STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LIV, Number 3, September 2009

EXISTENCE AND DATA DEPENDENCE FOR MULTIVALUED WEAKLY CONTRACTIVE OPERATORS

LILIANA GURAN

Abstract. The purpose of this paper is to study the data dependence for the fixed point set of a multivalued weakly contractive operator with respect to a *w*-distance in the sense of T. Suzuki and W. Takahashi. We also give a fixed point result for a multivalued weakly φ -contraction on a metric space endowed with a *w*-distance.

1. Introduction

Let (X, d) be a metric space. A singlevalued operator T from X into itself is called *r*-contractive (see [2]) if there exists a real number $r \in [0, 1)$ such that $d(T(x), T(y)) \leq rd(x, y)$ for every $x, y \in X$. It is well know that if X is a complete metric space then a contractive operator from x into itself has a unique fixed point in X.

In 1996, the Japanese mathematicians O. Kada, T. Suzuki and W. Takahashi introduced the concept of w-distance (see[2]) and discussed some properties of this functional. Later on, T. Suzuki and W. Takahashi gave some fixed points results for a new class of nonlinear operators, namely the so-called weakly contractive operators (see[3]).

The purpose of this paper is to study the data dependence for the fixed point set of a multivalued weakly contractive operator with respect to a w-distance in the sense of T. Suzuki and W. Takahashi, see [3]. We also give a fixed point result for a

Received by the editors: 01.10.2008.

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. w-distance, weakly φ -contraction, fixed point, multivalued operator.

This paper was presented at the 7-th Joint Conference on Mathematics and Computer Science,

July 3-6, 2008, Cluj-Napoca, Romania.

multivalued weakly φ -contraction on a metric space endowed with a *w*-distance. For connected results see [6], [4].

2. Preliminaries

Let (X, d) be a complete metric space. We will use the following notations (see also [1], [5]).

P(X) - the set of all nonempty subsets of X; $\mathcal{P}(X) = P(X) \bigcup \emptyset$ $P_{cl}(X)$ - the set of all nonempty closed subsets of X; $P_b(X)$ - the set of all nonempty bounded subsets of X; $P_{b,cl}(X)$ - the set of all nonempty bounded and closed subsets of X;

We introduce now the following generalized functionals on a b-metric space

(X, d).

The gap functional:

(1)
$$D: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+ \cup \{+\infty\}$$

$$D(A, B) = \begin{cases} \inf\{d(a, b) | \ a \in A, \ b \in B\}, & A \neq \emptyset \neq B \\ 0, & A = \emptyset = B \\ +\infty, & \text{otherwise} \end{cases}$$

In particular, if $x_0 \in X$ then $D(x_0, B) := D(\{x_0\}, B)$.

The excess generalized functional:

(2)
$$\rho : \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+ \cup \{+\infty\}$$

$$\rho(A, B) = \begin{cases} \sup\{D(a, B) \mid a \in A\}, & A \neq \emptyset \neq B \\ 0, & A = \emptyset \\ +\infty, & B = \emptyset \neq A \end{cases}$$

Pompeiu-Hausdorff generalized functional:

(3)
$$H: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+ \cup \{+\infty\}$$

68

EXISTENCE AND DATA DEPENDENCE FOR MULTIVALUED WEAKLY CONTRACTIVE OPERATORS

$$H(A,B) = \begin{cases} \max\{\rho(A,B), \rho(B,A)\}, & A \neq \emptyset \neq B\\ 0, & A = \emptyset = B\\ +\infty, & \text{othewise} \end{cases}$$

Delta functional:

(4)
$$\delta: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+ \cup \{+\infty\}$$

$$\delta(A,B) = \begin{cases} \sup\{d(a,b) : a \in A, b \in B\}, & A \neq \emptyset \neq B\\ 0, & A = \emptyset = B\\ +\infty, & \text{othewise} \end{cases}$$

In particular, $\delta(A) := \delta(A, A)$ is the diameter of the set A.

It is known that $(P_{b,cl}(X), H)$ is a complete metric space provided (X, d) is a complete metric space.

