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STRONG AND CONVERSE FENCHEL DUALITY FOR VECTOR
OPTIMIZATION PROBLEMS IN LOCALLY CONVEX SPACES
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Abstract. In relation to the vector optimization problem v-minx∈X(f +

g ◦ A)(x), with f, g proper and cone-convex functions and A : X → Y

a linear continuous operator between separated locally convex spaces, we

define a general vector Fenchel-type dual problem. For the primal-dual

pair we prove weak, and under appropriate regularity conditions, strong

and converse duality. In the particular case when the image space is Rm

we compare the new dual with two other duals, whose definitions were

inspired from [9] and [10], respectively. The sets of Pareto efficient ele-

ments of the image sets of their feasible sets through the corresponding

objective functions prove to be equal, despite the fact that among the

image sets of the problems, strict inclusion usually holds. This equality

allows us to derive weak, strong and converse duality results for the later

two dual problems, from the corresponding results of the first mentioned

one. Our results could be implemented in various practical areas, since

they provide sufficient conditions for the existence of optimal solutions for

vector optimization problems defined on very general spaces. They can be

used in medical areas, for example in the study of chronical diseases and

in oncology.
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1. Introduction

Vector optimization problems have generated a great deal of interest during

the last years, not only from a theoretical point of view, but also from a practical

one, due to their applicability in different fields, such as economics, engineering and

lately in medical areas. In general, when dealing with scalar optimization problems,

the duality theory proves to be an important tool for giving dual characterizations

of the optimal solutions of a primal problem. Similar characterizations can also be

given for vector optimization problems.

An overview on the literature dedicated to this field shows that the general

interest has been centered on vector problems having inequality constraints and on

an extension of the classical Lagrange duality approach. We recall in this direction

the concepts developed by Mond and Weir in [23], [24] (whose formulation is based

on optimality conditions which follow from the scalar Lagrange duality). Tanino,

Nakayama and Sawaragi examined in [21] the duality for vector optimization in finite

dimensional spaces, using perturbations, which led them also to Lagrange-type duals.

They extended Rockafellar’s fully developed theory from [19] for scalar optimization

to the vector case. In Jahn’s paper [16] the Lagrange dual appears explicitly in the

formulation of the feasible set of the multiobjective dual.

Another approach is due to Boţ and Wanka, who, in [8] constructed a vector

dual using the Fenchel-Lagrange dual for scalar optimization problems, introduced by

the authors in [3], [6], [7].

With respect to the vector duality based on Fenchel’s duality concept, the

bibliography is not very rich. We mention in this direction the works of Breckner and

Kolumbán [10] and [11], continued by Breckner in [12], [13], Gerstewitz and Göpfert

[15], Malivert [18] as well as the recent paper of Boţ, Dumitru (Grad) and Wanka [9].

In relation to the vector optimization problem v-minx∈X(f + g ◦A)(x), with

f, g proper and cone-convex functions and A : X → Y a linear continuous operator

between separated locally convex spaces, we define a general vector Fenchel-type dual

problem. For this dual pairs of problems we prove weak, and under appropriate,
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quite general regularity conditions, strong and converse duality. In the particular

case when the image space is Rm, we compare the new dual with two other duals,

whose definitions were inspired from [9] and [10], respectively. Their sets of optimal

solutions prove to be equal, despite the fact among the image sets of the problems,

strict inclusion usually holds. This equality allows us to derive weak, strong and

converse duality results for the later two dual problems, from the corresponding results

of the first mentioned one.

The paper is organized as it follows. In Section 2 we recall some elements of

convex analysis which are used later on. Using the formulation of the scalarized dual,

we define in Section 3, the new vector dual problem. For it, we prove weak, strong and

converse duality. In order to be able to understand the position of our dual, among

other duals given in the literature, we present another Fenchel-type dual problems

inspired by Breckner and Kolumbán’s paper [11]. Weak, strong and converse duality

for the later problem can be proved, using the corresponding theorems for the initial

treated problems. Section 4 contains a further comparison, to a third dual problem,

this time inspired from Boţ, Dumitru (Grad) and Wanka, (cf. [9]). The image sets

of the three duals are tightly connected, as it is proved. Moreover, we illustrate by

some examples that in general these inclusions are strict. Finally, we show that even

though this happens, the sets of the maximal elements of the image sets of the feasible

sets through the corresponding objective functions coincide.

The practical applicability of our results is vast, since they provide, among

others, sufficient conditions for the existence of optimal solutions for a large area of

optimization problems, in both finite and infinite dimensional spaces. Such results

could be successfully applied in the study of chronical diseases, oncology, economy

and the list could continue.

2. Preliminaries

Let X be a real separated locally convex space, and let X∗ be its topological

dual. By 〈x∗, x〉 we understand the value of the linear continuous functional x∗ ∈ X∗

at x ∈ X.
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Given a function f : X → R := R ∪ {±∞}, its domain is the set

dom f := {x ∈ X : f(x) < +∞}.

We call f proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ X. The conjugate function

associated with f is f∗ : X∗ → R defined by

f∗(x∗) := sup
x∈X

{〈x∗, x〉 − f(x)} for all x∗ ∈ X∗.

The function f is said to be convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ X and all λ ∈ [0, 1].

Given a nonempty convex cone C ⊆ X, we denote by

C+ := {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0 for all x ∈ C}

its dual cone and by

C+0 := {x∗ ∈ X∗ : 〈x∗, x〉 > 0 for all x ∈ C\{0}}

the quasi-interior of the dual cone. The convex cone C induces on X a partial

ordering defined by x 5C y (denoted also by y =C x) if y − x ∈ C for all x, y ∈ X. If

y − x ∈ C \ {0} we use the notation x ≤C y (denoted also by y ≥C x).

