STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LIV, Number 3, September 2009

FIXED POINT THEOREMS FOR MULTIVALUED WEAK CONTRACTIONS

ALEXANDRU-DARIUS FILIP AND PETRA TÜNDE PETRU

Abstract. The purpose of this work is to present some fixed point results for the so-called multivalued weak contractions. Our results are extensions of the theorems given by M. Berinde and V. Berinde in [1] and by C. Chifu and G. Petruşel in [2].

1. Preliminaries

Let us recall first some standard notations and terminologies which are used throughout the paper. For the following notions we consider the context of a metric space (X, d).

We denote by $\widetilde{B}(x_0, r)$ the closed ball centered in $x_0 \in X$ with radius r > 0, i.e., $\widetilde{B}(x_0, r) = \{x \in X | d(x, x_0) \le r\}.$

Let $\mathcal{P}(X)$ be the set of all nonempty subsets of X. We also denote:

 $P(X) := \{ Y \in \mathcal{P}(X) | Y \neq \emptyset \}; P_b(X) := \{ Y \in P(X) | Y \text{ is bounded } \};$

 $P_{cl}(X) := \{ Y \in P(X) | Y \text{ is closed } \}.$

Let us define the gap functional between A and B by

 $D_d: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \ D_d(A, B) = \inf\{d(a, b) \mid a \in A, \ b \in B\}$

Received by the editors: 10.11.2008.

2000 Mathematics Subject Classification. 47H04, 47H10, 54C60.

Key words and phrases. Set with two metrics, multivalued operator, fixed point, weak contraction, metric space. Pompeiu-Hausdorff generalized distance.

This paper was presented at the 7-th Joint Conference on Mathematics and Computer Science,

July 3-6, 2008, Cluj-Napoca, Romania.

(in particular, if $x_0 \in X$ then $D_d(x_0, B) := D_d(\{x_0\}, B)$) and the (generalized) Pompeiu-Hausdorff functional

$$H_d: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \quad H_d(A, B) = \max\{\sup_{a \in A} D_d(a, B), \sup_{b \in B} D_d(A, b)\}.$$

If $T: X \to P(X)$ is a multivalued operator, then $x \in X$ is called fixed point for T if and only if $x \in T(x)$ and strict fixed point if and only if $T(x) = \{x\}$. The set $Fix(T) := \{x \in X | x \in T(x)\}$ is called the fixed point set of T and $SFix(T) := \{x \in X | \{x\} = T(x)\}$ is the strict fixed point set of T.

If X is a metric space, then the multivalued operator $T: X \to P(X)$ is said to be closed if and only if its graph $Graph(F) := \{(x, y) \in X \times X : y \in F(x)\}$ is a closed subset of $X \times X$.

Let (X, d) be a metric space and $T : X \to P(X)$ be a multivalued operator. T is said to be a multivalued weak contraction or multivalued (θ, L) -weak contraction (see [1]) if and only if there exists $\theta \in]0, 1[$ and $L \ge 0$ such that

$$H(T(x), T(y)) \le \theta \cdot d(x, y) + L \cdot D(y, T(x)), \text{ for all } x, y \in X.$$

The aim of this article is to extend some fixed point results for multivalued weak-contractions given by M. Berinde and V. Berinde in [1] and by C. Chifu and G. Petruşel in [2]. Our results are also in connection to some other theorems in this field, see [3], [5].

2. Main results

Our first result is a local one and it extends the theorem given by M. Berinde and V. Berinde in [1], to the case of a metric space endowed with two metrics.

Theorem 1. Let X be a nonempty set, ρ and d two metrics on X, $x_0 \in X$, r > 0and $T : \widetilde{B}_{\rho}(x_0, r) \to P(X)$ be a multivalued operator. We suppose that:

- (i) (X, d) is a complete metric space;
- (ii) there exists c > 0 such that $d(x, y) \le c \cdot \rho(x, y)$, for each $x, y \in \tilde{B}_{\rho}(x_0, r)$;
- (iii) $T: (\tilde{B}_{\rho}(x_0, r), d) \to (P(X), H_d)$ is closed;
- (iv) T is a multivalued (θ, L) -weak contraction with respect to ρ ;

FIXED POINT THEOREMS FOR MULTIVALUED WEAK CONTRACTIONS

(v)
$$D_{\rho}(x_0, T(x_0)) < (1 - \theta)r.$$

Then we have:

- (a) $Fix(T) \neq \emptyset$;
- (b) there exists a sequence $(x_n)_{n \in \mathbb{N}} \subset \tilde{B}_{\rho}(x_0, r)$ such that:
 - (b1) $x_{n+1} \in T(x_n), n \in \mathbb{N};$
 - (b2) $x_n \xrightarrow{d} x^* \in Fix(T)$, as $n \to \infty$;
 - (b3) $d(x_n, x^*) \leq c \cdot \theta^n \cdot r$, for each $n \in \mathbb{N}$.

