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FIRST ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH STATE-DEPENDENT MODIFIED ARGUMENT

EDITH EGRI AND IOAN A. RUS

Abstract. The aim of our paper is to investigate the Cauchy problem

constituting from the first order functional differential equation with state-

dependent modified argument of the following form

x′(t) = f(t, x(t), x(g(t, x(t)))), t ∈ [a, b],

where x ∈ C([a − h, b], [a − h, b]) ∩ C1([a, b], [a − h, b]), h > 0, and the

associated generalized initial value x|[a−h,a] = ϕ. We look for the solutions

of the mentioned problem and deal with its properties, searching conditions

for its existence and uniqueness, studying the data dependence: continuity,

Lipschitz-continuity and differentiability regarding a parameter.

1. Introduction

Functional differential equations with state dependent modified argument was

considered by numerous researchers, as they play an important role in applications.

From the numerous works, which are related to functional differential equations, it

is worth to mention V. R. Petuhov [12], R. D. Driver [3], R. J. Oberg [11], G. M.

Dunkel [4], L. E. Elsgoltz and S. B. Norkin [7], B. Rzepecki [13], J. K. Hale [8], F.

Hartung and J. Turi [9], V. Kalmanovskii and A. Myshkis [10], A. Buică [1]. For the

application of the Picard operator’s technique see I. A. Rus [14], [15], M. A. Şerban

[16], E. Egri and I. A. Rus [6], E. Egri [5]. Some other results on iterative functional
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differential equations can be found in K. Wang [18], J. G. Si and S. S. Cheng [17], S.

S. Cheng, J. G. Si and X. P. Wang [2].

The purpose of this paper is to study the following problem

x′(t) = f(t, x(t), x(g(t, x(t)))), t ∈ [a, b], (1)

x|[a−h,a] = ϕ, (2)

with x ∈ C([a− h, b], [a− h, b]) ∩ C1([a, b], [a− h, b]).

We suppose that

(C1) h > 0;

(C2) f ∈ C([a, b]× [a− h, b]2, R);

(C3) g ∈ C([a, b]× [a− h, b], [a− h, b]);

(C4) ϕ ∈ C([a− h, a], [a− h, b]);

(C5) there exists Lf > 0 such that

|f(t, u1, u2)− f(t, v1, v2)| ≤ Lf (|u1 − v1|+ |u2 − v2|),

∀t ∈ [a, b], ui, vi ∈ [a− h, b], i = 1, 2;

(C6) there exists Lg > 0 such that

|g(t, u)− g(t, v)| ≤ Lg|u− v|,

∀t ∈ [a, b], u, v ∈ [a− h, b].

Realize that the problem (1)+(2) is equivalent with the following fixed point

equation

x(t) =


ϕ(t), t ∈ [a− h, a],

ϕ(a) +
∫ t

a

f(s, x(s), x(g(s, x(s)))) ds, t ∈ [a, b],
(3)

where x ∈ C([a− h, b], [a− h, b]).

16



FIRST ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

2. Existence

Observe that the set C([a − h, b], R) can be endowed with the Chebyshev

norm

‖x‖C = max
t∈[a−h,b]

|x(t)|.

Henceforth we consider on the set C([a− h, b], [a− h, b]) the metric induced

by this norm.

Regarding our problem we define the following operator

A : C([a− h, b], [a− h, b]) → C([a− h, b], R),

where

A(x)(t) := the right hand side of (3). (4)

In this manner we obtained the fixed point equation x = A(x), which hereafter will

be the subject of our research. Denote by FA the fixed point set of the operator A.

Remark that the set C([a − h, b], R) along with the Chebyshev norm, ‖ · ‖C

constitutes a Banach space.

We have our first result.

Theorem 2.1. We suppose that

(i) the conditions (C1)− (C4) are satisfied;

(ii) mf ,Mf ∈ R are such that

(1) mf ≤ f(t, u1, u2) ≤ Mf , ∀ t ∈ [a, b], ui ∈ [a− h, b], i = 1, 2;

(2) a ≤ h + ϕ(a) + min{0,mf (b− a)};

(3) b ≥ ϕ(a) + max{0,Mf (b− a)}.

Then the problem (1) + (2) has at least a solution.

Proof . To justify the existence of the solution we will apply Schauder’s theorem.

