# FIXED POINT THEORY FOR MULTIVALUED GENERALIZED CONTRACTION ON A SET WITH TWO $b$-METRICS 

## MONICA BORICEANU


#### Abstract

The purpose of this paper is to present some fixed point results for multivalued generalized contraction on a set with two $b$-metrics. The data dependence and the well-posedness of the fixed point problem are also discussed


## 1. Introduction

The concept of $b$-metric space was introduced by Czerwik in [2]. Since then several papers deal with fixed point theory for singelvalued and multivalued operators in $b$-metric spaces (see [1], [2], [7]). In the first part of the paper we will present a fixed point theorem for Ćirić-type multivalued operator on $b$-metric space endowed with two $b$-metrics. Then, a strict fixed point result for multivalued generalized contraction in $b$-metric spaces is proved. The last part contains several conditions under which the fixed point problem for a multivalued operator in a $b$-metric space is well-posed and a data dependence result is given.

## 2. Preliminaries and auxiliary results

The aim of this section is to present some notions and symbols used in the paper.

We will first give the definition of a b-metric space.

[^0]Definition 2.1 (Czerwik [2]) Let $X$ be a set and let $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow \mathbb{R}_{+}$is said to be a b-metric if and only if for all $x, y, z \in X$ the following conditions are satisfied:

1. $d(x, y)=0$ if and only if $x=y$;
2. $d(x, y)=d(y, x)$;
3. $d(x, z) \leq s[d(x, y)+d(y, z)]$.

A pair $(X, d)$ is called a b-metric space.
We give next some examples of $b$-metric spaces.

## Example 2.2 (Berinde see [1])

The space $l_{p}(0<p<1)$,

$$
l_{p}=\left\{\left.\left(x_{n}\right) \subset \mathbb{R}\left|\sum_{n=1}^{\infty}\right| x_{n}\right|^{p}<\infty\right\}
$$

together with the function $d: l_{p} \times l_{p} \rightarrow \mathbb{R}$,

$$
d(x, y)=\left(\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{p}\right)^{1 / p}
$$

where $x=\left(x_{n}\right), y=\left(y_{n}\right) \in l_{p}$ is a b-metric space.
By an elementary calculation we obtain: $d(x, z) \leq 2^{1 / p}[d(x, y)+d(y, z)]$.
Hence $a=2^{1 / p}>1$.

## Example 2.3 (Berinde see[1])

The space $L_{p}(0<p<1)$ of all real functions $x(t), t \in[0,1]$ such that:

$$
\int_{0}^{1}|x(t)|^{p} d t, \infty
$$

is a b-metric space if we take

$$
d(x, y)=\left(\int_{0}^{1}|x(t)-y(t)|^{p} d t\right)^{1 / p}, \text { for each } x, y \in L_{p}
$$

The constant $a$ is as in the previous example $2^{1 / p}$.
We continue by presenting the notions of convergence, compactness, closedness and completeness in a $b$-metric space.
Definition 2.4 Let $(X, d)$ be a $b$-metric space. Then a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $X$ is called:

4

FIXED POINT THEORY FOR MULTIVALUED GENERALIZED CONTRACTION
(a) Cauchy if and only if for all $\varepsilon>0$ there exists $n(\varepsilon) \in \mathbb{N}$ such that for each $n, m \geq n(\varepsilon)$ we have $d\left(x_{n}, x_{m}\right)<\varepsilon$.
(b) convergent if and only if there exists $x \in X$ such that for all $\varepsilon>0$ there exists $n(\varepsilon) \in \mathbb{N}$ such that for all $n \geq n(\varepsilon)$ we have $d\left(x_{n}, x\right)<\varepsilon$. In this case we write $\lim _{n \rightarrow \infty} x_{n}=x$.

## Remark 2.5

1. The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy if and only if $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0$, for all $p \in \mathbb{N}^{*}$.
2. The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent to $x \in X$ if and only if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=$ 0.