Proof. By (v), we have that there exists $x_1 \in T(x_0)$ such that

$$\rho(x_0, x_1) < (1 - \theta)r. \tag{1}$$

Since T is a (θ, L) -weak contraction we have that

$$H_{\rho}(T(x_0), T(x_1)) \le \theta \cdot \rho(x_0, x_1) + L \cdot D_{\rho}(x_1, T(x_0)) = \theta \cdot \rho(x_0, x_1) < \theta \cdot (1 - \theta) \cdot r.$$

Thus, for $x_1 \in T(x_0)$ there exists $x_2 \in T(x_1)$ such that

$$\rho(x_1, x_2) < \theta \cdot (1 - \theta) \cdot r. \tag{2}$$

By (1) and (2) we obtain that

$$\rho(x_0, x_2) \le \rho(x_0, x_1) + \rho(x_1, x_2) < (1 - \theta) \cdot r + \theta \cdot (1 - \theta) \cdot r = (1 - \theta^2)r$$

Hence $x_2 \in \tilde{B}_{\rho}(x_0, r)$.

Proceeding inductively, we can construct a sequence $(x_n)_{n \in \mathbb{N}} \subset B_{\rho}(x_0, r)$ having the following properties

$$x_{n+1} \in T(x_n), \ n \in \mathbb{N},\tag{3}$$

$$\rho(x_n, x_{n+1}) < \theta^n \cdot (1 - \theta) \cdot r.$$
(4)

We want to prove that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. Let $p \in \mathbb{N}$. Then we have

$$\rho(x_n, x_{n+p}) \leq \rho(x_n, x_{n+1}) + \dots + \rho(x_{n+p-1}, x_{n+p})$$
$$< \theta^n \cdot (1-\theta) \cdot r \cdot (1+\theta + \dots + \theta^{p-1})$$
$$= \theta^n \cdot r \cdot (1-\theta^p).$$

35

Letting $n \to \infty$, since $\theta \in]0, 1[$, we have that $\rho(x_n, x_{n+p}) \to 0$. Thus $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence with respect to the metric ρ . By (ii) we have that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence with respect to the metric d, too. Since (X, d) is a complete metric space, there exists $x^* \in X$ such that $x_n \xrightarrow{d} x^*$ as $n \to \infty$. It remains to show that $x^* \in Fix(T)$. Since Graph(T) is closed with respect to (X, d) we get that $x^* \in Fix(T)$.

We already proved that $\rho(x_n, x_{n+p}) < \theta^n \cdot r \cdot (1 - \theta^p)$, By (ii), we have that there exists c > 0 such that $d(x_n, x_{n+p}) \le c \cdot \rho(x_n, x_{n+p}) < c \cdot \theta^n \cdot r \cdot (1 - \theta^p)$. Letting $p \to \infty$ we obtain that $d(x_n, x^*) \le c \cdot \theta^n \cdot r$, for each $n \in \mathbb{N}$.

We can state the above result on a set endowed with one metric.

Theorem 2. Let (X, d) be a complete metric space, $x_0 \in X$, r > 0 and $T : \stackrel{\sim}{B}(x_0, r) \to P(X)$ a multivalued (θ, L) -weak contraction. We assume that

$$D(x_0, T(x_0)) < (1-\theta)r.$$

Then we have:

(a) Fix(T) ≠ Ø;
(b) there exists a sequence (x_n)_{n∈ℕ} ⊂ B_ρ(x₀, r) such that:
(b1) x_{n+1} ∈ T(x_n), n ∈ ℕ;
(b2) x_n d→ x* ∈ Fix(T), as n → ∞;
(b3) d(x_n, x*) ≤ θⁿ ⋅ r, for each n ∈ ℕ.

In what follows we continue with a global version of Theorem 1 for multivalued (θ, L) -weak contractions on a set with two metrics.

Theorem 3. Let X be a nonempty set, ρ and d twp metrics on X and $T : X \to P(X)$ a multivalued operator. We suppose that

- (i) (X, d) is a complete metric space;
- (ii) there exists c > 0 such that $d(x, y) \le c \cdot \rho(x, y)$, for each $x, y \in X$;
- (iii) $T: (X, d) \rightarrow (P(X), H_d)$ is closed;
- (iv) T is a multivalued (θ, L) -weak contraction.

Then we have:

FIXED POINT THEOREMS FOR MULTIVALUED WEAK CONTRACTIONS

- (a) $Fix(T) \neq \emptyset$;
- (b) there exists a sequence $(x_n)_{n \in \mathbb{N}} \subset X$ such that:

(b1) $x_{n+1} \in T(x_n), n \in \mathbb{N};$ (b2) $x_n \stackrel{d}{\to} x^* \in Fix(T), as n \to \infty.$

Proof. Fix $x_0 \in X$, choose r > 0 such that $D_{\rho}(x_0, T(x_0)) < (1-\theta)r$. The conclusion follows from Theorem 1.