For this purpose, to have a self-mapping operator, it is necessary to have satisfied

the invariance property of the set C([a − h, b], [a − h, b]) for the operator A : C([a −

h, b], [a− h, b]) → C([a− h, b], R). Therefore, it must hold the conclusion

x(t) ∈ [a− h, b] =⇒ A(x)(t) ∈ [a− h, b], ∀t ∈ [a− h, b].
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Taking into consideration the assumption (C4), for t ∈ [a−h, a] the condition

above is realized. Moreover, from the definition of the operator A we have

min
t∈[a,b]

A(x)(t) = ϕ(a) + min{0,mf (b− a)},

max
t∈[a,b]

A(x)(t) = ϕ(a) + max{0,Mf (b− a)}.

In this case we obtain

a− h ≤ A(x)(t) ≤ b, ∀t ∈ [a, b],

if the relations

a− h ≤ min
t∈[a,b]

A(x)(t), max
t∈[a,b]

A(x)(t) ≤ b

are true. But these are fulfilled by the condition (ii). Therefore, it is right to consider

the self-mapping operator

A : C([a− h, b], [a− h, b]) → C([a− h, b], [a− h, b]).

Observe that the operator A is completely continuous, since the subset

C([a− h, b], [a− h, b])⊂C([a− h, b], R)

is bounded, convex and closed, and what is more, the family of functions A(C([a −

h, b], [a−h, b])) is relatively compact. Consequently, it can be applied Schauder’s fixed

point theorem. Therefore, we have FA 6= ∅, or equivalently, the problem (1) + (2) has

at least a solution.

3. Existence and uniqueness

To study the existence and uniqueness of the solution of the Cauchy problem

(1) + (2), take an arbitrary positive number L and construct the set

CL([a− h, b], [a− h, b]) :=

{x ∈ C([a− h, b], [a− h, b])| |x(t1)− x(t2)| ≤ L|t1 − t2|,∀ t1, t2 ∈ [a− h, b]}.
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Notice that the subset CL([a−h, b], [a−h, b]) ⊂ C([a−h, b], R) can be endowed

with the Chebyshev metric defined by

‖x− y‖C := max
t∈[a−h,b]

(|x(t)− y(t)|) , (5)

and in this manner we obtain a complete metric space.

We have:

Theorem 3.1. Consider the Cauchy problem (1) + (2) and suppose that

(i) the conditions (C1)− (C6) are satisfied;

(ii) ϕ ∈ CL([a− h, a], [a− h, b]);

(iii) mf ,Mf ∈ R are such that

(1) mf ≤ f(t, u1, u2) ≤ Mf , ∀ t ∈ [a, b], ui ∈ [a− h, b], i = 1, 2;

(2) a ≤ h + ϕ(a) + min{0,mf (b− a)};

(3) b ≥ ϕ(a) + max{0,Mf (b− a)};

(iv) max{|Mf |, |mf |} ≤ L;

(v) Lf (b− a)(2 + LLg) < 1.

Then the problem (1) + (2) has in CL([a− h, b], [a− h, b]) a unique solution.

Proof . Consider the operator

A : CL([a− h, b], [a− h, b]) → C([a− h, b], R)

given by (4). We want to apply the contraction principle for this operator. Therefore,

first admit that A is self-mapping. Since all the conditions of the existence theorem

hold, we have

a− h ≤ A(x)(t) ≤ b, when a− h ≤ x(t) ≤ b,

for all t ∈ [a− h, b]. Moreover, from the condition (ii), if t1, t2 ∈ [a− h, a], we obtain

|A(x)(t1)−A(x)(t2)| = |ϕ(t1)− ϕ(t2)| ≤ L|t1 − t2|.

On the other hand, if t1, t2 ∈ [a, b], due to (iv), we have

|A(x)(t1)−A(x)(t2)| =
∣∣∣∣∫ t2

t1

f(s, x(s), x(g(s, x(s)))) ds

∣∣∣∣ ≤
≤ max{|mf |, |Mf |}|t1 − t2| ≤ L|t1 − t2|,
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which involves that the operator A is L-Lipschitz. Accordingly, we have A(x) ∈

CL([a− h, b], [a− h, b]) for all x ∈ CL([a− h, b], [a− h, b]).

Henceforward concede that from the condition (v) the operator A is an LA-

contraction, with

LA := Lf (b− a)(2 + LLg).