We will denote by $FixF := \{x \in X \mid x \in F(x)\}$, the set of the fixed points of F.

The concept of w-distance was introduced by O. Kada, T. Suzuki and W. Takahashi (see[2]) as follows:

Let (X,d) be a metric space. Then, the functional $w : X \times X \to [0, \infty)$ is called w-distance on X if the following axioms are satisfied :

- 1. $w(x,z) \leq w(x,y) + w(y,z)$, for any $x, y, z \in X$;
- 2. for any $x \in X : w(x, \cdot) : X \to [0, \infty)$ is lower semicontinuous;
- 3. for any $\varepsilon > 0$, exists $\delta > 0$ such that $w(z, x) \le \delta$ and $w(z, y) \le \delta$ implies $d(x, y) \le \varepsilon$.

Let us give some examples of w-distance (see [2])

Example 2.1. Let (X, d) be a metric space. Then the metric "d" is a w-distance on X.

Example 2.2. Let X be a normed linear space with norm $|| \cdot ||$. Then the function $w: X \times X \to [0, \infty)$ defined by w(x, y) = ||x|| + ||y|| for every $x, y \in X$ is a w-distance.

Example 2.3. Let (X,d) be a metric space and let $g : X \to X$ a continuous mapping. Then the function $w : X \times Y \to [0, \infty)$ defined by:

$$w(x,y) = max\{d(g(x),y), d(g(x),g(y))\}\$$

for every $x, y \in X$ is a w-distance.

For the proof of the main results we need the following crucial result for w-distance (see[3]).

Lemma 2.4. Let (X, d) be a metric space, and let w be a w-distance on X. Let (x_n) and (y_n) be two sequences in X, let (α_n) , (β_n) be sequences in $[0, +\infty[$ converging to zero and let $x, y, z \in X$. Then the following hold:

- 1. If $w(x_n, y) \leq \alpha_n$ and $w(x_n, z) \leq \beta_n$ for any $n \in \mathbb{N}$, then y = z.
- 2. If $w(x_n, y_n) \leq \alpha_n$ and $w(x_n, z) \leq \beta_n$ for any $n \in \mathbb{N}$, then (y_n) converges to z.
- 3. If $w(x_n, x_m) \leq \alpha_n$ for any $n, m \in \mathbb{N}$ with m > n, then (x_n) is a Cauchy sequence.
- 4. If $w(y, x_n) \leq \alpha_n$ for any $n \in \mathbb{N}$, then (x_n) is a Cauchy sequence.

3. Data dependence for w-contractive multivalued operators

In [3]. the definition of a weakly contractive multivalued operator is given, as follows.

Definition 3.1. Let X be a metric space with metric d. A multivalued operator $T: X \to P(X)$ is called weakly contractive or w-contractive if there exists a wdistance w on X and $r \in [0, 1)$ such that for any $x_1, x_2 \in X$ and $y_1 \in T(x_1)$ there is $y_2 \in T(x_2)$ with $w(y_1, y_2) \leq rw(x_1, x_2)$.

Then, in the same paper, T. Suzuki and W. Takahashi gave the following fixed point result for a multivalued weakly contractive operator (see Theorem 1, [3]). **Theorem 3.2.** Let X be a complete metric space and let $T : X \to P(X)$ be a wcontractive multivalued operator such that for any $x \in X$, T(x) is a nonempty closed subset of X. Then there exists $x_0 \in X$ such that $x_0 \in T(x_0)$ and $w(x_0, x_0) = 0$. 70 The main result of this section is the following data dependence theorem with respect to the fixed point set of the above class of operators.

Theorem 3.3. Let (X, d) be a complete metric space, $T_1, T_2 : X \to P_{cl}(X)$ be two w-contractive multivalued operators with $r_i \in [0, 1)$ with $i = \{1, 2\}$. Then the following are true:

- 1. $FixT_1 \neq \emptyset \neq FixT_2;$
- 2. We suppose that there exists $\eta > 0$ such that for every $u \in T_1(x)$ there exists $v \in T_2(x)$ such that $w(u, v) \leq \eta$, (respectively for every $v \in T_2(x)$ there exists $u \in T_1(x)$ such that $w(v, u) \leq \eta$).