The following homotopy result extends some results given by M. Berinde, V. Berinde in [1] and C. Chifu, G. Petruşel in [2].

Theorem 4. Let (X, d) be a complete metric space and U be an open subset of X. Let $G: \overline{U} \times [0,1] \to P(X)$ be a multivalued operator such that the following assumptions are satisfied:

- (i) $x \notin G(x,t)$, for each $x \in \partial U$ and each $t \in [0,1]$;
- (ii) $G(\cdot,t): \overline{U} \to P(X)$ is a (θ, L) -weak contraction, for each $t \in [0,1]$;
- (iii) there exists a continuous, increasing function $\psi : [0,1] \to \mathbb{R}$ such that

 $H(G(x,t),G(x,s)) \le |\psi(t) - \psi(s)|, \text{ for all } x \in \overline{U};$

(iv) $G: \overline{U} \times [0,1] \to P(X)$ is closed.

Then $G(\cdot, 0)$ has a fixed point if and only if $G(\cdot, 1)$ has a fixed point.

Proof. Suppose that $z \in Fix(G(\cdot, 0))$. From (i) we have that $z \in U$. We define the following set:

$$E := \{ (x, t) \in U \times [0, 1] | x \in G(x, t) \}.$$

Since $(z,0) \in E$, we have that $E \neq \emptyset$. We introduce a partial order on E defined by:

$$(x,t) \le (y,s)$$
 if and only if $t \le s$ and $d(x,y) \le \frac{2}{1-\theta} [\psi(s) - \psi(t)].$

Let M be a totally ordered subset of $E, t^* := \sup\{t \mid (x,t) \in M\}$ and

 $(x_n, t_n)_{n \in \mathbb{N}^*} \subset M$ be a sequence such that $(x_n, t_n) \leq (x_{n+1}, t_{n+1})$ and $t_n \to t^*$ as $n \to \infty$. Then

$$d(x_m, x_n) \leq \frac{2}{1-\theta} [\psi(t_m) - \psi(t_n)], \text{ for each } m, n \in \mathbb{N}^*, \ m > n.$$

37

Letting $m, n \to +\infty$ we obtain that $d(x_m, x_n) \to 0$, thus $(x_n)_{n \in \mathbb{N}^*}$ is a Cauchy sequence. Denote by $x^* \in X$ its limit. Since $x_n \in G(x_n, t_n)$, $n \in \mathbb{N}^*$ and G is closed, we have that $x^* \in G(x^*, t^*)$. From (i) we obtain that $x^* \in U$, so $(x^*, t^*) \in E$.

From the fact that M is totally ordered we have that $(x,t) \leq (x^*,t^*)$, for each $(x,t) \in M$. Thus (x^*,t^*) is an upper bound of M. We can apply Zorn's Lemma, so E admits a maximal element $(x_0,t_0) \in E$. We want to prove that $t_0 = 1$.

Suppose that $t_0 < 1$. Let r > 0 and $t \in]t_0, 1]$ such that $B(x_0, r) \subset U$ and $r := \frac{2}{1-\theta} [\psi(t) - \psi(t_0)]$. Then we have

$$D(x_0, G(x_0, t)) \leq D(x_0, G(x_0, t_0)) + H(G(x_0, t_0), G(x_0, t))$$

$$\leq \psi(t) - \psi(t_0) = \frac{(1-\theta) \cdot r}{2} < (1-\theta) \cdot r.$$

Since $\widetilde{B}(x_0,r) \subset \overline{U}$, the multivalued operator $G(\cdot,t) : \widetilde{B}(x_0,r) \to P_{cl}(X)$ satisfies the assumptions of Theorem 1 for all $t \in [0,1]$. Hence there exists $x \in \widetilde{B}(x_0,r)$ such that $x \in G(x,t)$. Thus, by (i), we get that $(x,t) \in E$. Since $d(x_0,x) \leq r = \frac{2}{1-\theta}[\psi(t) - \psi(t_0)]$, we have that $(x_0,t_0,) < (x,t)$, which is a contradiction with the maximality of (x_0,t_0) . Thus $t_0 = 1$.

Conversely, if $G(\cdot, 1)$ has a fixed point, by a similar approach we can obtain that $G(\cdot, 0)$ has a fixed point too.

In 2006 A. Petruşel and I. A. Rus (see [4]) extended the notion of well-posed fixed point problem from singlevalued to multivalued operators, as follows.