Indeed, for all t ∈ [a − h, a] we have |A(x1)(t) − A(x2)(t)| = 0. Furthermore, for

t ∈ [a, b] we successively get

|A(x1)(t)−A(x2)(t)| =

=
∣∣∣∣∫ t

a

[f(s, x1(s), x1(g(s, x1(s))))− f(s, x2(s), x2(g(s, x2(s))))] ds

∣∣∣∣ ≤
≤

∫ t

a

|f(s, x1(s), x1(g(s, x1(s))))− f(s, x2(s), x2(g(s, x2(s))))|ds ≤

≤Lf

∫ t

a

[
|x1(s)− x2(s)|+ |x1(g(s, x1(s)))− x2(g(s, x2(s)))|

]
ds ≤

≤Lf (b− a)‖x1 − x2‖C+

+Lf

∫ t

a

[
|x1(g(s, x1(s)))−x1(g(s, x2(s)))|+|x1(g(s, x2(s)))−x2(g(s, x2(s)))|

]
ds ≤

≤Lf (b− a)‖x1 − x2‖C + Lf

∫ t

a

[
L · |g(s, x1(s))− g(s, x2(s))|+ ‖x1 − x2‖C

]
ds ≤

≤2Lf (b− a)‖x1 − x2‖C + LLf

∫ t

a

|g(s, x1(s))− g(s, x2(s))|ds ≤

≤2Lf (b− a)‖x1 − x2‖C + LLf

∫ t

a

Lg|x1(s)− x2(s)|ds ≤

≤
[
2Lf (b− a) + LLfLg(b− a)

]
‖x1 − x2‖C ,

and it follows that

||A(x1)−A(x2)||C ≤ LA||x1 − x2||C , LA = Lf (b− a)(2 + LLg).

From the condition (vi) we have LA < 1, consequently the operator A is an

LA-contraction. By applying the contraction principle the operator A has a unique

fixed point, i.e. the problem (1)+(2) has in CL([a−h, b], [a−h, b]) a unique solution.
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4. Data dependence: continuity

In order to study the continuous dependence of the fixed points we will use

the following result:

Lemma 4.1. (I. A. Rus [15]) Let (X, d) be a complete metric space and

A,B : X → X

two operators. We suppose that

(i) the operator A is a γ-contraction;

(ii) FB 6= ∅;

(iii) there exists η > 0 such that

d(A(x), B(x)) ≤ η, ∀ x ∈ X.

Then, if FA = {x∗A} and x∗B ∈ FB , we have

d(x∗A, x∗B) ≤ η

1− γ
.

Now, let fi and ϕi as in Theorem 3.1. For i = 1, 2 we consider the following

two Cauchy problems

x′(t) = fi(t, x(t), x(g(t, x(t)))), t ∈ [a, b], (6)

x|[a−h,a] = ϕi. (7)

We assign to the problems (6) + (7) the operators

Ai : CL([a− h, b], [a− h, b]) → CL([a− h, b], [a− h, b]),

given by

Ai(x)(t) :=


ϕi(t), t ∈ [a− h, a],

ϕi(a) +
∫ t

a

fi(s, x(s), x(g(s, x(s)))) ds, t ∈ [a, b],
(8)

i = 1, 2. From Theorem 3.1 the operators A1 and A2 are contractions. We will denote

by x∗1, x
∗
2 their unique fixed points.

Then, accordingly to Lemma 4.1 we have the result as follows.
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Theorem 4.1. We suppose the conditions of Theorem 3.1 concerning to the problems

(6) + (7) are satisfied and, moreover,

(i) there exists η1 such that

|ϕ1(t)− ϕ2(t)| ≤ η1, ∀ t ∈ [a− h, a]

(ii) there exists η2 > 0 such that

|f1(t, u1, u2)− f2(t, u1, u2)| ≤ η2, ∀ t ∈ [a, b], ∀ui ∈ [a− h, b], i = 1, 2.

Then the following estimation holds:

‖x∗1 − x∗2‖C ≤ η1 + η2(b− a)
1− Lf (b− a)(2 + LLg)

,

where Lf = max{Lf1 , Lf2} and Lg = max{Lg1 , Lg2}.

Proof. Observe that, since the assumptions of Theorem 3.1 are realized, the operators

Ai (i = 1, 2) given by (8) are LAi
-contractions with

LAi
:= Lfi

(b− a)(2 + LLgi
).

