FIXED POINT THEOREMS FOR MULTIVALUED WEAK CONTRACTIONS

ALEXANDRU-DARIUS FILIP AND PETRA TÜNDE PETRU

Abstract

The purpose of this work is to present some fixed point results for the so-called multivalued weak contractions. Our results are extensions of the theorems given by M. Berinde and V. Berinde in [1] and by C. Chifu and G. Petruşel in [2].

1. Preliminaries

Let us recall first some standard notations and terminologies which are used throughout the paper. For the following notions we consider the context of a metric space (X, d).

We denote by $\widetilde{B}\left(x_{0}, r\right)$ the closed ball centered in $x_{0} \in X$ with radius $r>0$, i.e., $\widetilde{B}\left(x_{0}, r\right)=\left\{x \in X \mid d\left(x, x_{0}\right) \leq r\right\}$.

Let $\mathcal{P}(X)$ be the set of all nonempty subsets of X. We also denote:

$$
P(X):=\{Y \in \mathcal{P}(X) \mid Y \neq \emptyset\} ; P_{b}(X):=\{Y \in P(X) \mid Y \text { is bounded }\} ;
$$

$$
P_{c l}(X):=\{Y \in P(X) \mid Y \text { is closed }\} .
$$

Let us define the gap functional between A and B by

$$
D_{d}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, D_{d}(A, B)=\inf \{d(a, b) \mid a \in A, b \in B\}
$$

[^0](in particular, if $x_{0} \in X$ then $D_{d}\left(x_{0}, B\right):=D_{d}\left(\left\{x_{0}\right\}, B\right)$) and the (generalized) Pompeiu-Hausdorff functional
$$
H_{d}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, \quad H_{d}(A, B)=\max \left\{\sup _{a \in A} D_{d}(a, B), \sup _{b \in B} D_{d}(A, b)\right\}
$$

If $T: X \rightarrow P(X)$ is a multivalued operator, then $x \in X$ is called fixed point for T if and only if $x \in T(x)$ and strict fixed point if and only if $T(x)=\{x\}$. The set Fix $(T):=\{x \in X \mid x \in T(x)\}$ is called the fixed point set of T and $\operatorname{SFix}(T):=\{x \in$ $X \mid\{x\}=T(x)\}$ is the strict fixed point set of T.

If X is a metric space, then the multivalued operator $T: X \rightarrow P(X)$ is said to be closed if and only if its graph $\operatorname{Graph}(F):=\{(x, y) \in X \times X: y \in F(x)\}$ is a closed subset of $X \times X$.

Let (X, d) be a metric space and $T: X \rightarrow P(X)$ be a multivalued operator. T is said to be a multivalued weak contraction or multivalued (θ, L)-weak contraction (see [1]) if and only if there exists $\theta \in] 0,1[$ and $L \geq 0$ such that

$$
H(T(x), T(y)) \leq \theta \cdot d(x, y)+L \cdot D(y, T(x)), \text { for all } x, y \in X
$$

The aim of this article is to extend some fixed point results for multivalued weak-contractions given by M. Berinde and V. Berinde in [1] and by C. Chifu and G. Petruşel in [2]. Our results are also in connection to some other theorems in this field, see [3], [5].

2. Main results

Our first result is a local one and it extends the theorem given by M. Berinde and V. Berinde in [1], to the case of a metric space endowed with two metrics.

Theorem 1. Let X be a nonempty set, ρ and d two metrics on $X, x_{0} \in X, r>0$ and $T: \widetilde{B}_{\rho}\left(x_{0}, r\right) \rightarrow P(X)$ be a multivalued operator. We suppose that:
(i) (X, d) is a complete metric space;
(ii) there exists $c>0$ such that $d(x, y) \leq c \cdot \rho(x, y)$, for each $x, y \in \widetilde{B}_{\rho}\left(x_{0}, r\right)$;
(iii) $T:\left(\widetilde{B}_{\rho}\left(x_{0}, r\right), d\right) \rightarrow\left(P(X), H_{d}\right)$ is closed;
(iv) T is a multivalued (θ, L)-weak contraction with respect to ρ;

FIXED POINT THEOREMS FOR MULTIVALUED WEAK CONTRACTIONS
(v) $D_{\rho}\left(x_{0}, T\left(x_{0}\right)\right)<(1-\theta) r$.