Definition 1. (A. Petruşel, I. A. Rus, [4]) Let (X, d) be a metric space, $Y \subset P(X)$ and $T: Y \to P_{cl}(X)$ be a multivalued operator. The fixed point problem is well-posed for T with respect to D iff:

- (a) $Fix(T) = \{x^*\};$
- (b) If $x_n \in Y$, $n \in \mathbb{N}$ and $D(x_n, T(x_n)) \to 0$ as $n \to \infty$, then $x_n \to x^*$, as $n \to \infty$.

The following result is a well-posed fixed point theorem for multivalued (θ, L) weak contractions on a set endowed with one metric. **Theorem 5.** Let (X, d) be a complete metric space $T : X \to P_{cl}(X)$ is a multivalued (θ, L) -weak contraction with $\theta + L < 1$. Suppose that $SFix(T) \neq \emptyset$. Then the fixed point problem is well-posed for T with respect to D.

Proof. First we want to prove that $Fix(T) = SFix(T) = \{x^*\}$. Let $x^* \in SFix(T)$. Clearly $SFix(T) \subset Fix(T)$. Thus, we only have to prove that $Fix(T) = \{x^*\}$. Let $x \in Fix(T)$ with $x^* \neq x$. Then

$$d(x^*, x) = D(T(x^*), x) \le H(T(x^*), T(x))$$

$$\le \theta \cdot d(x^*, x) + L \cdot D(x, T(x^*))$$

$$= \theta \cdot d(x^*, x) + L \cdot d(x, x^*) = (\theta + L) \cdot d(x, x^*).$$

Since $\theta + L < 1$ this is a contradiction, which proves that $Fix(T) = \{x^*\}$ and hence $Fix(T) = SFix(T) = \{x^*\}.$

Let $x^* \in SFix(T)$. Suppose $D(x_n, T(x_n)) \to 0$, as $n \to \infty$. Let $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ be two sequences such that $y_n \in T(x_n)$. Then we have

$$d(x_n, x^*) \leq d(x_n, y_n) + d(y_n, x^*) = d(x_n, y_n) + D(y_n, T(x^*))$$

$$\leq d(x_n, y_n) + H(T(x_n), T(x^*)).$$

Taking the infimum over $y_n \in T(x_n)$ we have

$$\begin{aligned} d(x_n, x^*) &\leq D(x_n, T(x_n)) + H(T(x_n), T(x^*)) \\ &\leq D(x_n, T(x_n)) + \theta d(x_n, x^*) + LD(x_n, T(x^*)) \\ &= D(x_n, T(x_n)) + \theta d(x_n, x^*) + Ld(x_n, x^*). \end{aligned}$$

Thus $(1 - \theta - L)d(x_n, x) \leq D(x_n, T(x_n))$. Since $\theta + L < 1$, we have that

$$d(x_n, x^*) \le \frac{1}{1 - \theta - L} D(x_n, T(x_n)) \to 0 \text{ as } n \to \infty.$$

Remark 1. The above result give rise to the following open question: in which conditions the fixed point problem for (θ, L) -weak contractions is well-posed with respect to D, where $\theta \in]0,1[$ and $L \ge 0$ (i.e., for $\theta + L \ge 1$, too).

39

Remark 2. It is also an open problem in the case of (θ, L) -weak contraction, in which conditions takes place the following implication

$$SFix(T) \neq \emptyset \Rightarrow Fix(T) = SFix(T) = \{x^*\}.$$

References

- Berinde, M., Berinde, V., On a general class of multi-valued weakly Picard mappings, J. Math. Anal., **326**(2007), 772-782.
- [2] Chifu, C., Petruşel, G., Fixed point theorems for non-self operators on a set with two metrics, Carpathian J. Math, to appear.
- [3] Moţ, G., Petruşel, A., Fixed point theory for a new type of contractive multivalued operators, Nonlinear Anal., 2008, doi:10.1016/j.na.2008.05.005.
- [4] Petruşel, A., Rus, I.A., Well-posedness of the fixed point problem for multivalued operators, in Applied Analysis and Differential Equations (O. Carja and I. I. Vrabie eds.), World Scientific, 2007, 295-306.
- [5] Petruşel, A., Rus, I.A., Fixed point theory for multivalued operators on a set with two metrics, Fixed Point Theory, 8(2007), 97-104.
- [6] Petruşel, A., Rus, I.A., Yao, J.C., Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math., 11(2007), 903-914.
- [7] Rus, I.A., Strict fixed point theory, Fixed Point Theory, 4(2003), 177-183.

BABEŞ-BOLYAI UNIVERSITY DEPARTMENT OF APPLIED MATHEMATICS KOGĂLNICEANU 1, 400084, CLUJ-NAPOCA, ROMANIA *E-mail address*: filip_darius@yahoo.com, petra.petru@econ.ubbcluj.ro