Consider t ∈ [a− h, a]. From the condition (ii) it follows that

‖A1(x)−A2(x)‖C ≤ η1 ≤ η1 + η2(b− a).

On the other hand, for t ∈ [a, b], we obtain

|A1(x)(t)−A2(x)(t)| ≤

≤ |ϕ1(a)−ϕ2(a)|+
∫ t

a

|f1(s, x(s), x(g(s, x(s))))−f2(s, x(s), x(g(s, x(s)))) ds| ≤

≤ η1 + η2(b− a).

Consequently,

‖A1(x)−A2(x)‖C ≤ η1 + η2(b− a), ∀x ∈ CL([a− h, b], [a− h, b]).

Now, the proof follows from Lemma 4.1.
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5. Data dependence on parameter: Lipschitz-continuity

In this section we will use the following abstract result:

Lemma 5.1. Let (X, d) be a complete metric space, J ⊂ R and A : X × J → X an

operator. We suppose that:

(i) ∃α ∈]0, 1[ such that

d
(
A(x1, λ), A(x2, λ)

)
≤ αd(x1, x2), ∀x1, x2 ∈ X, λ ∈ J ;

(ii) ∃ l > 0 such that

d
(
A(x, λ1), A(x, λ2)

)
≤ l|λ1 − λ2|, ∀x ∈ X, λ1, λ2 ∈ J.

Then

(a) ∀λ ∈ J, the operator A(·, λ) : X → X has a unique fixed point, x∗(λ) ∈ X;

(b) d(x∗(λ1), x∗(λ2)) ≤
l

1− α
|λ1 − λ2|, ∀λ1, λ2 ∈ J.

Proof . Evidently, from the condition (i) the operator A(·, λ) is a contraction. There-

fore, the fixed point equation A(x, λ) = x has a unique solution x∗(λ) ∈ X, corre-

sponding to an arbitrary value λ ∈ J. Moreover, for λ1, λ2 ∈ J we have

d(x∗(λ1), x∗(λ2)) = d(A(x∗(λ1), λ1), A(x∗(λ2), λ2)) ≤

≤ d(A(x∗(λ1), λ1), A(x∗(λ1), λ2)) + d(A(x∗(λ1), λ2), A(x∗(λ2), λ2)) ≤

≤ l|λ1 − λ2|+ α · d(x∗(λ1), x∗(λ2)),

and consequently

d(x∗(λ1), x∗(λ2)) ≤
l

1− α
|λ1 − λ2|.

Accordingly, we have the proof.

Now we consider the problem x′(t) = f(t, x(t), x(g(x, t)), λ), t ∈ [a, b], λ ∈ J ,

x(t) = ϕ(t, λ), t ∈ [a− h, a], λ ∈ J, h > 0,

(9)
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and, for L > 0, the corresponding operator A, given as follows:

A : CL([a− h, b], [a− h, b])× J → CL([a− h, b], [a− h, b])× J,

A(x, λ) :=


ϕ(t, λ), t ∈ [a− h, a], λ ∈ J ;

ϕ(a, λ) +
∫ t

a

f(s, x(s), x(g(s, x(s))), λ)ds, t ∈ [a, b], λ ∈ J.

(10)

Based upon Lemma 5.1 we have the next result:

Theorem 5.1. We suppose that

(i) f ∈ C([a, b]× [a− h, b]2 × J, R);

(ii) g ∈ C([a, b]× [a− h, b], [a− h, b]);

(iii) ϕ ∈ CL([a− h, a], [a− h, b])× J, and ∃lϕ > 0 such that

|ϕ(t, λ1)− ϕ(t, λ2)| ≤ lϕ;

(iv) there exists Lf > 0 such that

|f(t, u1, u2, λ)− f(t, v1, v2, λ)| ≤ Lf (|u1 − v1|+ |u2 − v2|),

∀t ∈ [a, b], ui, vi ∈ [a− h, b], λ ∈ J, i = 1, 2;

(v) there exists Lf > 0 such that

|f(t, u, v, λ1)− f(t, u, v, λ2)| ≤ lf |λ1 − λ2|,

∀t ∈ [a, b], u, v ∈ [a− h, b], λi ∈ J, i = 1, 2;

(vi) there exists Lg > 0 such that

|g(t, u)− g(t, v)| ≤ Lg|u− v|,

∀t ∈ [a, b], u, v ∈ [a− h, b];

(vii) Lf (b− a)[2 + LLg] < 1.