Then we have:
(a) $\operatorname{Fix}(T) \neq \emptyset$;
(b) there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \widetilde{B}_{\rho}\left(x_{0}, r\right)$ such that:
(b1) $x_{n+1} \in T\left(x_{n}\right), n \in \mathbb{N}$;
(b2) $x_{n} \xrightarrow{d} x^{*} \in \operatorname{Fix}(T)$, as $n \rightarrow \infty$;
(b3) $d\left(x_{n}, x^{*}\right) \leq c \cdot \theta^{n} \cdot r$, for each $n \in \mathbb{N}$.
Proof. By (v), we have that there exists $x_{1} \in T\left(x_{0}\right)$ such that

$$
\begin{equation*}
\rho\left(x_{0}, x_{1}\right)<(1-\theta) r . \tag{1}
\end{equation*}
$$

Since T is a (θ, L)-weak contraction we have that

$$
H_{\rho}\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \leq \theta \cdot \rho\left(x_{0}, x_{1}\right)+L \cdot D_{\rho}\left(x_{1}, T\left(x_{0}\right)\right)=\theta \cdot \rho\left(x_{0}, x_{1}\right)<\theta \cdot(1-\theta) \cdot r .
$$

Thus, for $x_{1} \in T\left(x_{0}\right)$ there exists $x_{2} \in T\left(x_{1}\right)$ such that

$$
\begin{equation*}
\rho\left(x_{1}, x_{2}\right)<\theta \cdot(1-\theta) \cdot r . \tag{2}
\end{equation*}
$$

By (1) and (2) we obtain that

$$
\rho\left(x_{0}, x_{2}\right) \leq \rho\left(x_{0}, x_{1}\right)+\rho\left(x_{1}, x_{2}\right)<(1-\theta) \cdot r+\theta \cdot(1-\theta) \cdot r=\left(1-\theta^{2}\right) r .
$$

Hence $x_{2} \in \widetilde{B}_{\rho}\left(x_{0}, r\right)$.
Proceeding inductively, we can construct a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \widetilde{B}_{\rho}\left(x_{0}, r\right)$ having the following properties

$$
\begin{array}{r}
x_{n+1} \in T\left(x_{n}\right), n \in \mathbb{N}, \\
\rho\left(x_{n}, x_{n+1}\right)<\theta^{n} \cdot(1-\theta) \cdot r . \tag{4}
\end{array}
$$

We want to prove that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. Let $p \in \mathbb{N}$. Then we have

$$
\begin{aligned}
\rho\left(x_{n}, x_{n+p}\right) & \leq \rho\left(x_{n}, x_{n+1}\right)+\ldots+\rho\left(x_{n+p-1}, x_{n+p}\right) \\
& <\theta^{n} \cdot(1-\theta) \cdot r \cdot\left(1+\theta+\ldots+\theta^{p-1}\right) \\
& =\theta^{n} \cdot r \cdot\left(1-\theta^{p}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, since $\theta \in] 0,1\left[\right.$, we have that $\rho\left(x_{n}, x_{n+p}\right) \rightarrow 0$. Thus $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence with respect to the metric ρ. By (ii) we have that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence with respect to the metric d, too. Since (X, d) is a complete metric space, there exists $x^{*} \in X$ such that $x_{n} \xrightarrow{d} x^{*}$ as $n \rightarrow \infty$. It remains to show that $x^{*} \in \operatorname{Fix}(T)$. Since $\operatorname{Graph}(T)$ is closed with respect to (X, d) we get that $x^{*} \in \operatorname{Fix}(T)$.

We already proved that $\rho\left(x_{n}, x_{n+p}\right)<\theta^{n} \cdot r \cdot\left(1-\theta^{p}\right)$, By (ii), we have that there exists $c>0$ such that $d\left(x_{n}, x_{n+p}\right) \leq c \cdot \rho\left(x_{n}, x_{n+p}\right)<c \cdot \theta^{n} \cdot r \cdot\left(1-\theta^{p}\right)$. Letting $p \rightarrow \infty$ we obtain that $d\left(x_{n}, x^{*}\right) \leq c \cdot \theta^{n} \cdot r$, for each $n \in \mathbb{N}$.