## Definition 2.6

1. Let $(X, d)$ be a $b$-metric space. Then a subset $Y \subset X$ is called
(i) compact if and only if for every sequence of elements of $Y$ there exists a subsequence that converges to an element of $Y$.
(ii) closed if and only if for each sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $Y$ which converges to an element $x$, we have $x \in Y$.
2. The $b$-metric space is complete if every Cauchy sequence converges.

We consider next the following families of subsets of a $b$-metric space $(X, d)$ :

$$
\begin{gathered}
P(X):=\{Y \in \mathcal{P}(X) \mid Y \neq \emptyset\} ; \\
P_{b}(X):=\{Y \in P(X) \mid \operatorname{diam}(Y)<\infty\},
\end{gathered}
$$

where

$$
\operatorname{diam}: P(X) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \operatorname{diam}(Y)=\sup \{d(a, b), a, b \in Y\}
$$

is the generalized diameter functional;

$$
\begin{gathered}
P_{c p}(X):=\{Y \in P(X) \mid Y \text { is compact }\} ; \\
P_{c l}(X):=\{Y \in P(X) \mid Y \text { is closed }\} ; \\
P_{b, c l}(X):=P_{b}(X) \cap P_{c l}(X)
\end{gathered}
$$

## MONICA BORICEANU

We will introduce the following generalized functionals on a $b$-metric space $(X, d)$. Some of them were defined in [2].

1. $D: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$,

$$
D(A, B)=\inf \{d(a, b) \mid a \in A, b \in B\},
$$

for any $A, B \subset X$.
$D$ is called the gap functional between $A$ and $B$. In particular, if $x_{0} \in X$ then $D\left(x_{0}, B\right):=D\left(\left\{x_{0}\right\}, B\right)$.
2. $\delta: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$,

$$
\delta(A, B)=\sup \{d(a, b) \mid a \in A, b \in B\} .
$$

3. $\rho: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$,

$$
\rho(A, B)=\sup \{D(a, B) \mid a \in A\}
$$

for any $A, B \subset X$.
$\rho$ is called the (generalized) excess functional.
4. $H: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$,

$$
H(A, B)=\max \left\{\sup _{x \in A} D(x, B), \sup _{y \in B} D(A, y)\right\}
$$

for any $A, B \subset X$.
$H$ is the (generalized) Pompeiu-Hausdorff functional.
Let $(X, d)$ be a $b$-metric space. If $F: X \rightarrow P(X)$ is a multivalued operator, we denote by FixF the fixed point set of $F$, i.e. $F i x(F):=\{x \in X \mid x \in F(x)\}$ and by SFixF the strict fixed point set of $F$, i.e. SFixF $:=\{x \in X \mid\{x\}=F(x)\}$.

Lemma 2.7 [4] Let $(X, d)$ be a b-metric space and let $A, B \in P(X)$. We suppose that there exists $\eta \in \mathbb{R}, \eta>0$ such that:
(i) for each $a \in A$ there is $b \in B$ such that $d(a, b) \leq \eta$;
(ii) for each $b \in B$ there is $a \in A$ such that $d(a, b) \leq \eta$.

Then

$$
H(A, B) \leq \eta
$$

## FIXED POINT THEORY FOR MULTIVALUED GENERALIZED CONTRACTION

Lemma 2.8 [4] Let $(X, d)$ be a b-metric space and let $A \in P(X)$ and $x \in X$. Then $D(x, A)=0$ if and only if $x \in \bar{A}$.