Then

(a) ∀λ ∈ J, the operator A(·, λ) : X → X defined by (10) has a unique fixed

point, x∗(λ) ∈ X;
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(b) ‖x∗(λ1), x∗(λ2)‖C ≤
lϕ + lf (b− a)

1− Lf (b− a)[2 + LLg]
|λ1 − λ2|, ∀λ1, λ2 ∈ J.

Proof . From the proof of Theorem 3.1, for all t ∈ [a, b] we have

|A(x1, λ)(t)−A(x2, λ)(t)| =

=
∣∣∣∣∫ t

a

f(s, x1(s), x1(g(s, x1(s))), λ)ds−
∫ t

a

f(s, x2(s), x2(g(s, x2(s))), λ)ds

∣∣∣∣ ≤
≤Lf (b− a)[2 + LLg]‖x1 − x2‖C ,

and taking α := Lf (b− a)[2 + LLg], due to the condition (vi), the first assumption of

Lemma 5.1 is satisfied.

Furthermore, for t ∈ [a− h, a], we have:

|A(x, λ1)−A(x, λ2)| = |ϕ(t, λ1)− ϕ(t, λ2)| ≤ lϕ|λ1 − λ2|.

On the other hand, if t ∈ [a, b], we obtain:

|A(x, λ1)−A(x, λ2)| ≤ |ϕ(a, λ1)− ϕ(a, λ2)|+

+
∫ t

a

|f(s, x(s), x(g(s, x(s))), λ1)− f(s, x(s), x(g(s, x(s))), λ2)|ds ≤

≤lϕ|λ1 − λ2|+ lf (b− a)|λ1 − λ2| = [lϕ + lf (b− a)]|λ1 − λ2|.

One can be observe that l := lϕ + lf (b − a) has the same property as the one from

Lemma 5.1.

Consequently, the proof is complete.

6. Data dependence: differentiability

Henceforward we will need the following result, which is very useful for prov-

ing solutions of operatorial equations to be differentiable with respect to parameters.

Theorem 6.1 (Fibre contraction principle (I. A. Rus [14])). Let (X, d) and (Y, ρ) be

two metric spaces and

A : X × Y → X × Y, (B : X → X, C : X × Y → Y ),

A(x, y) = (B(x), C(x, y))
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a triangular operator.

We suppose that

(i) (Y, ρ) is a complete metric space;

(ii) the operator B is a Picard operator;

(iii) there exists LC ∈ [0, 1[ such that C(x, ·) : Y → Y is an LC-contraction,

for all x ∈ X;

(iv) if (x∗, y∗) ∈ FA, then C(·, y∗) is continuous in x∗.

Then the operator A is a Picard operator.

For some applications of the fibre contraction principle see I. A. Rus [15], E.

Egri and I. A. Rus [6], E. Egri [5].

Consider the following problem with parameter:

x′(t;λ) = f(t, x(t;λ), x(g(t, x(t;λ));λ);λ), t ∈ [a, b], (11)

x(t;λ) = ϕ(t;λ), t ∈ [a− h, a], (12)

with λ ∈ J ⊂ R a compact subset.

We have:

Theorem 6.2. Suppose that we have satisfied the conditions below:

(P1) h > 0, J ⊂ R, a compact interval;

(P2) ϕ(t, ·) ∈ C1(J, R), for all t ∈ [a− h, a];

ϕ(·, λ) ∈ C1
L([a− h, a], [a− h, a]), and

ϕ′(a, λ) = f(a, ϕ(a;λ), ϕ(g(a, ϕ(a;λ));λ);λ);

(P3) f ∈ C1([a, b]× [a− h, b]2 × J, R);

g ∈ C([a, b]× [a− h, b], [a− h, b]);

(P4) there exists Lf > 0 such that∣∣∣∣∣∣
∂f(t, u1, u2;λ)

∂ui

∣∣∣∣∣∣ ≤ Lf ,

for all t ∈ [a, b], ui ∈ [a− h, b], i = 1, 2, λ ∈ J ;

(P5) mf ,Mf ∈ R are such that

(1) mf ≤ f(t, u1, u2;λ) ≤ Mf , ∀ t ∈ [a, b], u1, u2 ∈ [a− h, b], λ ∈ J ;
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(2) a ≤ h + ϕ(a;λ) + min{0,mf (b− a)};

(3) b ≥ ϕ(a;λ) + max{0,Mf (b− a)};

(P6) max{|mf |, |Mf |} ≤ L;

(P7) Lf (b− a)(2 + LLg) < 1.