We can state the above result on a set endowed with one metric.
Theorem 2. Let (X, d) be a complete metric space, $x_{0} \in X, r>0$ and $T: \widetilde{B}\left(x_{0}, r\right) \rightarrow P(X)$ a multivalued (θ, L)-weak contraction. We assume that

$$
D\left(x_{0}, T\left(x_{0}\right)\right)<(1-\theta) r .
$$

Then we have:
(a) $\operatorname{Fix}(T) \neq \emptyset$;
(b) there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \widetilde{B}_{\rho}\left(x_{0}, r\right)$ such that:
(b1) $x_{n+1} \in T\left(x_{n}\right), n \in \mathbb{N}$;
(b2) $x_{n} \xrightarrow{d} x^{*} \in F i x(T)$, as $n \rightarrow \infty$;
(b3) $d\left(x_{n}, x^{*}\right) \leq \theta^{n} \cdot r$, for each $n \in \mathbb{N}$.
In what follows we continue with a global version of Theorem 1 for multivalued (θ, L)-weak contractions on a set with two metrics.

Theorem 3. Let X be a nonempty set, ρ and d twp metrics on X and $T: X \rightarrow P(X)$ a multivalued operator. We suppose that
(i) (X, d) is a complete metric space;
(ii) there exists $c>0$ such that $d(x, y) \leq c \cdot \rho(x, y)$, for each $x, y \in X$;
(iii) $T:(X, d) \rightarrow\left(P(X), H_{d}\right)$ is closed;
(iv) T is a multivalued (θ, L)-weak contraction.

Then we have:
(a) $\operatorname{Fix}(T) \neq \emptyset$;
(b) there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ such that:
(b1) $x_{n+1} \in T\left(x_{n}\right), n \in \mathbb{N}$;
(b2) $x_{n} \xrightarrow{d} x^{*} \in \operatorname{Fix}(T)$, as $n \rightarrow \infty$.

Proof. Fix $x_{0} \in X$, choose $r>0$ such that $D_{\rho}\left(x_{0}, T\left(x_{0}\right)\right)<(1-\theta) r$. The conclusion follows from Theorem 1.

The following homotopy result extends some results given by M. Berinde, V. Berinde in [1] and C. Chifu, G. Petruşel in [2].

Theorem 4. Let (X, d) be a complete metric space and U be an open subset of X. Let $G: \bar{U} \times[0,1] \rightarrow P(X)$ be a multivalued operator such that the following assumptions are satisfied:
(i) $x \notin G(x, t)$, for each $x \in \partial U$ and each $t \in[0,1]$;
(ii) $G(\cdot, t): \bar{U} \rightarrow P(X)$ is a (θ, L)-weak contraction, for each $t \in[0,1]$;
(iii) there exists a continuous, increasing function $\psi:[0,1] \rightarrow \mathbb{R}$ such that

$$
H(G(x, t), G(x, s)) \leq|\psi(t)-\psi(s)|, \text { for all } x \in \bar{U}
$$

(iv) $G: \bar{U} \times[0,1] \rightarrow P(X)$ is closed.

Then $G(\cdot, 0)$ has a fixed point if and only if $G(\cdot, 1)$ has a fixed point.

Proof. Suppose that $z \in \operatorname{Fix}(G(\cdot, 0))$. From (i) we have that $z \in U$. We define the following set:

$$
E:=\{(x, t) \in U \times[0,1] \mid x \in G(x, t)\} .
$$

Since $(z, 0) \in E$, we have that $E \neq \emptyset$. We introduce a partial order on E defined by:

$$
(x, t) \leq(y, s) \text { if and only if } t \leq s \text { and } d(x, y) \leq \frac{2}{1-\theta}[\psi(s)-\psi(t)]
$$

Let M be a totally ordered subset of $E, t^{*}:=\sup \{t \mid(x, t) \in M\}$ and $\left(x_{n}, t_{n}\right)_{n \in \mathbb{N}^{*}} \subset M$ be a sequence such that $\left(x_{n}, t_{n}\right) \leq\left(x_{n+1}, t_{n+1}\right)$ and $t_{n} \rightarrow t^{*}$ as $n \rightarrow \infty$. Then

$$
d\left(x_{m}, x_{n}\right) \leq \frac{2}{1-\theta}\left[\psi\left(t_{m}\right)-\psi\left(t_{n}\right)\right], \text { for each } m, n \in \mathbb{N}^{*}, m>n
$$

Letting $m, n \rightarrow+\infty$ we obtain that $d\left(x_{m}, x_{n}\right) \rightarrow 0$, thus $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$ is a Cauchy sequence. Denote by $x^{*} \in X$ its limit. Since $x_{n} \in G\left(x_{n}, t_{n}\right), n \in \mathbb{N}^{*}$ and G is closed, we have that $x^{*} \in G\left(x^{*}, t^{*}\right)$. From (i) we obtain that $x^{*} \in U$, so $\left(x^{*}, t^{*}\right) \in E$.