Then for every $u^* \in FixT_1$ there exists $v^* \in FixT_2$ such that

$$w(u^*, v^*) \leq \frac{\eta}{1-r}$$
, where $r = r_i$ for $i = \{1, 2\}$;

(respectively for every $v^* \in FixT_2$ there exists $u^* \in FixT_1$ such that

 $w(v^*, u^*) \leq \frac{\eta}{1-r}$, where $r = r_i$ for $i = \{1, 2\}$)

Proof. Let $u_0 \in FixT_1$, then $u_0 \in T_1(u_0)$. Using the hypothesis 2. we have that there exists $u_1 \in T_2(u_0)$ such that $w(u_0, u_1) \leq \eta$.

Since T_1, T_2 are weakly contractive with $r_i \in [0, 1)$ and $i = \{1, 2\}$ we have that for every $u_0, u_1 \in X$ with $u_1 \in T_2(u_0)$ there exists $u_2 \in T_2(u_1)$ such that

$$w(u_1, u_2) \le rw(u_0, u_1)$$

For $u_1 \in X$ and $u_2 \in T_2(u_1)$ there exists $u_3 \in T_2(u_2)$ such that

$$w(u_2, u_3) \le rw(u_1, u_2) \le r^2 w(u_0, u_1)$$

By induction we obtain a sequence $(u_n)_{n \in \mathbb{N}} \in X$ such that

- (1) $u_{n+1} \in T_2(u_n)$, for every $n \in \mathbb{N}$;
- (2) $w(u_n, u_{n+1}) \le r^n w(u_0, u_1)$

For $n, p \in \mathbb{N}$ we have the inequality

$$w(u_n, u_{n+p}) \le w(u_n, u_{n+1}) + w(u_{n+1}, u_{n+2}) + \dots + w(u_{n+p-1}, u_{n+p}) \le$$

$$< r^n w(u_0, u_1) + r^{n+1} w(u_0, u_1) + \dots + r^{n+p-1} w(u_0, u_1) \le$$

$$\le \frac{r^n}{1-r} w(u_0, u_1)$$

71

By the Lemma 2.4.(3) we have that the sequence $(u_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. Since (X, d) is a complete metric space we have that there exists $v^* \in X$ such that $u_n \xrightarrow{d} v^*$.

By the lower semicontinuity of $w(x, \cdot) : X \to [0, \infty)$ we have

$$w(u_n, v^*) \le \lim_{p \to \infty} \inf w(u_n, u_{n+p}) \le \frac{r^n}{1 - r} w(u_0, u_1)$$
 (1)

For $u_{n-1}, v^* \in X$ and $u_n \in T_2(u_{n-1})$ there exists $z_n \in T_2(v^*)$ such that, using relation (1), we have

$$w(u_n, z_n) \le rw(u_{n-1}, v^*) \le \frac{r^{n-1}}{1-r}w(u_0, u_1)$$
(2)

Applying Lemma 2.4.(2), from relations (1) and (2) we have that $z_n \xrightarrow{d} v^*$.

Then, we know that $z_n \in T_2(v^*)$ and $z_n \xrightarrow{d} v^*$. In this case, by the closure of T_2 result that $v^* \in T_2(v^*)$. Then, by $w(u_n, v^*) \leq \frac{r^n}{1-r}w(u_0, u_1)$, with $n \in \mathbb{N}$, for n = 0 we obtain

$$w(u_0, v^*) \le \frac{1}{1-r}w(u_0, u_1) \le \frac{\eta}{1-r}$$

which completes the proof.

4. Existence of fixed points for multivalued weakly φ -contractive operators

Let us define first, the notion of multivalued weakly φ -contractive operator. **Definition 4.1.** Let (X, d) be a metric space and $T : X \to P(X)$ be a multivalued operator. Then T is called weakly φ -contractive if there exists a w-distance on X and a function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that for every x_1, x_2 and $y_1 \in T(x_1)$ there is $y_2 \in T(x_2)$ with $w(y_1, y_2) \leq \varphi(w(x_1, x_2))$.