Then

(1) the problem (11) + (12) has in CL([a − h, b], [a − h, b]) a unique solution,

x∗(·, λ);

(2) x∗(t, ·) ∈ C1(J, R), ∀t ∈ [a− h, b].

Proof . Since we are in the conditions of Theorem 3.1, we certainly have that the

problem (11)+(12) has in CL([a−h, b], [a−h, b]) a unique solution, x∗(·, λ). Therefore,

statement (1) from the theorem is satisfied.

To justify the affirmation (2), first observe that the problem (11) + (12) is

equivalent with the following fixed point equation

x(t;λ) =


ϕ(t;λ), t ∈ [a− h, a], λ ∈ J,

ϕ(a;λ) +
∫ t

a

f(t, x(t;λ), x(g(t, x(t;λ));λ);λ) ds, t ∈ [a, b], λ ∈ J.

(13)

We try to fit in the fibre contraction principle. For this purpose we consider

the operator

B : CL([a− h, b]× J, [a− h, b]) → CL([a− h, b]× J, [a− h, b]),

where

B(x)(t;λ) := the right hand side of (13).

From the proof of the existence and uniqueness theorem 3.1 this operator

is well-defined. We denote by X its domain (codomain). Observe that the set X

endowed with the Chebyshev metric

dC(x, y) = max
t,λ

|x(t;λ)− y(t;λ)|, for all x, y ∈ X,

is a Banach space.
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From the contraction principle, in the conditions of the theorem, the operator

B is a Picard operator with FB = {x∗}.

We consider the subset X1 ⊂ X,

X1 :=

x ∈ X

∣∣∣∣∣∣
∂x

∂t
∈ C([a− h, b]× J, R)

 .

Remark that x∗ ∈ X1, B(X1) ⊂ X1 and B : X1 → X1 is Picard operator. Thus, B

fulfills (ii) from the fibre contraction theorem.

Let Y := C([a − h, b] × J, R). We want to prove that there exists
∂x∗

∂λ
and,

moreover,
∂x∗

∂λ
∈ Y. If we suppose that there exists

∂x∗

∂λ
, then from (13) we have

∂x∗(t;λ)
∂λ

=
∂ϕ(a;λ)

∂λ
+

∫ t

a

∂f(s, x∗(s;λ), x∗(g(s, x∗(s;λ));λ);λ)
∂u1

· ∂x∗(s;λ)
∂λ

ds+

+
∫ t

a

∂f(s, x∗(s;λ), x∗(g(s, x∗(s;λ));λ);λ)
∂u2

· ∂x∗(g(s, x∗(s;λ));λ)
∂t

· ∂g(s, x∗(s;λ))
∂v

·

· ∂x∗(s;λ)
∂λ

ds +
∫ t

a

∂f(s, x∗(s;λ), x∗(g(s, x∗(s;λ));λ);λ)
∂u2

· ∂x∗(g(s, x∗(s;λ));λ)
∂λ

ds+

+
∫ t

a

∂f(s, x∗(s;λ), x∗(x∗(s;λ);λ);λ)
∂λ

ds, t ∈ [a, b], λ ∈ J.

The obtained relation suggests us to consider the operator

C : X1 × Y → Y

(x, y) 7→ C(x, y)

defined by

C(x, y)(t;λ) :=
∂ϕ(a;λ)

∂λ
+

∫ t

a

∂f(s, x(s;λ), x(g(s, x(s;λ));λ);λ)
∂u1

· y(s;λ) ds+

+
∫ t

a

∂f(s, x(s;λ), x(g(s, x(s;λ));λ);λ)
∂u2

· ∂x(g(s, x(s;λ));λ)
∂t

· ∂g(s, x(s;λ))
∂v

·

· y(s;λ)ds +
∫ t

a

∂f(s, x(s;λ), x(g(s, x(s;λ));λ);λ)
∂u2

· ∂x(g(s, x(s;λ));λ)
∂λ

ds+

+
∫ t

a

∂f(s, x(s;λ), x(g(x(s;λ));λ);λ)
∂λ

ds, t ∈ [a, b], λ ∈ J.
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and

C(x, y)(t, λ) :=
∂ϕ(t;λ)

∂λ
, for t ∈ [a1, a], λ ∈ J.