The following results are useful for some of the proofs in the paper.
Lemma 2.9 (Czerwik [2]) Let $(X, d)$ be a b-metric space. Then

$$
D(x, A) \leq s[d(x, y)+D(y, A)], \text { for all } x, y \in X, A \subset X
$$

Lemma 2.10 (Czerwik [2]) Let $(X, d)$ be a b-metric space and let $\left\{x_{k}\right\}_{k=0}^{n} \subset X$. Then:

$$
d\left(x_{n}, x_{0}\right) \leq s d\left(x_{0}, x_{1}\right)+\ldots+s^{n-1} d\left(x_{n-2}, x_{n-1}\right)+s^{n-1} d\left(x_{n-1}, x_{n}\right) .
$$

Lemma 2.11 (Czerwik [2]) Let $(X, d)$ be a b-metric space and for all $A, B, C \in X$ we have:

$$
H(A, C) \leq s[H(A, B)+H(B, C)] .
$$

Lemma 2.12 (Czerwik [2])
(1) Let $(X, d)$ be a b-metric space and $A, B \in P_{c l}(X)$. Then for each $\alpha>0$ and for all $b \in B$ there exists $a \in A$ such that:

$$
d(a, b) \leq H(A, B)+\alpha ;
$$

(2) Let $(X, d)$ be a b-metric space and $A, B \in P_{c p}(X)$. Then for all $b \in B$ there exists $a \in A$ such that:

$$
d(a, b) \leq s H(A, B)
$$

## 3. Main results

The fist main result of this paper is a fixed point theorem.
Theorem 3.1 Let $X$ be a nonempty set, $d$ and $\rho$ two b-metrics on $X$ with constants $t>1$ and respectively $s>1$ and let $F: X \rightarrow P(X)$ a multivalued operator. We suppose that:
(i) $(X, d)$ is a complete $b$-metric space;
(ii) There exists $c>0$ such that $d(x, y) \leq c \cdot \rho(x, y)$, for all $x, y \in X$;
(iii) $F:(X, d) \rightarrow\left(P(X), H_{d}\right)$ is closed;

## MONICA BORICEANU

(iv) There exists $0 \leq \alpha<\frac{1}{s}$ such that

$$
H_{\rho}(F(x), F(y)) \leq \alpha M_{\rho}^{F}(x, y),
$$

for all $x, y \in X$, where
$M_{\rho}^{F}(x, y)=\max \left\{\rho(x, y), D_{\rho}(x, F(x)), D_{\rho}(y, F(y)), \frac{1}{2}\left[D_{\rho}(x, F(y))+D_{\rho}(y, F(x))\right]\right\}$.
Then we have:

1. $F i x F \neq \emptyset$;
2. For all $x \in X$ and each $y \in F(x)$ there exists $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that:
(a) $x_{0}=x, x_{1}=y$;
(b) $x_{n+1} \in F\left(x_{n}\right)$;
(c) $d\left(x_{n}, x^{*}\right) \rightarrow 0$, as $n \rightarrow \infty$ where $x^{*} \in F\left(x^{*}\right)$;

Proof. Let $1<q<\frac{1}{s \alpha}$ be arbitrary. For arbitrary $x_{0} \in X$ and for $x_{1} \in F\left(x_{0}\right)$ there exists $x_{2} \in F\left(x_{1}\right)$ such that:

$$
\rho\left(x_{1}, x_{2}\right) \leq q H_{\rho}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right) \leq q \alpha M_{\rho}^{F}\left(x_{0}, x_{1}\right) .
$$

So we have
$\rho\left(x_{1}, x_{2}\right) \leq q \alpha \cdot \max \left\{\rho\left(x_{0}, x_{1}\right), D_{\rho}\left(x_{0}, F\left(x_{0}\right)\right), D\left(x_{1}, F\left(x_{1}\right)\right), \frac{1}{2}\left[D_{\rho}\left(x_{0}, F\left(x_{1}\right)\right)+D_{\rho}\left(x_{1}, F\left(x_{0}\right)\right)\right]\right\}$.