The main result is the following result for weakly φ -contractive operators.

Theorem 4.2. Let (X, d) be a complete metric space, $w : X \times X \to \mathbb{R}_+$ a w-distance on $X, T : X \to P_{cl}(X)$ be a multivalued operator and $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ a function such that are accomplish the following conditions:

1. T are weakly φ -contractive operator;

EXISTENCE AND DATA DEPENDENCE FOR MULTIVALUED WEAKLY CONTRACTIVE OPERATORS

2. The function φ is a monotone increasing function such that

$$\sigma(t) := \sum_{n=0}^{\infty} \varphi^n(t) < \infty, \text{ for every } t \in \mathbb{R}_+ \setminus \{0\}$$

Then there exists $x^* \in X$ such that $x^* \in T(x^*)$ and $w(x^*, x^*) = 0$.

Proof. First, we remark that condition (2) from hypothesis implies that $\varphi(t) < t$ for t < 0.

Fix $x_0 \in x$; for $x_1 \in T(x_0)$ there exists $x_2 \in T(x_1)$ such that

$$w(x_1, x_2) \le \varphi(w(x_0, x_1)).$$

For $x_1 \in X$ and $x_2 \in T(x_1)$ there exists $x_3 \in T(x_2)$ such that

$$w(x_2, x_3) \le \varphi(w(x_1, x_2)) \le \varphi(\varphi(w(x_0, x_1))) = \varphi^2(w(x_0, x_1)).$$

By induction we obtain a sequence $(x_n)_{n \in \mathbb{N}} \in X$ such that

(i) $x_{n+1} \in T(x_n)$, for $n \in \mathbb{N}$;

(ii) $w(x_n, x_{n+1}) \leq \varphi^n(w(x_0, x_1))$, for $n \in \mathbb{N}$.

For $n, p \in \mathbb{N}$ we have

$$w(x_n, x_{n+p}) \le w(x_n, x_{n+1}) + w(x_{n+1}, x_{n+2}) + \dots + w(x_{n+p-1}, x_{n+p}) \le < \varphi^n(w(x_0, x_1)) + \varphi^{n+1}(w(x_0, x_1)) + \dots + \varphi^{n+p-1}(w(x_0, x_1)) \le \\ \le \sum_{n=k}^{\infty} \varphi^k(w(x_0, x_1)) \le \sigma(w(x_0, x_1)).$$

Letting $n \to \infty$ we have

$$\lim_{n \to \infty} w(x_n, x_{n+p}) \le \lim_{n \to \infty} \sigma(\varphi^n(w(x_0, x_1))) = 0.$$

By the Lemma 2.4.(3) we have that the sequence $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. Since (X, d) is a complete metric space then there exists $x^* \in X$ such that $\lim_{n \to \infty} x_n = x^*$.

For $n, m \in \mathbb{N}$ with m > n from the above inequality we have

$$w(x_n, x_m) \le \sigma(\varphi^n(w(x_0, x_1))).$$

Since $(x_m)_{m\in\mathbb{N}}$ converge to x^* and $w(x_n, \cdot)$ is lower semicontinuous we have

$$w(x_n, x^*) \le \lim_{m \to \infty} \inf w(x_n, x_m) \le \lim_{m \to \infty} \sigma(\varphi^n(w(x_0, x_1))) \le \sigma(\varphi^n(w(x_0, x_1))).$$
73

So, for every $n \in \mathbb{N}$, $w(x_n, x^*) \leq \sigma(\varphi^n(w(x_0, x_1)))$ For $x^* \in X$ and $x_n \in T(x_{n-1})$ there exists $u_n \in T(x^*)$ such that

$$w(x_n, u_n) \le \varphi(w(x_{n-1}, x^*)) \le \varphi(\sigma(\varphi^{n-1}(w(x_0, x_1)))) < \sigma(\varphi^{n-1}(w(x_0, x_1)))$$

So, we know that:

$$w(x_n, u_n) \le \sigma(\varphi^{n-1}(w(x_0, x_1)))$$
$$w(x_n, u_n^*) \le \sigma(\varphi^n(w(x_0, x_1)))$$

$$w(x_n, x^*) \le \sigma(\varphi^n(w(x_0, x_1)))$$

Then, by the Lemma 2.4.(2), we obtain that $u_n \xrightarrow{d} x^*$. As $u_n \in T(x^*)$ and using the closure of T result that $x^* \in T(x^*)$.