From the fact that M is totally ordered we have that $(x, t) \leq\left(x^{*}, t^{*}\right)$, for each $(x, t) \in M$. Thus $\left(x^{*}, t^{*}\right)$ is an upper bound of M. We can apply Zorn's Lemma, so E admits a maximal element $\left(x_{0}, t_{0}\right) \in E$. We want to prove that $t_{0}=1$.

Suppose that $t_{0}<1$. Let $r>0$ and $\left.\left.t \in\right] t_{0}, 1\right]$ such that $B\left(x_{0}, r\right) \subset U$ and $r:=\frac{2}{1-\theta}\left[\psi(t)-\psi\left(t_{0}\right)\right]$. Then we have

$$
\begin{aligned}
D\left(x_{0}, G\left(x_{0}, t\right)\right) & \leq D\left(x_{0}, G\left(x_{0}, t_{0}\right)\right)+H\left(G\left(x_{0}, t_{0}\right), G\left(x_{0}, t\right)\right) \\
& \leq \psi(t)-\psi\left(t_{0}\right)=\frac{(1-\theta) \cdot r}{2}<(1-\theta) \cdot r .
\end{aligned}
$$

Since $\tilde{B}\left(x_{0}, r\right) \subset \bar{U}$, the multivalued operator $G(\cdot, t): \widetilde{B}\left(x_{0}, r\right) \rightarrow P_{c l}(X)$ satisfies the assumptions of Theorem 1 for all $t \in[0,1]$. Hence there exists $x \in \widetilde{B}\left(x_{0}, r\right)$ such that $x \in G(x, t)$. Thus, by (i), we get that $(x, t) \in E$. Since $d\left(x_{0}, x\right) \leq r=$ $\frac{2}{1-\theta}\left[\psi(t)-\psi\left(t_{0}\right)\right]$, we have that $\left(x_{0}, t_{0},\right)<(x, t)$, which is a contradiction with the maximality of $\left(x_{0}, t_{0}\right)$. Thus $t_{0}=1$.

Conversely, if $G(\cdot, 1)$ has a fixed point, by a similar approach we can obtain that $G(\cdot, 0)$ has a fixed point too.

In 2006 A. Petruşel and I. A. Rus (see [4]) extended the notion of well-posed fixed point problem from singlevalued to multivalued operators, as follows.

Definition 1. (A. Petruşel, I. A. Rus, [4]) Let (X, d) be a metric space, $Y \subset P(X)$ and $T: Y \rightarrow P_{c l}(X)$ be a multivalued operator. The fixed point problem is well-posed for T with respect to D iff:
(a) $\operatorname{Fix}(T)=\left\{x^{*}\right\}$;
(b) If $x_{n} \in Y, n \in \mathbb{N}$ and $D\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, then $x_{n} \rightarrow x^{*}$, as $n \rightarrow \infty$.

The following result is a well-posed fixed point theorem for multivalued (θ, L) weak contractions on a set endowed with one metric.

Theorem 5. Let (X, d) be a complete metric space $T: X \rightarrow P_{c l}(X)$ is a multivalued (θ, L)-weak contraction with $\theta+L<1$. Suppose that $\operatorname{SFix}(T) \neq \emptyset$. Then the fixed point problem is well-posed for T with respect to D.

Proof. First we want to prove that $\operatorname{Fix}(T)=\operatorname{SFix}(T)=\left\{x^{*}\right\}$. Let $x^{*} \in \operatorname{SFix}(T)$. Clearly SFix $(T) \subset \operatorname{Fix}(T)$. Thus, we only have to prove that $\operatorname{Fix}(T)=\left\{x^{*}\right\}$. Let $x \in \operatorname{Fix}(T)$ with $x^{*} \neq x$. Then

$$
\begin{aligned}
d\left(x^{*}, x\right) & =D\left(T\left(x^{*}\right), x\right) \leq H\left(T\left(x^{*}\right), T(x)\right) \\
& \leq \theta \cdot d\left(x^{*}, x\right)+L \cdot D\left(x, T\left(x^{*}\right)\right) \\
& =\theta \cdot d\left(x^{*}, x\right)+L \cdot d\left(x, x^{*}\right)=(\theta+L) \cdot d\left(x, x^{*}\right) .
\end{aligned}
$$

Since $\theta+L<1$ this is a contradiction, which proves that $\operatorname{Fix}(T)=\left\{x^{*}\right\}$ and hence $\operatorname{Fix}(T)=\operatorname{SFix}(T)=\left\{x^{*}\right\}$.

