉A| ≤ ε||un||A.
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Then, by (7) we get

〈un − u0, un〉A − λ

∫
Ω

α(x)f(un(x))un(x)dx ≤ ε||un||A.

Rearranging the inequality and taking the absolute value, we obtain

|〈un − u0, un〉A| ≤ ε||un||A + λ

∫
Ω

α(x)|f(un(x))un(x)|dx.

After simple computations this inequality gives us

||un − u||2A ≤ |〈un − u0, un − u〉A|+ |〈u0 − u, un − u〉A| ≤

≤ |〈un, un − u〉A|+ |〈u, un − u〉A|+ 2|〈u0, un − u〉A| ≤

≤ 4ε||un − u||A + λ

∫
Ω

α(x)|f(un(x))(un(x)− u(x))|dx+

+λ

∫
Ω

α(x)|f(u(x))(un(x)− u(x))|dx + λ

∫
Ω

α(x)|f(u0(x))(un(x)− u(x))|dx.

Now, we will estimate the integrals from the above inequality using the in-

equalities of Hölder, the ellipticity condition (K) and the embedding condition (E).

The first integral can be estimated as follows∫
Ω

α(x)|f(un(x))(un(x)− u(x))|dx ≤

≤ Cf

∫
Ω

α(x)w(x)
1
ν |un(x)|q|un(x)− u(x)|w(x)

1
ν′ dx ≤

≤ Cf ||α||ν,Ω,w

(∫
Ω

|un(x)|qν′ |un(x)− u(x)|ν
′
w(x)dx

) 1
ν′

=

= Cf ||α||ν,Ω,w

(∫
Ω

(|un(x)|pw(x))
q

q+1 (|un(x)− u(x)|pw(x))
1

q+1 dx

) 1
ν′

≤

≤ Cf ||α||ν,Ω,w

[(∫
Ω

|un(x)|pw(x)dx

) q
q+1

(∫
Ω

|un(x)− u(x)|pw(x)dx

) 1
q+1

] q+1
p

=

= Cf ||α||ν,Ω,w||un||qp,Ω,w||un − u||p,Ω,w ≤

≤ Cf ||α||ν,Ω,wCq
p,w||un||qv0,v1

||un − u||p,Ω,w ≤

≤ Cf ||α||ν,Ω,wCq
p,w(2K)

−q
2 Mq||un − u||p,Ω,w

where in the last inequality we used that {un} is bounded, hence there is a constant

M > 0 such that ||un||A < M , ||u||A < M .
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Proceeding in the same manner for the other two integrals, we obtain:∫
Ω

α(x)|f(u(x))(un(x)− u(x))|dx ≤ Cf ||α||ν,Ω,wCq
p,w(2K)

−q
2 Mq||un − u||p,Ω,w∫

Ω

α(x)|f(u0(x))(un(x)− u(x))|dx ≤ Cf ||α||ν,Ω,wCq
p,w(2K)

−q
2 ||u0||qA||un − u||p,Ω,w.

Then, we have

||un − u||2A ≤ 4ε||un − u||A +

+λCf ||α||ν,Ω,wCq
p,w(2K)

−q
2 (2Mq + ||u0||qA)||un − u||p,Ω,w.

Since ε > 0 was arbitrarily choosen, ||un − u||A is bounded, ||u0||p,Ω,w is

finite (u0 being given) and ||un − u||p,Ω,w tends to 0 as n → ∞, we conclude that

||un − u||A → 0, whenever n →∞. �

We conclude this section by recalling two results which will be used in proofs

of the next section. The first one is a topological minimax theorem due to B. Ricceri:

Theorem 2.1. [10, Theorem 1 and Remark 1] Let X be a topological space, Γ a real

interval, and f : X × Γ → R a function satisfying the following conditions:

(A1) for every x ∈ X, the function f(x, ·) is quasi-concave and continuous;

(A2) for every λ ∈ Γ, the function f(·, λ) is lower semicontinuous and each of

its local minima is a global minimum;

(A3) there exist ρ0 > supΓ infX f and λ0 ∈ Γ such that {x ∈ X : f(x, λ0) ≤ ρ0}

is compact.

Then,

sup
Γ

inf
X

f = inf
X

sup
Γ

f.

The next result of Tsar’kov is from the theory of best approximation in

Banach spaces.

Theorem 2.2. [12, Theorem 2] Let X be an uniformly convex Banach space, with

strictly convex topological dual, M a sequentially weakly closed, non-convex subset of

X. Then, for any convex, dense subset S of X, there exists x0 ∈ S such that the set

{y ∈ M : ||y − x0|| = d(x0,M)}

contains at least two distinct points.
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3. Main result

The main theorem of our paper is the following

Theorem 3.1. Let Ω ⊆ RN be an unbounded domain with smooth boundary ∂Ω or

Ω = RN (N ≥ 2). Suppose that W 1,2(Ω; v0, v1) satisfies the embedding property (E)

and XA is the space defined by (4). Let f : R → R be a continuous function satisfying

the condition (f) and let α : Ω → R be a strictly positive function satisfying (α).

Then for every σ ∈] inf
XA

J, sup
XA

J [ and every u0 ∈ J−1(] − ∞, σ[), one of the

following assertions is true:

(B1) there exists λ > 0 such that the problem (Pλ) has at least three solutions

in XA;

(B2) there exists v ∈ J−1(σ) such that for all u ∈ J−1([σ,∞[), u 6= v,

||u− u0||A > ||v − u0||A.

Proof. Fix λ and u0 as in the statement of the theorem and assume that (B1) does

not hold. We shall prove that (B2) is true.

Choosing Λ = [0,∞) and endowing XA with the weak topology, we define

the function g : XA × Λ → R by

g(u, λ) =
||u− u0||2A

2
+ λ(σ − J(u)).