There are notions referring to extended real-valued functions that can be

generalized to functions taking values in infinite dimensional spaces. Thus, let Y be

another real separated locally convex space partially ordered by the nonempty convex

cone K. To Y we attach a greatest element ∞Y with respect to 5K , which does not

belong to Y . Moreover, we set Y • := Y ∪ {∞K} and consider on Y • the following

operations: y +∞K = ∞K , t · ∞K = ∞K and 〈λ,∞K〉 = +∞ for all y ∈ Y , t ≥ 0

and λ ∈ K+.

For a function F : X → Y • its domain is defined by

dom F := {x ∈ X : F (x) ∈ Y }.
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If dom(F ) 6= ∅, then F is said to be proper. The most common extension of the

classical convexity of an extended real-valued function to a vector-valued function is

the notion of cone-convexity. Thus, F is said to be K − convex if

F (tx + (1− t)y) ≤K tF (x) + (1− t)F (y)

for all x, y ∈ X and all t ∈ [0, 1].

For each λ ∈ K+ we consider the function (λ F ) : X → R defined by

(λ F )(x) = 〈λ, F (x)〉 for all x ∈ X. In literature there are known several generaliza-

tions of the lower semicontinuity of extended real-valued functions to vector-valued

functions. Here we mention one of them. The function F is said to be star-K lower

semicontinuous if, for each λ ∈ K+, the function (λ F ) is lower semicontinuous.

If U is a nonempty subset of X we denote by linU its linear hull and by

cone U := ∪λ≥0λU its conic hull. The algebraic interior associated with U is the set

core U := {u ∈ U : ∀x ∈ X,∃δ > 0 s.t. ∀λ ∈ [0, δ] : u + λx ∈ U}.

When U is a convex set, then u ∈ core U if and only if cone(U − x) = X. In general,

we have intU ⊆ core U , where int U denotes the interior of U . When U is convex then

intU = core U if one of the following conditions is satisfied: intU 6= ∅; X is a Banach

space and U is closed; X is finite dimensional (cf. [20]). Further, by maintaining the

convexity assumption for U , one can define the strong quasi-relative interior of U ,

denoted by sqri U , as

sqriU := {u ∈ U : cone(U − u) is a closed linear subspace of X} (cf. [1]).

We notice that core U ⊆ sqriU . If X is finite dimensional, then sqriU = ri U , where

riU denotes the relative interior of the set U , i.e. the set of the interior points of U

relative to the affine hull of U .

3. Fenchel-Type Vector Duality

Let X, Y and V be real separated locally convex spaces, and let V be partially

ordered by a nonempty pointed convex cone K ⊆ V . We shall study the general vector
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optimization problem

(P ) v-min
x∈X

(f + g ◦A)(x),

where f : X → V • = V ∪ {∞K} and g : Y → V • are proper, K-convex functions and

A : X → Y is a linear continuous operator such that dom f ∩A−1(dom g) 6= ∅.

Due to the fact that the partial order induced on a vector space by a convex

cone is not total, several notions of optimal solutions for vector optimization problems

have been introduced during the years in the literature. For such definitions and their

properties we refer the reader to [17]. In this paper we work with Pareto-efficient and

properly efficient solutions. Particularly, for the problem (P ) we study the existence

of properly efficient solutions.

Definition 1. An element x ∈ X is a properly efficient solution to (P ) if there exists

v∗ ∈ K+0 such that

〈v∗, (f + g ◦A)(x)〉 ≤ 〈v∗, (f + g ◦A)(x)〉 for all x ∈ X.

Duality is an extremely used procedure in optimization. It consists in associ-

ating with a certain optimization problem, called primal problem, a new one, called

dual problem, whose solutions may characterize the optimal solutions of the primal

problem. In order to ensure strong and converse duality, respectively, certain regular-

ity conditions have to be imposed on the functions and sets involved in the definition

of the problems.

In this paper we treat three different types of dual problems associated with

the vector optimization problem (P ), for which which we prove weak, strong and

converse duality. Furthermore, we shall compare the image sets of the feasible sets

through the corresponding objective functions for the three problems.

The first dual associated with the primal vector optimization problem is

(D≤) v-max
(v∗,y∗,v)∈B≤

h≤(v∗, y∗, v),

where the feasible set is

B≤ = {(v∗, y∗, v) ∈ K+0 × Y ∗ × R : 〈v∗, v〉 ≤ −(v∗f)(−A∗y∗)− (v∗g)(y∗)},
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and the objective function is

h≤(v∗, y∗, v) = v.

For this new optimization problem, we are interested in investigating the

Pareto efficient solutions, defined below.

Definition 2. An element (v∗, y∗, v) ∈ B≤ is said to be an efficient (Pareto efficient)

solution to (D≤) if there exists no (v∗, y∗, v) ∈ B≤ such that

h≤(v∗, y∗, v) ≤K h≤(v∗, y∗, v).

As stated above, for a primal-dual pair of optimization problems, weak duality

must always hold, under general assumptions. This is the case for our problems, as

it is proved in the following theorem.

Theorem 1 (Weak Duality for (P )−(D≤)). There exist no x ∈ X and no (v∗, y∗, v) ∈

B≤ such that

(f + g ◦A)(x) ≤K h≤(v∗, y∗, v).

Proof . We proceed by contradiction, assuming that there exist x ∈ X and

(v∗, y∗, v) ∈ B≤ such that (f + g ◦ A)(x) ≤K h≤(v∗, y∗, v). This implies obviously

that x ∈ (dom f) ∩A−1(dom g). Due to the fact that v∗ ∈ K+0 it follows that

〈v∗, v〉 > 〈v∗, (f + g ◦A)(x)〉 ≥ inf
x∈X

{〈v∗, f(x)〉+ 〈v∗, (g ◦A)(x))〉} .