For $x^* \in X$ and $x^* \in T(x^*)$, using the hypothesis (1), there exists $z_1 \in T(x^*)$ such that

$$w(x^*, z_1) \le \varphi(w(x^*, x^*)).$$

For $x^*, z_1 \in X$ and $x^* \in T(x^*)$ there exists $z_2 \in T(z_1)$ such that

$$w(x^*, z_2) \le \varphi(x^*, z_1).$$

By induction we get a sequence $(z_n)_{n \in \mathbb{N}} \in X$ such that

(i)
$$z_{n+1} \in T(z_n)$$
, for every $n \in \mathbb{N}$;

(ii) $w(x^*, z_n) \leq \varphi(w(x^*, z_{n-1}))$, for every $n \in \mathbb{N} \setminus \{0\}$.

Therefore we have

$$w(x^*, z_n) \le \varphi(w(x^*, z_{n-1})) \le \varphi(\varphi(w(x^*, z_{n-2}))) = \varphi^2(w(x^*, z_{n-2})) \le \dots \le \varphi^n(w(x^*, z_1)) \le \varphi^n(w(x^*, x^*)).$$

Thus $w(x^*, z_n) \le \varphi^n(w(x^*, x^*)).$

When $n \to \infty$, $\varphi^n(w(x^*, x^*))$ converge to 0. Thus, by the Lemma 2.4.(4) we obtain that $(z_n)_{n \in \mathbb{N}} \in X$ is a Cauchy sequence in (X, d) and there exists $z^* \in X$ such that $z_n \xrightarrow{d} z^*$.

Since $w(x^*, \cdot)$ is lower semicontinuous we have

$$0 \le w(x^*, z^*) \le \lim_{n \to \infty} \inf w(x^*, z_n) \le \lim_{n \to \infty} \varphi^n(w(x^*, x^*)) = 0.$$

74

EXISTENCE AND DATA DEPENDENCE FOR MULTIVALUED WEAKLY CONTRACTIVE OPERATORS

Then $w(x^*, z^*) = 0.$

So, by triangle inequality we have

 $w(x_n, z^*) \le w(x_n, x^*) + w(x^*, z^*) \le \sigma(\varphi^n(w(x_0, x_1))).$

Since $\sigma(\varphi^n(w(x_0, x_1)))$ converge to 0 when $n \to \infty$ we have

$$w(x_n, z^*) \le \sigma(\varphi^n(w(x_0, x_1)))$$
$$w(x_n, x^*) \le \sigma(\varphi^n(w(x_0, x_1)))$$

Using Lemma 2.4.(1) result that $z^* = x^*$, then $w(x^*, x^*) = 0$.

References

- [1] Dugundji, J., Granas, A., Fixed Point Theory, Berlin, Springer-Verlag, 2003.
- [2] Kada, O., Suzuki, T., Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica, 44(1996), 381-391.
- [3] Suzuki, T., Takahashi, W., Fixed points theorems and characterizations of metric completeness, Topological Methods in Nonlinear Analysis, Journal of Juliusz Schauder Center, 8(1996), 371-382.
- [4] Proinov, P.D., A generalization of the Banach contraction principle with high order of convergence of the successive approximations, 67(2007), 2361-2369.
- [5] Rus, I.A., Generalized Contractions and Applications, Presa Clujeană Universitară, Cluj-Napoca, 2001.
- [6] Rus, I.A., The theory of a metrical fixed point theorem: theoretical and applicative relevance, Fixed Point Theory, 9(2008), 541-559.

Department of Applied Mathematics, Babeş-Bolyai University, Cluj-Napoca, Romania *E-mail address*: gliliana.math@gmail.com \square