Suppose that the $\max =\rho\left(x_{0}, x_{1}\right)$. Then we have

$$
\rho\left(x_{1}, x_{2}\right) \leq q \alpha \rho\left(x_{0}, x_{1}\right) .
$$

Suppose that the $\max =D_{\rho}\left(x_{0}, F\left(x_{0}\right)\right)$. Then we have

$$
\rho\left(x_{1}, x_{2}\right) \leq q \alpha D_{\rho}\left(x_{0}, F\left(x_{0}\right)\right) \leq q \alpha \rho\left(x_{0}, x_{1}\right)
$$

Suppose that the $\max =D_{\rho}\left(x_{1}, F\left(x_{1}\right)\right)$. Then we have

$$
\rho\left(x_{1}, x_{2}\right) \leq q \alpha D_{\rho}\left(x_{1}, F\left(x_{1}\right)\right) \leq q \alpha \rho\left(x_{1}, x_{2}\right) .
$$

So $\rho\left(x_{1}, x_{2}\right)=0$ and thus $x_{1} \in$ FixF.

## FIXED POINT THEORY FOR MULTIVALUED GENERALIZED CONTRACTION

Suppose that the $\max =\frac{1}{2}\left[D_{\rho}\left(x_{0}, F\left(x_{1}\right)\right)+D_{\rho}\left(x_{1}, F\left(x_{0}\right)\right)\right]$. Then we have

$$
\left.\rho\left(x_{1}, x_{2}\right) \leq q \alpha \frac{1}{2} D_{\rho}\left(x_{0}, F\left(x_{1}\right)\right) \leq q \alpha \frac{1}{2} \rho\left(x_{0}, x_{2}\right)\right) \leq \frac{q \alpha}{2} s\left[\rho\left(x_{0}, x_{1}\right)+\rho\left(x_{1}, x_{2}\right)\right] .
$$

So we have $\rho\left(x_{1}, x_{2}\right) \leq \frac{q \alpha s}{2-q \alpha s} \rho\left(x_{0}, x_{1}\right)$.
For $x_{2} \in F\left(x_{1}\right)$ there exists $x_{3} \in F\left(x_{2}\right)$ such that:

$$
\rho\left(x_{2}, x_{3}\right) \leq q H_{\rho}\left(F\left(x_{1}\right), F\left(x_{2}\right)\right) \leq q \alpha M_{\rho}^{F} \rho\left(x_{1}, x_{2}\right)
$$

Suppose that the $\max =\rho\left(x_{1}, x_{2}\right)$. Then we have

$$
\rho\left(x_{2}, x_{3}\right) \leq q \alpha \rho\left(x_{1}, x_{2}\right) \leq(q \alpha)^{2} \rho\left(x_{0}, x_{1}\right) .
$$

Suppose that the $\max =D_{\rho}\left(x_{1}, F\left(x_{1}\right)\right)$. Then we have

$$
\rho\left(x_{2}, x_{3}\right) \leq q \alpha D_{\rho}\left(x_{1}, F\left(x_{1}\right)\right) \leq q \alpha \rho\left(x_{1}, x_{2}\right) \leq(q \alpha)^{2} \rho\left(x_{0}, x_{1}\right) .
$$

Suppose that the $\max =D_{\rho}\left(x_{2}, F\left(x_{2}\right)\right)$. Then we have

$$
\rho\left(x_{2}, x_{3}\right) \leq q \alpha D_{\rho}\left(x_{2}, F\left(x_{2}\right)\right) \leq q \alpha \rho\left(x_{2}, x_{3}\right) .
$$

So $\rho\left(x_{2}, x_{3}\right)=0$ and thus $x_{2} \in$ FixF.
Suppose that the $\max =\frac{1}{2}\left[D_{\rho}\left(x_{1}, F\left(x_{2}\right)\right)+D_{\rho}\left(x_{2}, F\left(x_{1}\right)\right)\right]$. Then we have

$$
\left.\rho\left(x_{1}, x_{2}\right) \leq q \alpha \frac{1}{2} D_{\rho}\left(x_{1}, F\left(x_{2}\right)\right) \leq q \alpha \frac{1}{2} \rho\left(x_{1}, x_{3}\right)\right) \leq \frac{q \alpha}{2} s\left[\rho\left(x_{1}, x_{2}\right)+\rho\left(x_{2}, x_{3}\right)\right] .
$$