Moreover, from the weak duality theorem for the scalarized optimization problem on

the right hand side of the inequality above and its Fenchel dual, we have

inf
x∈X

{〈v∗, f(x)〉+ 〈v∗, (g ◦A)(x))〉} ≥ sup
y∗∈Y ∗

{−(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗)}.

Combining the relations above, we obtain

〈v∗, v〉 > −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗),

which contradicts the fact that (v∗, y∗, v) ∈ B≤. Hence the conclusion of the theorem

holds.
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In order to ensure strong duality between the previously mentioned problems,

a regularity condition has to be fulfilled. It actually ensures the existence of strong

duality for the scalar optimization problem

(Pv∗) inf
x∈X

{(v∗f)(x) + (v∗g)(Ax)}

and its Fenchel dual problem

(Dv∗) sup
y∗∈Y ∗

{−(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗)}

for all v∗ ∈ K+0. So, we are looking for sufficient conditions that are independent

from the choice of v∗ ∈ K+0.

The first regularity condition, which we mention at this point, is derived from

[14]. In the particular case of our problem it has the following formulation:

(RC1) ‖ ∃x0 ∈ dom f ∩A−1(dom g) such that g is continuous at A(x0).

When M ⊂ Y is a given set, we use the following notation:

A−1(M) := {x ∈ X : Ax ∈ M}.

In Fréchet spaces one can state the following regularity conditions for the primal-dual

pair (Pv∗)− (Dv∗):

(RC2)

∥∥∥∥∥∥∥∥∥
X and Y are Fréchet spaces,

f and g are star-K lower-semicontinuous,

and 0 ∈ sqri(dom g −A(dom f))

along with its stronger versions

(RC2′)

∥∥∥∥∥∥∥∥∥
X and Y are Fréchet spaces,

f and g are star-K lower-semicontinuous,

and 0 ∈ core(dom g −A(dom f))
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and

(RC2′′)

∥∥∥∥∥∥∥∥∥
X and Y are Fréchet spaces,

f and g are star-K lower-semicontinuous,

and 0 ∈ int(dom g −A(dom f)).

For more details with respect to these regularity conditions we refer the reader

to [2]. In the finite dimensional setting one can use the following regularity condition:

(RC3)

∥∥∥∥∥∥ dim(lin(dom g −A(dom f))) < +∞ and

ri(dom g) ∩ ri(A(dom f)) 6= ∅

which becomes in case X = Rn and Y = Rm

(RC4) ‖ ∃x′ ∈ ri(dom f) s.t. Ax′ ∈ ri(dom g) .

The condition (RC4) is the classical regularity condition for the scalar Fenchel duality

in finite dimensional spaces and has been stated by Rockafellar in [19].

A newly studied approach in giving sufficient conditions for strong duality is

the one employing closed cone constraint qualifications which turn out to be weaker

than the interior-type ones. For such conditions and their comparison to the interior-

type ones specified above, and others, we refer the reader to the paper by Boţ and

Wanka [5].

Theorem 2 (Strong Duality Theorem for (P ) − (D≤)). Assume that one of the

regularity conditions (RC1) − (RC3) is satisfied. If x ∈ X is a properly efficient

solution to (P ), then there exists an efficient solution (v∗, y∗, v) ∈ B≤ to (D≤) such

that (f + g ◦A)(x) = h≤(v∗, y∗, v) = v.

Proof . Due to the fact that x is a properly efficient solution to (D≤) we obtain that

x ∈ dom(f) ∩A−1(dom g) and that there exists a v∗ ∈ K+0 such that

〈v∗, (f + g ◦A)(x)〉 = inf
x∈X

{(v∗f)(x) + (v∗g)(Ax)}.

The functions (v∗f) and (v∗g) are proper and convex. The regularity assumption

guarantees the existence of strong duality for the scalarized optimization problem
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infx∈X{(v∗f)(x) + (v∗g)(Ax)} and its Fenchel dual. Thus there exists y∗ ∈ Y ∗ such

that

inf
x∈X

{(v∗f)(x) + (v∗g)(Ax)} = sup
y∗∈Y ∗

{−(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗)} =

= −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗).

By defining v := (f + g ◦ A)(x) ∈ V we obtain that (v∗, y∗, v) ∈ B≤. Now we prove

that it is an efficient solution to (D≤).

Let us assume by contradiction that this is not the case. This implies the

existence of (v∗, y∗, v) ∈ B≤ such that v = (f + g ◦A)(x) ≤K v = h≤(v∗, y∗, v) which

is a contradiction to the weak duality theorem, Theorem 1.

The forthcoming result plays a crucial role in proving the converse duality

theorem.

Theorem 3. Assume that one of the regularity conditions (RC1)− (RC3) is satisfied

and that B≤ 6= ∅. Then

V \ cl
{
(f + g ◦A)

(
dom f ∩A−1(dom g)

)
+ K

}
⊆ core h≤(B≤).

Proof . Let η ∈ V \ cl
{
(f + g ◦A)

(
(dom f ∩A−1(dom g)

)
+ K

}
be arbitrarily cho-

sen. Due to the fact that f and g are K-convex functions, A is a linear continuous

operator and K is a convex cone, we see that the set

(f + g ◦A)
(
dom f ∩A−1(dom g)

)
+ K

is convex, thus cl
{
(f + g ◦A)

(
dom f ∩A−1(dom g) + K

)}
is a closed and convex set.

According to a separation theorem (see [25]), we obtain the existence of η∗ ∈ V ∗ \{0}

and α ∈ R such that

〈η∗, η〉 < α < 〈η∗, b〉,∀b ∈ cl
{
(f + g ◦A)

(
dom f ∩A−1(dom g)

)
+ K

}
. (1)

We prove that η∗ ∈ K+ \ {0}. Let us suppose by contradiction that there exists a

k ∈ K such that 〈η∗, k〉 < 0. This means that for a fixed x0 ∈ dom(f) ∩ A−1(dom g)

the inequality

α < 〈η∗, (f + g ◦A)(x0)〉+ 〈η∗, tk〉
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holds for all t ≥ 0. Allowing now t → +∞, we obtain that α < −∞, which is obviously

a contradiction. Therefore, η∗ ∈ K+ \ {0}.