Let $x^{*} \in \operatorname{SFix}(T)$. Suppose $D\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$, as $n \rightarrow \infty$. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be two sequences such that $y_{n} \in T\left(x_{n}\right)$. Then we have

$$
\begin{aligned}
d\left(x_{n}, x^{*}\right) & \leq d\left(x_{n}, y_{n}\right)+d\left(y_{n}, x^{*}\right)=d\left(x_{n}, y_{n}\right)+D\left(y_{n}, T\left(x^{*}\right)\right) \\
& \leq d\left(x_{n}, y_{n}\right)+H\left(T\left(x_{n}\right), T\left(x^{*}\right)\right) .
\end{aligned}
$$

Taking the infimum over $y_{n} \in T\left(x_{n}\right)$ we have

$$
\begin{aligned}
d\left(x_{n}, x^{*}\right) & \leq D\left(x_{n}, T\left(x_{n}\right)\right)+H\left(T\left(x_{n}\right), T\left(x^{*}\right)\right) \\
& \leq D\left(x_{n}, T\left(x_{n}\right)\right)+\theta d\left(x_{n}, x^{*}\right)+L D\left(x_{n}, T\left(x^{*}\right)\right) \\
& =D\left(x_{n}, T\left(x_{n}\right)\right)+\theta d\left(x_{n}, x^{*}\right)+L d\left(x_{n}, x^{*}\right)
\end{aligned}
$$

Thus $(1-\theta-L) d\left(x_{n}, x\right) \leq D\left(x_{n}, T\left(x_{n}\right)\right)$. Since $\theta+L<1$, we have that

$$
d\left(x_{n}, x^{*}\right) \leq \frac{1}{1-\theta-L} D\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Remark 1. The above result give rise to the following open question: in which conditions the fixed point problem for (θ, L)-weak contractions is well-posed with respect to D, where $\theta \in] 0,1[$ and $L \geq 0$ (i.e., for $\theta+L \geq 1$, too).

Remark 2. It is also an open problem in the case of (θ, L)-weak contraction, in which conditions takes place the following implication

$$
\operatorname{SFix}(T) \neq \emptyset \Rightarrow \operatorname{Fix}(T)=\operatorname{SFix}(T)=\left\{x^{*}\right\}
$$

References

[1] Berinde, M., Berinde, V., On a general class of multi-valued weakly Picard mappings, J. Math. Anal., 326(2007), 772-782.
[2] Chifu, C., Petruşel, G., Fixed point theorems for non-self operators on a set with two metrics, Carpathian J. Math, to appear.
[3] Moţ, G., Petruşel, A., Fixed point theory for a new type of contractive multivalued operators, Nonlinear Anal., 2008, doi:10.1016/j.na.2008.05.005.
[4] Petruşel, A., Rus, I.A., Well-posedness of the fixed point problem for multivalued operators, in Applied Analysis and Differential Equations (O. Carja and I. I. Vrabie eds.), World Scientific, 2007, 295-306.
[5] Petruşel, A., Rus, I.A., Fixed point theory for multivalued operators on a set with two metrics, Fixed Point Theory, 8(2007), 97-104.
[6] Petruşel, A., Rus, I.A., Yao, J.C., Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math., 11(2007), 903-914.
[7] Rus, I.A., Strict fixed point theory, Fixed Point Theory, 4(2003), 177-183.

Babeg-Bolyai University
Department of Applied Mathematics
Kogălniceanu 1, 400084, Cluj-Napoca, Romania
E-mail address: filip_darius@yahoo.com, petra.petru@econ.ubbcluj.ro

[^0]: Received by the editors: 10.11.2008
 2000 Mathematics Subject Classification. 47H04, 47H10, 54C60
 Key words and phrases. Set with two metrics, multivalued operator, fixed point, weak contraction, metric space, Pompeiu-Hausdorff generalized distance.
 This paper was presented at the 7 -th Joint Conference on Mathematics and Computer Science,
 July 3-6, 2008, Cluj-Napoca, Romania.