So we have

$$
\rho\left(x_{2}, x_{3}\right) \leq \frac{q \alpha s}{2-q \alpha s} \rho\left(x_{1}, x_{2}\right) \leq\left[\frac{q \alpha s}{2-q \alpha s}\right]^{2} \rho\left(x_{0}, x_{1}\right) .
$$

We can construct by induction a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\rho\left(x_{n}, x_{n+1}\right) \leq \max \left\{(q \alpha)^{n},\left[\frac{q \alpha s}{2-q \alpha s}\right]^{n}\right\} \rho\left(x_{0}, x_{1}\right), \text { for all } n \in \mathbb{N} .
$$

We will prove next that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy, by estimating $\rho\left(x_{n}, x_{n+p}\right)$.

## MONICA BORICEANU

We consider first that the maximum is $(q \alpha)^{n}$. So we have:

$$
\begin{aligned}
\rho\left(x_{n}, x_{n+p}\right) & \leq s \rho\left(x_{n}, x_{n+1}\right)+s^{2} \rho\left(x_{n+1}, x_{n+2}\right)+\ldots+ \\
& +s^{p-1} \rho\left(x_{n+p-2}, x_{n+p-1}\right)+s^{p-1} \rho\left(x_{n+p-1}, x_{n+p}\right) \\
& \leq s(q \alpha)^{n} \rho\left(x_{0}, x_{1}\right)+s^{2}(q \alpha)^{n+1} \rho\left(x_{0}, x_{1}\right)+\ldots+ \\
& +s^{p-1}(q \alpha)^{n+p-2} \rho\left(x_{0}, x_{1}\right)+s^{p-1}(q \alpha)^{n+p-1} \rho\left(x_{0}, x_{1}\right) \\
& =s(q \alpha)^{n} \rho\left(x_{0}, x_{1}\right)\left[1+s q \alpha+\ldots+(s q \alpha)^{p-2}+s^{p-2}(q \alpha)^{p-1}\right] \\
& \leq s(q \alpha)^{n} \rho\left(x_{0}, x_{1}\right)\left[1+s q \alpha+\ldots+(s q \alpha)^{p-2}+s^{p-1}(q \alpha)^{p-1}\right] \\
& =s(q \alpha)^{n} \rho\left(x_{0}, x_{1}\right) \frac{1-(s q \alpha)^{p}}{1-s q \alpha} .
\end{aligned}
$$

But $1<q<\frac{1}{s \alpha}$. Hence we obtain that:

$$
\rho\left(x_{n}, x_{n+p}\right) \leq s(q \alpha)^{n} \rho\left(x_{0}, x_{1}\right) \frac{1-(s q \alpha)^{p}}{1-s q \alpha} \rightarrow 0
$$

as $n \rightarrow \infty$. So $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy and $x_{n} \rightarrow x \in X$.
We consider now the maximum $A:=\left[\frac{q \alpha s}{2-q \alpha s}\right]^{n}$. So we have:

$$
\begin{aligned}
\rho\left(x_{n}, x_{n+p}\right) & \leq s \rho\left(x_{n}, x_{n+1}\right)+s^{2} \rho\left(x_{n+1}, x_{n+2}\right)+\ldots+ \\
& +s^{p-1} \rho\left(x_{n+p-2}, x_{n+p-1}\right)+s^{p-1} \rho\left(x_{n+p-1}, x_{n+p}\right) \\
& \leq s A^{n} \rho\left(x_{0}, x_{1}\right)+s^{2} A^{n+1} \rho\left(x_{0}, x_{1}\right)+\ldots+ \\
& +s^{p-1} A^{n+p-2} \rho\left(x_{0}, x_{1}\right)+s^{p-1} A^{n+p-1} \rho\left(x_{0}, x_{1}\right) \\
& =s A^{n} \rho\left(x_{0}, x_{1}\right)\left[1+s A+\ldots+(s A)^{p-2}+s^{p-2} A^{p-1}\right] \\
& \leq s A^{n} \rho\left(x_{0}, x_{1}\right)\left[1+s A+\ldots+(s A)^{p-2}+s^{p-1} A^{p-1}\right] \\
& =s A^{n} \rho\left(x_{0}, x_{1}\right) \frac{1-(s A)^{p}}{1-s A} .
\end{aligned}
$$