Due to the fact that B≤ 6= ∅, there exists (v∗, y∗, v) ∈ B≤, hence

〈v∗, v〉 ≤ −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗).

Applying the weak duality theorem for the scalarized problem

(Pv∗) inf
x∈X

〈v∗, (f + g ◦A)(x)〉

and its Fenchel dual, we have that

−(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗) ≤ inf
x∈X

〈v∗, (f + g ◦A)(x)〉,

and hence

〈v∗, v〉 ≤ inf
x∈X

〈v∗, (f + g ◦A)(x)〉. (2)

For each s ∈ (0, 1) we have that

〈sv∗ + (1− s)η∗, η〉 = 〈η∗, η〉+ s(〈v∗, η〉 − 〈η∗, η〉) = α− γ + s(〈v∗, v〉 − α + γ) (3)

with γ := α− 〈η∗, η〉 > 0. Furthermore, from (1) and (2) we obtain

〈sv∗ + (1− s)η∗, b〉 ≥ s〈v∗, v〉+ (1− s)α = α + s(〈v∗, v〉 − α) (4)

for all b ∈ (f + g ◦A)(dom f ∩A−1(dom g)). Thus there exists s ∈ (0, 1), close enough

to 0, such that s(〈v∗, v〉 − α + γ) < 1
2γ and s(〈v∗, v〉 − α) > − 1

2γ. For the convex

combination obtained with the help of s it holds

v∗s := sv∗ + (1− s)η∗ ∈ sK+0 + (1− s)(K+ \ {0}) ⊆ K+0 + K+ ⊆ K+0.

Thus, using (3) and (4), we obtain

〈v∗s , η〉 < α− 1
2
γ < 〈v∗s , b〉,∀b ∈ (f + g ◦A)(dom f ∩A−1(dom g)).

From the hypothesis we know that one of the regularity conditions holds. Thus, from

the strong duality for the scalar optimization problems (Pv∗)− (Dv∗) there exists an
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optimal solution y∗ of the dual (Dv∗), therefore

〈v∗s , η〉 < inf
x∈X

〈v∗s , (f + g ◦A)(x)〉 = sup
z∗∈Y ∗

{−(v∗sf)∗(−A∗z∗)− (v∗sg)∗(z∗)}

= −(v∗sf)∗(−A∗y∗)− (v∗sg)∗(y∗).

This means that there exists ε > 0 such that

〈v∗s , η〉+ ε < −(v∗sf)∗(−A∗y∗)− (v∗sg)∗(y∗).

For all p ∈ V there exists δp > 0 such that 〈v∗s , δpp〉 < ε, and thus

〈v∗s , η + λp〉 ≤ 〈v∗s , η〉+ ε < {−(v∗sf)∗(−A∗y∗)− (v∗sg)∗(y∗)} ,∀λ ∈ [0, δp].

Hence (v∗, y∗, η + λp) ∈ B≤ for all λ ∈ [0, δp], and further η + λp ∈ h≤(B≤), guaran-

teeing that η ∈ core(B≤).

Theorem 4 (Converse Duality Theorem for (P ) − (D≤)). Assume that one of the

regularity conditions (RC1)− (RC3) is satisfied and the set

(f + g ◦A)(dom f ∩A−1(dom g)) + K

is closed. Then for each efficient solution (v∗, y∗, v) ∈ B≤ to (D≤) there exists a

properly efficient solution x ∈ X to (P ), such that

(f + g ◦A)(x) = h≤(v∗, y∗, v) = v.

Proof . First we show that v ∈ (f + g ◦A)(dom f ∩A−1(dom g))+K. Let us proceed

by contradiction. This would mean, by using Theorem 3, that v ∈ core h≤(B≤). Thus

for a k ∈ K \ {0} there exists λ > 0 such that vλ := v + λk ∈ h≤(B≤). Furthermore,

vλ − v = λk ∈ K \ {0} and hence vλ ≥K v, a contradiction to the efficiency of

v ∈ h≤(B≤).

Thus v ∈ (f + g ◦ A)(dom f ∩ A−1(dom g)) + K. But this means that there

exist x ∈ (dom f ∩A−1(dom g) and k ∈ K such that

v = (f + g ◦A)(x) + k.
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By assuming that k 6= 0 we would obtain that h≤(v∗, y∗, v) = v ≥K (f + g ◦ A)(x),

a contradiction to the weak duality statement of Theorem 1. Hence k = 0 and thus

v = (f +g ◦A)(x). Employing now the definition of B≤ and the weak duality theorem

which holds for the scalarized optimization problem (Pv∗), we obtain

〈v∗, (f + g ◦A)(x)〉 = 〈v∗, v〉 ≤ −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗)

≤ inf
x∈X

〈v∗, (f + g ◦A)(x)〉.

Therefore, x is a properly efficient solution to (P ).

The scalar Fenchel duality was involved for the first time in the definition of a

vector dual problem by Breckner and Kolumbán, in [10], in a very general framework.

Inspired by the approach introduced in this work, one gets the following dual vector

optimization problem associated with (P )

(DBK) v-max
(v∗,y∗,v)∈BBK

hBK(v∗, y∗, v),

where

BBK := {(v∗, y∗, v) ∈ K+0 × Y ∗ × V : 〈v∗, v〉 = −(v∗f)∗(−A∗y∗)− (v∗g)(y∗)}

and

hBK(v∗, y∗, v) = v.