We show that all the hypotheses of Theorem 2.1 are satisfied.

(A1): It is trivial.

(A2): Let λ > 0 be fixed. By Lemma 2.2, the functional g(·, λ) is sequentially

weakly continuous. Moreover, g(·, λ) is coercive. Indeed, using Lemma 2.3, we have

the following inequality for all u ∈ XA

g(u, λ) ≥ 1
2
||u− u0||2A − λCfCq+1

p,w (2K)
−q−1

2 ||α||ν,Ω,w||u||q+1
A + λσ.

Since q+1 < 2, the right-hand side of the above inequality goes to +∞ as ||u||A →∞.

Then, as a consequence of the Eberlain-Smulian theorem, g(·, λ) is weakly

continuous.

It remains to check that every local minima of g(·, λ) is a global minimum.

Arguing by contradiction, we suppose that g(·, λ) has a local minimum, which is
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not global minimum. Besides, g(·, λ) being coercive and satisfying the Palais-Smale

condition (which results from Lemma 2.4), it has a global minimum too. Then using

the Eberlain-Smulian theorem, it follows that it has two strong local minima. Hence,

by the Mountain-Pass theorem (see [9]) results that g(·, λ) (or equivalently the energy

functional Eλ) admits a third critical point. Therefore the problem (Pλ) should have

at least three solutions in XA, against our assumption, that (B1) does not hold. Thus,

the condition (A2) is fulfilled.

(A3): We observe that there exists some u1 ∈ XA such that J(u1) > σ, so

sup
λ∈Λ

inf
u∈XA

g(u, λ) ≤ sup
λ∈Λ

g(u1, λ) =
||u1 − u0||A

2
< ∞,

hence (A3) is satisfied.

Now, Theorem 2.1 assures that

sup
λ∈Λ

inf
u∈XA

g(u, λ) = inf
u∈XA

sup
λ∈Λ

g(u, λ) := α. (8)

We observe, that the function λ 7→ infu∈XA
g(u, λ) tends to −∞ as λ → ∞

(since σ < supu∈XA
J(u)) and it is upper semicontinuous in Λ. Hence, it attains its

supremum in some λ̄ ∈ Λ, that is,

α = inf
u∈XA

g(u, λ̄) = inf
u∈XA

(
||u− u0||2A

2
+ λ̄(σ − J(u))

)
. (9)

We will determine the infimum in the right-hand side of (8). Since for any

u ∈ J−1(]−∞, σ[) we have supλ∈Λ g(u, λ) = ∞, it follows that

α = inf
u∈J−1([σ,∞[)

||u− u0||2A
2

.

Then, since the functional u 7→ ||u−u0||2A
2 is coercive and sequentially weakly lower

semicontinuous while the set J−1([σ,∞[) is sequentially weakly closed, there exists

v ∈ J−1([σ,∞[) such that it attains its infimum in v, that is

α =
||v − u0||2A

2
.

We can observe that v is actually belonging to J−1(σ), so we can write

α = inf
u∈J−1(σ)

||u− u0||2A
2

> 0, (10)

where the inequality is motivated by the choice of u0 in the assertion of the theorem.

110



MULTIPLE SOLUTIONS FOR A HOMOGENEOUS SEMILINEAR ELLIPTIC PROBLEM

Combining (9) and (10) yields that

inf
u∈XA

(
||u− u0||2A

2
+ λ̄(σ − J(u))

)
= inf

u∈J−1(σ)

||u− u0||2A
2

, (11)

which became after a rearrangment of the equation

inf
u∈XA

(
||u− u0||2A

2
− J(u)

)
= inf

u∈J−1(σ)

(
||u− u0||2A

2
− λ̄σ

)
. (12)

Now, we prove that λ̄ > 0. Arguing by contradiction, we suppose that λ̄ = 0.

Then by (9) we get, that α = 0, against (10).

Finally, we prove (B2), namely we prove that v defined above is the only

point of J−1([σ,+∞[) minimizing the distance from u0. We argue by contradiction.

Let w ∈ J−1([σ,+∞[) be such that ||w−u0||A = ||v−u0||A and w is different

from v. As above, we have that w ∈ J−1(σ), so w and v are global minima of the

functional Eλ over J−1(σ) for λ = λ̄. Hence, by (12) both w and v are global minima

for Eλ over the all space XA. Thus, applying the mountain pass theorem again (see

[9]), we obtain that Eλ has at least three critical points, against the assumption that

(B1) does not hold (recall λ̄ is positive). This concludes the proof. �

In the next corollary the alternative of Theorem 3.1 is resolved, so we obtain

a multiplicity result for the problem (Pλ).

Corollary 1. Let Ω, f, α, XA be as in the Theorem 3.1 and let S be a con-

vex, dense subset of XA. Moreover, let J−1([σ,+∞[) be not convex for some

σ ∈] infXA
J, supXA

J [.

Then there exist u0 ∈ J−1(] −∞, σ[) ∩ S and λ > 0 such that the problem

(Pλ) admits at least tree solutions.

Proof. From Lemma 2.2, it follows that J is sequentially weakly continuous, hence

the set M = J−1(]σ,+∞[) is sequentially weakly closed. Since M is not convex, we

can apply the Theorem 2.2, which assures the existence of some u0 ∈ S, such that

the set {y ∈ M : ||y − u0||A = d(u0,M)} contains at least two distinct points. So,

there exist two different points v1, v2 ∈ M such that

||v1 − u0||A = ||v2 − u0||A = d(u0,M).
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Clearly u0 /∈ M , so u0 ∈ J−1(]−∞, σ[). Then the condition (B2) in Theorem 3.1 is

false, so (B1) must be true, which means that there exist λ > 0 such that (Pλ) has

at least three solutions in XA. �
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