But $1<q<\frac{1}{s \alpha}$ and we obtain that:

$$
\rho\left(x_{n}, x_{n+p}\right) \leq s A^{n} \rho\left(x_{0}, x_{1}\right) \frac{1-(s A)^{p}}{1-s A} \rightarrow 0
$$

as $n \rightarrow \infty$. So $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy in $(X, \rho)$.
10

## FIXED POINT THEORY FOR MULTIVALUED GENERALIZED CONTRACTION

From (ii) it follows that the sequence is Cauchy in $(X, d)$. Denote by $x^{*} \in X$ the limit of the sequence. From (i) and (iii) we get that $d\left(x_{n}, x^{*}\right) \rightarrow 0$, as $n \rightarrow \infty$ where $x^{*} \in F\left(x^{*}\right)$. The proof is complete.

For the next results let us denote

$$
N_{\rho}^{F}(x, y)=\max \left\{\rho(x, y), D_{\rho}(y, F(y)), \frac{1}{2}\left[D_{\rho}(x, F(y))+D_{\rho}(y, F(x))\right]\right\} .
$$

The second main result of this paper is:
Theorem 3.2 Let $X$ be a nonempty set, $d$ and $\rho$ two b-metrics on $X$ with constants $t>1$ and respectively $s>1$ and let $F: X \rightarrow P(X)$ a multivalued operator. We suppose that:
(i) $(X, d)$ is a complete $b$-metric space;
(ii) There exists $c>0$ such that $d(x, y) \leq c \cdot \rho(x, y)$, for all $x, y \in X$;
(iii) $F:(X, d) \rightarrow\left(P(X), H_{d}\right)$ is closed;
(iv) There exists $0 \leq \alpha<\frac{1}{s}$ such that

$$
H_{\rho}(F(x), F(y)) \leq \alpha N_{\rho}^{F}(x, y),
$$

for all $x, y \in X$;
(v) $S F i x F \neq \emptyset$.

Then we have:

1. FixF $=$ SFixF $=\left\{x^{*}\right\}$;
2. $H_{\rho}\left(F^{n}(x), x^{*}\right) \leq \alpha^{n} \rho\left(x, x^{*}\right)$, for all $n \in \mathbb{N}$ and for each $x \in X$;
3. $\rho\left(x, x^{*}\right) \leq \frac{s}{1-s \alpha} H_{\rho}(x, F(x))$, for all $x \in X$;
4. The fixed point problem is well-posed for $F$ with respect to $D_{\rho}$ and with respect to $H_{\rho}$, too.

Proof. 1. We suppose that $x^{*} \in S F i x F$. Let $y \in S F i x F$. Then we have

$$
\begin{aligned}
\rho\left(x^{*}, y\right) & =H_{\rho}\left(F\left(x^{*}\right), F(y)\right) \\
& \leq \alpha \cdot \max \left\{\rho\left(x^{*}, y\right), D_{\rho}(y, F(y)), \frac{1}{2}\left[D_{\rho}\left(x^{*}, F(y)\right)+D_{\rho}\left(y, F\left(x^{*}\right)\right)\right]\right\} \\
& \leq \alpha \cdot \max \left\{\rho\left(x^{*}, y\right), \frac{1}{2}\left[\rho\left(x^{*}, y\right)+\rho\left(y, x^{*}\right)\right]\right\}=\alpha \rho\left(x^{*}, y\right),
\end{aligned}
$$

for all $x \in X$. So we have that $\rho\left(x^{*}, y\right)=0$ and in conclusion $x^{*}=y$.
2. We take in the condition (iv) $y=x^{*}$. Then we have:

$$
\begin{aligned}
H_{\rho}\left(F(x), F\left(x^{*}\right)\right) & \leq \alpha \cdot \max \left\{\rho\left(x, x^{*}\right), D_{\rho}\left(x^{*}, F\left(x^{*}\right)\right), \frac{1}{2}\left[D_{\rho}\left(x, F\left(x^{*}\right)\right)+D_{\rho}\left(x^{*}, F(x)\right)\right]\right\} \\
& =\alpha \cdot \max \left\{\rho\left(x, x^{*}\right), \frac{1}{2}\left[D_{\rho}\left(x, F\left(x^{*}\right)\right)+D_{\rho}\left(x^{*}, F(x)\right)\right]\right\}
\end{aligned}
$$

If the maximum is $\rho\left(x, x^{*}\right)$ we have that $H_{\rho}\left(F(x), x^{*}\right) \leq \alpha \rho\left(x, x^{*}\right)$.
If the maximum is $\frac{1}{2}\left[D_{\rho}\left(x, F\left(x^{*}\right)\right)+D_{\rho}\left(x^{*}, F(x)\right)\right]$ we have that

$$
\begin{aligned}
H_{\rho}\left(F(x), x^{*}\right) & \leq \frac{\alpha}{2}\left[D_{\rho}\left(x, F\left(x^{*}\right)\right)+D_{\rho}\left(x^{*}, F(x)\right)\right] \\
& =\frac{\alpha}{2}\left[D_{\rho}\left(x, F\left(x^{*}\right)\right)+H_{\rho}\left(F\left(x^{*}\right), F(x)\right)\right] \\
& \leq \frac{\alpha}{2}\left[\rho\left(x, F\left(x^{*}\right)\right)+H_{\rho}\left(F\left(x^{*}\right), F(x)\right)\right]
\end{aligned}
$$

So we obtain $H_{\rho}\left(F\left(x^{*}\right), F(x)\right) \leq \frac{\alpha}{2-\alpha} \rho\left(x, x^{*}\right)$.
We take now $\max \left\{\alpha, \frac{\alpha}{2-\alpha}\right\}=\alpha$ and obtain $H_{\rho}\left(F\left(x^{*}\right), F(x)\right) \leq \alpha \rho\left(x, x^{*}\right)$, for all $x \in X$.

By induction we obtain

$$
H_{\rho}\left(F^{n}(x), x^{*}\right) \leq \alpha^{n} \rho\left(x, x^{*}\right), \text { for all } x \in X
$$

Consider now $y^{*} \in$ FixF. Then $\rho\left(y^{*}, x^{*}\right) \leq H_{\rho}\left(F\left(y^{*}\right), x^{*}\right) \leq \alpha^{n} \rho\left(y^{*}, x^{*}\right) \rightarrow$ 0 , as $n \rightarrow \infty$. Hence $y^{*}=x^{*}$.
3. $\rho\left(x, x^{*}\right) \leq s\left[H_{\rho}(x, F(x))+H_{\rho}\left(F(x), x^{*}\right)\right] \leq s H_{\rho}(x, F(x))+s \alpha \rho\left(x, x^{*}\right)$.

So we obtain

$$
\rho\left(x, x^{*}\right) \leq \frac{s}{1-s \alpha} H_{\rho}(x, F(x)) .
$$

4. Let $\left(x_{n}\right)$ be such that $D_{\rho}\left(x_{n}, F\left(x_{n}\right)\right) \rightarrow 0$, as $n \rightarrow \infty$. We will prove that $\rho\left(x_{n}, x^{*}\right) \rightarrow 0$, as $n \rightarrow \infty$.

Estimating $\rho\left(x_{n}, x^{*}\right)$ we have

$$
\rho\left(x_{n}, x^{*}\right) \leq s\left[\rho\left(x_{n}, y_{n}\right)+D_{\rho}\left(y_{n}, F\left(x^{*}\right)\right)\right] \leq s\left[\rho\left(x_{n}, y_{n}\right)+H_{\rho}\left(F\left(x_{n}\right), F\left(x^{*}\right)\right)\right],
$$

for all $y_{n} \in F\left(x_{n}\right)$ and for each $n \in \mathbb{N}$.