Remark 1. As it can be easily observed from the definition, without any other addi-

tional assumptions, the following inclusion holds:

hBK(BBK) ⊆ h≤(B≤).

Theorem 5. The following equality holds:

v-max hBK(BBK) = v-max h≤(B≤).

Proof . ” ⊆ ” Let (v∗, y∗, v) ∈ BBK be such that v ∈ v-max(hBK(BBK)). Then

v ∈ h≤(B≤). We suppose that v 6∈ v-max(h≤(B≤)). This means that there exists
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(v∗0 , y∗0 , v0) ∈ B≤ such that v0 ≥K v. Due to the maximality of v in hBK(BBK) we

have that (v∗0 , y∗0 , v0) 6∈ BBK , therefore

〈v∗0 , v0〉 < −(v∗0f)∗(−A∗y∗0)− (v∗0g)∗(y∗0).

Consequently there exists a k ∈ K \ {0} and vk := v0 + k such that

〈v∗0 , vk〉 = −(v∗0f)∗(−A∗y∗0)− (v∗0g)∗(y∗0),

which means that (v∗0 , y∗0 , vk) ∈ BBK and vk ≥K v0. Since this is a contradiction to

the maximality of v0, v-max hBK(BBK) ⊆ v-max h≤(B≤).

” ⊇ ” By taking (v∗, y∗, v) ∈ B≤ such that v ∈ v-max h≤(B≤) we prove that

it belongs to v-max hBK(BBK). The first step is to prove that (v∗, y∗, v) ∈ BBK .

Assuming the contrary, one has

〈v∗, v〉 < −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗)

and there exists k ∈ K \ {0} such that vk := v + k satisfies

〈v∗, v〉 < 〈v∗, vk〉 = −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗).

Since (v∗, y∗, v) ∈ B≤ and vk ≥K v, we have a contradiction to the maximality of v.

Hence (v∗, y∗, v) ∈ BBK .

We further suppose that v 6∈ v-max hBK(BBK). This means actually that

there exists (v∗, y∗, v) ∈ BBK ⊆ B≤ such that v ≥K v, which is actually a contradic-

tion to the maximality of v ∈ h≤(B≤). Therefore, v ∈ v-max hBK(BBK).

Remark 2. In the proof of the previous theorem, no assumptions regarding the nature

of the functions and sets involved in the formulation of (P ) were made. This means

that the sets of efficient elements of h≤(B≤) and hBK(BBK) are always identical.

Using the weak, strong and converse duality theorems between the dual pair

of vector optimization problems (P ) and (D≤), similar results can be proved for the

primal-dual pair (P )− (DBK).

Theorem 6. The following statements are true:
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a) (Weak duality) There exist no x ∈ X and no (v∗, y∗, v) ∈ BBK such that

(f + g ◦A)(x) ≤K hBK(v∗, y∗, v).

b) (Strong duality) Let one of the regularity conditions (RC1) − (RC3) be

satisfied. If x ∈ X is a properly efficient solution to (P ), then there exists

an efficient solution (v∗, y∗, v) ∈ BBK to (DBK) such that

(f + g ◦A)(x) = hBK(v∗, y∗, v) = v.

c) (Converse duality) Let one of the regularity conditions (RC1)− (RC3) be

satisfied and let (f + g ◦ A)(dom f ∩ A−1(dom g)) + K be a closed set.

Then for each efficient solution (v∗, y∗, v) ∈ BBK to (DBK), there exists

a properly efficient solution x ∈ X to (P ), such that

(f + g ◦A)(x) = hBK(v∗, y∗, v) = v.

Proof . a) It follows from Remark 1 and Theorem 1.

b) It follows from Theorem 5 and Theorem 2.

c) It follows from Theorem 5 and Theorem 4.

When V := R and K := R+, one can identify V • with R∪ {+∞}. Assuming

that f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} are proper and convex functions,

the primal problem becomes

(P ) inf
x∈X

(f + g ◦A)(x).

An element (v∗, y∗, v) ∈ B≤ if and only if v∗ > 0, y∗ ∈ Y ∗ and v ∈ R fulfill

v∗v ≤ −(v∗f)∗(−A∗y∗)− (v∗g)(y∗).

Using the characterization of the conjugate functions, we get that

(v∗f)∗(−A∗y∗) = v∗f∗(− 1
v∗

A∗y∗) and (v∗g)∗(y∗) = v∗g∗(
1
v∗

y∗).

Thus

v∗v ≤ −v∗f∗(− 1
v∗

A∗y∗)− v∗g∗(
1
v∗

y∗) ⇐⇒ v ≤ f∗(− 1
v∗

A∗y∗)− g∗(
1
v∗

y∗).
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The dual problem becomes

(D≤) sup
v∗>0,y∗∈Y ∗

{
−f∗(− 1

v∗
A∗y∗)− g∗(

1
v∗

y∗)
}

= sup
y∗∈Y ∗

{f∗(−A∗y∗)− g∗(y∗)}

which is exactly the classical scalar Fenchel dual problem to (PV ). The same con-

clusion applies when particularizing in an analogous manner the vector dual problem

(DVBK).

4. The case when V := Rm

In this section we focus our attention on the special case when V := Rm and

K := Rm
+ . In addition to the two dual problems studied before, we introduce a new

one, whose formulation was inspired from [9]. Nevertheless, a more particular case

was treated there, namely the one when X := Rn and Y := Rk.

The primal problem turns into

(P ) v-min
x∈X

(f(x) + (g ◦A)(x)),

where f and g are two vector functions such that

f = (f1, f2, ...fm)T and g = (g1, g2, ..., gm)T

with fi : X → R, gi : Y → R proper and convex functions for each i ∈ {1, ...,m}, and

A : X → Y is a linear continuous operator.