In this way we can consider the triangular operator

A : X1 × Y → X1 × Y

(x, y) 7→ (B(x), C(x, y)).

As we have seen earlier, B : X1 → X1 is a Picard operator. Realize that

C(x, ·) : Y → Y is a contraction on [a, b]. Indeed, we have

|C(x, y1)(t;λ)− C(x, y2)(t;λ)| =∣∣∣∣∫ t

a

∂f(s, x(s;λ), x(g(s, x(s;λ));λ);λ)
∂u1

·
[
y1(s;λ)− y2(s;λ)

]
ds+

+
∫ t

a

∂f(s, x(s;λ), x(g(s, x(s;λ));λ);λ)
∂u2

· ∂x(g(s, x(s;λ));λ)
∂t

· ∂g(s, x(s;λ))
∂v

·

·
[
y1(s;λ)− y2(s;λ)

]
ds

∣∣ ≤
≤ Lf

∫ t

a

∣∣∣∣1 +
∂x(g(s, x(s;λ));λ)

∂t
· ∂g(s, x(s;λ))

∂v

∣∣∣∣ · |y1(s;λ)− y2(s;λ)|ds ≤

≤ Lf (1 + LLg)
∫ t

a

|y1(s;λ)− y2(s;λ)|ds ≤

≤ Lf (1 + LLg)(b− a)||y1 − y2||C ≤

≤ Lf (b− a)(2 + LLg)||y1 − y2||C .

In this way we got

||C(x, y1)− C(x, y2)||C ≤ LC · ||y1 − y2||C , with LC := Lf (b− a)(2 + LLg).

So, we are in the condition of the fibre contraction principle, and consequently,

A is a Picard operator, i.e. the sequences defined by

xn+1 := B(xn),

yn+1 := C(xn, yn), n ∈ N

converges uniformly (with respect to t ∈ [a − h, b], λ ∈ J) to the unique fixed point

of the operator A, (x∗, y∗) ∈ FA, for all x0, y0 ∈ C([a− h, b]× J, [a− h, b]).
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Taking x0 = 0, y0 =
∂x0

∂λ
= 0, we get y1 =

∂x1

∂λ
. By induction it can be

proved that yn =
∂xn

∂λ
, ∀ n ∈ N. So,

xn
unif.−→ x∗ as n →∞,

∂xn

∂λ

unif.−→ y∗ as n →∞.

From these, using a theorem of Weierstrass we have that x∗ is differentiable

and
∂x∗

∂λ
= y∗ ∈ Y.

7. Example

To check our results consider the following Cauchy problem

x′(t) =
1
5

[
x

(
1
6
[t + x(t)]

)
− 1

6
x(t)− 1

24
t

]
+

1
2
, t ∈ [0, 2], (14)

x(t) = t, t ∈ [−1, 0]. (15)

We look for the solution x ∈ C([−1, 2], [−1, 2]) ∩ C1([0, 2], [−1, 2]) of the

problem (14)+(15). For this purpose we apply Theorem 2.1. First observe that we

have a = 0, b = 2, h = 1, ϕ(t) = t, and

g(t, u) =
1
6
(t + u), for all t ∈ [0, 2], u ∈ [−1, 2],

f(t, u1, u2) =
1
5

[
u2 −

1
6
u1 −

1
24

t

]
+

1
2
, for all t ∈ [0, 2], u1, u2 ∈ [−1, 2],

with

mf =
13
60

, Mf =
14
15

, Lf =
1
5
, Lg =

1
6
.

Since all the conditions of Theorem 2.1 are fulfilled, the problem (14)+(15)

has in C([−1, 2], [−1, 2]) at least a solution. Moreover, considering
1
2
≤ L < 3, due to

Theorem3.1, this solution is unique on the set CL([−1, 2], [−1, 2]), and it is the limit

of the sequence (xn)n≥0 of successive approximation, given by the recursive relation

xn+1 =


t, t ∈ [−1, 0],∫ t

0

{
1
5

[
xn

(
1
6
[s + xn(s)]

)
− 1

6
xn(s)− 1

24
s

]
+

1
2

}
ds, t ∈ [0, 2],
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Doing some calculations with Maple, it seems that the sequence of successive

approximation is convergent to the function x(t) =
t

2
. Indeed, this is the unique

solution of the problem, since it satisfies the functional differential equation (14).
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