Furthermore, we assume that the following regularity condition is satisfied

(RCm)

∥∥∥∥∥∥∥
∃x′ ∈

m⋂
i=1

dom fi ∩A−1

(
m⋂

i=1

dom gi

)
such that

fi and gi are continuous at x′ for all i ∈ {1, ...,m}.

We consider the following dual optimization problem associated with (P ):

(DBGW ) v-max
(p,q,λ,t)∈BBGW

hBGW (p, q, λ, t),
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where

BBGW =



(p, q, λ, t) : p = (p1, ..., pm) ∈ (X∗)m,

q = (q1, ..., qm) ∈ (Y ∗)m

λ = (λ1, ..., λm) ∈ int Rm
+ ,

t = (t1, ..., tm) ∈ Rm,
m∑

i=1

λi (pi + A∗qi) = 0,
m∑

i=1

λiti = 0


,

and h is defined by

h (p, q, λ, t) = (h1 (p, q, λ, t) , ..., hm (p, q, λ, t)) ,

with

hi (p, q, λ, t) = −f∗i (pi)− g∗i (qi) + ti for all i ∈ {1, ...,m} .

Proposition 7. The following relations referring to the image sets of the three dual

problems hold:

a) hBK
(
BBK

)
⊆ hBGW

(
BBGW

)
∩ Rm;

b) hBGW
(
BBGW

)
∩ Rm ⊆ h≤

(
B≤
)
.

Proof . a) Let v ∈ hBK
(
BBK

)
. Then there exist v∗ ∈ int Rm

+ and y∗ ∈ Y ∗ such that

(v∗, y∗, v) ∈ BBK . Furthermore,

m∑
i=1

v∗i vi = −

(
m∑

i=1

v∗i fi

)∗
(−A∗y∗)−

(
m∑

i=1

v∗i gi

)∗
(y∗) .

Since (RCm) is fulfilled, we can apply the infimal convolution formula and obtain the

existence of pi ∈ X∗, qi ∈ Y ∗, i ∈ {1, ...,m} , such that

m∑
i=1

v∗i pi = −A∗y∗,
m∑

i=1

v∗i qi = y∗,

(
m∑

i=1

v∗i fi

)∗
(−A∗y∗) =

m∑
i=1

v∗i f∗i (pi) and

(
m∑

i=1

v∗i gi

)∗
(y∗) =

m∑
i=1

v∗i g∗i (qi) .

Moreover,
m∑

i=1

v∗i (pi + A∗qi) = 0. For more details on the the infimal convolution

formula and on the regularity conditions that ensure the equalities above we refer the

reader to [19] and [4]. Returning to our problem, we have that
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m∑
i=1

v∗i vi = −
m∑

i=1

v∗i f∗i (pi)−
m∑

i=1

v∗i g∗i (qi) .

For

ti := vi + f∗i (pi) + g∗i (qi) ∀i ∈ {1, ...,m},

it holds
m∑

i=1

v∗i ti =
m∑

i=1

v∗i vi +
m∑

i=1

v∗i f∗i (pi) +
m∑

i=1

v∗i g∗i (qi) = 0.

Then (p, q, v∗, t) ∈ BBGW and for all i ∈ {1, ...,m} , hi (p, q, v∗, t) = vi, thus v =

h (p, q, v∗, t) ∈ h
(
BBGW

)
∩ Rm. Hence

hBK
(
BBK

)
⊆ hBGW

(
BBGW

)
∩ Rm.

b) Let (p, q, λ, t) ∈ BBGW be such that h(p, q, λ, t) ∈ h(BBGW ) ∩ Rm. For

y∗ :=
m∑

i=1

λiqi and v := hBGW (p, q, λ, t) we have

m∑
i=1

λivi =
m∑

i=1

λihi (p, q, λ, t) =
m∑

i=1

λi

(
− f∗i (pi)− g∗i (qi) + ti

)

=
m∑

i=1

λi (−f∗i (pi)− g∗i (qi))

≤ sup

{
−

m∑
i=1

λif
∗
i (pi) :

m∑
i=1

λipi = −A∗y∗

}

+sup

{
−

m∑
i=1

λig
∗
i (qi) :

m∑
i=1

λiqi = y∗

}

≤ −

(
m∑

i=1

λifi

)∗
(−A∗y∗)−

(
m∑

i=1

λigi

)∗
(y∗) .

Hence (λ, y∗, v) ∈ B≤ and hBGW (p, q, λ, t) = v ∈ h≤
(
B≤
)
. Thus

hBGW
(
BBGW

)
∩ Rm ⊆ h≤

(
B≤
)
.
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In the following we give some examples which prove that the inclusions in

Proposition 7 are in general strict, i.e.

hBK
(
BBK

)
⊂
6=

hBGW
(
BBGW

)
∩ Rm ⊂

6=
h≤
(
B≤
)
.

Example 8. Consider X = Y = R, A(x) = x for all x ∈ R, and the functions

f, g : R → R2 given by

f (x) = (x− 1,−x− 1)T and g (x) = (x,−x)T for all x ∈ R.

We prove that hBGW
(
BBGW

)
∩ Rm ⊂

6=
h≤
(
B≤
)
.

Since

f∗1 (p) =

 1, if p = 1,

+∞, otherwise,
, f∗2 (p) =

 1, if p = −1,

+∞, otherwise,

g∗1 (p) =

 0, if p = 1,

+∞, otherwise,
, g∗2 (p) =

 0, if p = −1,

+∞, otherwise,

one has

(f1 + f2)
∗ (p) = inf {f∗1 (p1) + f∗2 (p2) : p1 + p2 = p} =

 2, if p = 0,

+∞, otherwise,

and

(g1 + g2)
∗ (p) = inf {g∗1 (p1) + g∗2 (p2) : p1 + p2 = p} =

 0, if p = 0,

+∞, otherwise.

For λ = (1, 1)T , p = 0 and d = (−2,−2)T we have

(λ, p, d) ∈ B≤ and d ∈ h≤
(
B≤
)

due to the fact that

λT d = −2− 2 = −4 < −2 = − (f1 + f2)
∗ (p)− (g1 + g2)

∗ (p) .

Next we show that d 6∈ hBGW
(
BBGW

)
. Let us suppose by contradiction that there

exists (p′, q′, λ′, t′) ∈ BBGW such that hBGW (p′, q′, λ′, t′) = d. This means

−f∗i (p′i)− g∗i (q′i) + t′i = 0 for i ∈ {1, 2} .
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Taking into account the values we got for the conjugate of the functions involved, the

equalities above hold only if

p′1 = 1, p′2 = −1, q′1 = 1 and q′2 = −1.

In this case,
2∑

i=1

λ′i (p′i + q′i) = 0, which meas that with this choice, we are still within

the set BBGW . We obtain thus

−1 + t′i = 0 for i ∈ {1, 2} , meaning that t′1 = t′2 = 1.

Since we have supposed that (p′, q′, λ′, t′) ∈ BBGW , λ′1 + λ′2 = 0 must hold. This is a

contradiction due to the fact that λ′ ∈ int R2
+.

Thus, for d = (−2,−2)T ∈ h≤
(
B≤
)
, there exists no (p′, q′, λ′, t′) ∈ BBGW

such that hBGW (p′, q′, λ′, t′) = d, which shows that h
(
BBGW

)
∩ Rm ⊂

6=
h≤
(
B≤
)
.

Example 9. Consider X = Y = R, A(x) = x for all x ∈ X, and the functions

f, g : R → R2 given by

f (x) =
(
2x2 − 1, x2

)T
and g (x) = (−2x,−x + 1)T for all x ∈ R.

We prove that hBK
(
BBK

)
⊂
6=

hBGW
(
BBGW

)
∩ Rm.

For p = (3, 0) , q = (−2,−1) , we have λ = (1, 1)T
, t =

(
3
8 ,− 3

8

)T
,

2∑
i=1

λi (pi + qi) = 0, and
2∑

i=1

λiti = 0. Thus (p, q, λ, t) ∈ BBGW . Applying the defi-

nition of the conjugate function, we calculate the following values:

f∗1 (3) = sup
x∈R

{
3x− 2x2 + 1

}
=

17
8

, f∗2 (0) = sup
x∈R

{
−x2

}
= 0,

g∗1 (−2) = sup
x∈R

{−2x + 2x} = 0, g∗2 (−1) = sup
x∈R

{−x + x− 1} = −1.

Hence

hBGW
1 (p, q, λ, t) = −17

8
− 0 +

3
8

= −14
8

, hBGW
2 (p, q, λ, t) = 0 + 1− 3

8
=

5
8
.

Now suppose that there exists (λ′, p′, d′) ∈ BBK such that

d′ = hBGW (p, q, λ, t) =
(
−14

8
,
5
8

)T

.
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Then

λ′T d′ = −

(
2∑

i=1

λ′ifi

)∗
(p′)−

(
2∑

i=1

λ′igi

)∗
(−p′) . (5)

But calculating the values of the conjugate functions we reach the conclusion that

−
(

2∑
i=1

λ′ifi

)∗
(p′)−

(
2∑

i=1

λ′igi

)∗
(−p′) =

= inf
x∈R

{
−p′x + x2 (2λ′1 + λ′2)− λ1

}
+ inf

x∈R
{x (p′ − 2λ′1 − λ′2) + λ′2}

= inf
x∈R

{
− (2λ′1 + λ′2)x + x2 (2λ′1 + λ′2)

}
− λ′1 + λ′2

= − 2λ′1+λ′2
4 − λ′1 + λ′2.

By (3) we obtain that

−14
8

λ′1 +
5
8
λ′2 = −2λ′1 + λ′2

4
− λ′1 + λ′2

which is equivalent to

−3 (2λ′1 + λ′2)
8

= −2λ′1 + λ′2
4

, i.e. 2λ′1 + λ′2 = 0,

obviously a contradiction to λ′ ∈ int R2
+. Therefore, for (p, q, λ, t) chosen as in

the beginning of the example, there exists no (λ′, p′, d′) ∈ BBK such that d′ =

hBGW (p, q, λ, t) . Hence hBK (BBK) ∩ Rm ⊂
6=

hBGW
(
BBGW

)
.

Below we prove that the sets of optimal solutions to (DBGW ) and (D≤)

coincide.

Theorem 10. The following equality holds:

v-max hBGW
(
BBGW

)
= v-maxh≤

(
B≤
)
.

Proof . ”v-max hBGW
(
BBGW

)
⊆ v-max h≤

(
B≤
)
” Let v ∈ v-max hBGW

(
BBGW

)
.

Since hBGW
(
BBGW

)
∩ Rm ⊆ h≤

(
B≤
)
, one has v ∈ h≤

(
B≤
)
. Let us suppose

by contradiction, that v 6∈ v-max h≤
(
B≤
)
. Then there exists v ∈ h≤

(
B≤
)
, with

(v∗, y∗, v) ∈ B≤, such that v ≤Rm
+

v. Then we have

〈v∗, v〉 < 〈v∗, v〉 ≤ − (v∗f)∗ (−A∗y∗)− (v∗g)∗ (y∗) .
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So, there exists ṽ such that v ≤Rm
+

ṽ (obviously, v ≤Rm
+

ṽ) for which

〈v∗, ṽ〉 = − (v∗f)∗ (−A∗y∗)− (v∗g)∗ (y∗) .

Thus we have obtained an element (v∗, y∗, ṽ) ∈ BBK . Since

hBK
(
BBK

)
⊆ hBGW

(
BBGW

)
∩ Rm,

it follows that ṽ ∈ hBGW
(
BBGW

)
, which contradicts the maximality of v in

hBGW (BBGW ). Therefore,

v-max hBGW
(
BBGW

)
⊆ v-max h≤

(
B≤
)
.

”v-max h≤
(
B≤
)
⊆ v-max hBGW

(
BBGW

)
” Let v ∈ v-max h≤

(
B≤
)
. By Theorem 5

it follows that v ∈ v-max hBK
(
BBK

)
. Since hBK

(
BBK

)
⊆ hBGW

(
BBGW

)
∩Rm, we

have further v ∈ hBGW
(
BBGW

)
. Let us suppose by contradiction that there exists

(p, q, λ, t) ∈ BBGW such that v ≤Rm
+

d := hBGW (p, q, λ, t). Since hBGW
(
BBGW

)
⊆

h≤
(
B≤
)
, one has d ∈ h≤

(
B≤
)
, but v ≤Rm

+
d which is a contradiction to the maxi-

mality of v. Therefore

v-max h≤
(
B≤
)
⊆ v-max hBGW

(
BBGW

)
.

As one can easily notice from Theorems 5 and 10 along with examples 8 and

9, the following equalities hold:

v-max hBK(BBK) = v-maxhBGW
(
BBGW

)
= v-maxh≤

(
B≤
)
,

even though

hBK
(
BBK

)
⊂
6=

hBGW
(
BBGW

)
∩ Rm ⊂

6=
h≤
(
B≤
)
.

Using the weak, strong and converse duality theorems between the dual pair

of the vector optimization problems (P ) and (D≤), similar results can be proved for

the dual pair (P ) and (DBGW ). Thus

Theorem 11. The following statements are true:

62



STRONG AND CONVERSE FENCHEL VECTOR DUALITY IN LOCALLY CONVEX SPACES

a) (Weak duality) There exist no x ∈ X and no (p, q, λ, t) ∈ BBGW such that

(f + g ◦A)(x) ≤K hBGW (p, q, λ, t).

b) (Strong duality) If x ∈ X is a properly efficient solution to (P ), then there

exists an efficient solution (p, q, λ, t) ∈ BBGW to (DBGW ) such that

(f + g ◦A)(x) = hBGW (p, q, λ, t).

c) (Converse duality) If the set

(f + g ◦A)(dom f ∩A−1(dom g)) + K

is closed, then for each efficient solution (p, q, λ, t) ∈ BBGW to (DBGW )

there exists a properly efficient solution x ∈ X to (P ) such that

(f + g ◦A)(x) = hBGW (p, q, λ, t).

Proof . a) It follows from Proposition 7 b) and Theorem 1.

b) It follows from Theorem 10 and Theorem 2.

c) It follows from Theorem 10 and Theorem 4.

As it will be seen in the following example, Theorem 4, which was important

in the proof of the converse duality for dual (D≤), does not hold for the more particular

dual problems (DBK) and (DBGW ).

Example 12. Let X = Y = R and V := R2. Put A(x) = x for all x ∈ R and define

the functions f, g : R → R2 by

f(x) = (−3x + 7, 2x) and g(x) = (3x− 7,−2x),∀x ∈ R.

We show that R2 \ cl
(
(f + g)(R) + R2

+

)
6⊆ core hBGW (BBGW ) ∩ R2.

Under the above specified framework, dom f = dom g = R and the feasible

solution set of (DBGW ) is

BBGW =

 (p, q, λ, d) ∈ R2 × R2 × int R2
+ × R2 :

λ1(p1 + q1) + λ2(p2 + q2) = 0, λ1t1 + λ2t2 = 0
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and

hBGW (BBGW ) =


(−f∗1 (p1)− g∗1(q1) + t1,−f∗2 (p2)− g∗2(q2) + t2) :

(λ1, λ2) ∈ int R2
+,

λ1(p1 + q1) + λ2(p2 + q2) = 0, λ1t1 + λ2t2 = 0.


We start by noticing that

(f + g)(R) + R2
+ = R2

+ = cl((f + g)(R) + R2
+).

Furthermore

f∗1 (p) =

 −7, if p = 3,

+∞, otherwise,
and f∗2 (p) =

 0, if p = 2,

+∞, otherwise,

and

g∗1(q) =

 7, if q = 3,

+∞, otherwise,
and g∗2(p) =

 0, if q = −2,

+∞, otherwise.

Therefore

−f∗1 (p)− g∗1(q) + t =

 t, if p = −3, q = 3,

−∞, otherwise,

and

−f∗2 (p)− g∗2(q) + t =

 t, if p = 2, q = −21,

−∞, otherwise.

Hence

hBGW (BBGW ) =

 (t1, t2) ∈ R2 : (λ1, λ2) ∈ int R2,

λ1(−3 + 3) + λ2(2− 2) = 0, λ1t1 + λ2t2 = 0


=
{
(t1, t2) ∈ R2 : λ1t1 + λ2t2 = 0, λ1 > 0, λ2 > 0

}
.

Now let us fix v := (−1,−1), for which we have that v ∈ R2 \ cl((f + g)(R) + R2).

We notice that v 6∈ hBGW (BBGW ) ∩ R2. We prove this by contradiction. Assuming

that v ∈ hBGW (BBGW )∩R2 it follows that λ1(−1)+λ2(−1) = 0 with λ1 > 0, λ2 > 0,

which is obviously a contradiction.

So v 6∈ hBGW (BBGW ) ∩ R2, and hence it follows from Proposition 7 a) that

v 6∈ hBK(BBK). Nevertheless, from Theorem 3 it follows that v ∈ core h≤(B≤).
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The conclusion is that a direct converse duality proof for the case of problem

(DBGW ) would be more difficult, unless embedded in (D≤).
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[25] Zãlinescu, C., Convex Analysis in General Vector Spaces, World Scientific, Singapore,

2002.
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