## FIXED POINT THEORY FOR MULTIVALUED GENERALIZED CONTRACTION

Taking $\inf _{y_{n} \in F\left(x_{n}\right)}$ we obtain

$$
\rho\left(x_{n}, x^{*}\right) \leq s\left[D\left(x_{n}, F\left(x_{n}\right)\right)+H\left(F\left(x_{n}\right), F\left(x^{*}\right)\right)\right] \leq s D\left(x_{n}, F\left(x_{n}\right)\right)+s \alpha \rho\left(x_{n}, x^{*}\right) .
$$

Hence we have $\rho\left(x_{n}, x^{*}\right) \leq \frac{s}{1-s \alpha} D\left(x_{n}, F\left(x_{n}\right)\right) \rightarrow$ as $n \rightarrow \infty$. So $x_{n} \rightarrow x^{*}$.
We will next give a data dependence result.
Theorem 3.3 Let $X$ be a nonempty set, $d$ and $\rho$ two b-metrics on $X$ with constants $t>1$ and respectively $s>1$ and let $F, T: X \rightarrow P(X)$ two multivalued operators. We suppose that:
(i) $(X, d)$ is a complete $b$-metric space;
(ii) There exists $c>0$ such that $d(x, y) \leq c \cdot \rho(x, y)$, for all $x, y \in X$;
(iii) $F:(X, d) \rightarrow\left(P(X), H_{d}\right)$ is closed;
(iv) There exists $0 \leq \alpha<\frac{1}{s}$ such that

$$
H_{\rho}(F(x), F(y)) \leq \alpha N_{\rho}^{T}(x, y),
$$

for all $x, y \in X$;
(v) SFixF $\neq \emptyset$;
(vi) FixT $\neq \emptyset$;
(vii) There exists $\eta>0$ such that $H_{\rho}(F(x), T(x)) \leq \eta$, for all $x \in X$.

Then

$$
H_{\rho}(F i x F, F i x T) \leq \frac{s \eta}{1-s \alpha}
$$

Proof. Let $x^{*} \in S F i x F$ and $y^{*} \in F i x T$. We have that

$$
\begin{aligned}
\rho\left(y^{*}, x^{*}\right) & \leq H_{\rho}\left(T\left(y^{*}\right), x^{*}\right) \leq s\left[H_{\rho}\left(T\left(y^{*}\right), F\left(y^{*}\right)\right)+H_{\rho}\left(F\left(y^{*}\right), x^{*}\right)\right] \\
& \leq s\left[\eta+H_{\rho}\left(F\left(y^{*}\right), F\left(x^{*}\right)\right)\right] \leq s\left[\eta+\alpha \rho\left(y^{*}, x^{*}\right)\right] .
\end{aligned}
$$

Hence we have $\rho\left(y^{*}, x^{*}\right) \leq \frac{s \eta}{1-s \alpha}$.

## MONICA BORICEANU

## References

[1] Berinde, V., Generalized contractions in quasimetric spaces, Seminar on fixed point theory, Preprint no. 3(1993), 3-9.
[2] Czerwik, S., Nonlinear set-valued contraction mappings in B-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998), 263-276.
[3] Petruşel, A., Rus, I.A., Fixed point theoy for multivalued operators on a set with two metrics, Fixed Point Theory, 8(2007), 97-104.
[4] Petruşel, A., Mot, G., Petruşel, G., Topics in Nonlinear Analysis and Applications to Mathematical Economics, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2007.
[5] Rus, I.A., Petruşel, A., Sîntămărian, A., Data dependence of the fixed points set of multivalued weakly Picard operators, Studia. Univ. "Babeş-Bolyai", Mathematica, 46(2001), 111-121.
[6] Rus, I.A., Generalized Contractions and Applications, Cluj University Press, ClujNapoca, 2001.
[7] Singh, S.L., Bhatnagar, C., Mishra, S.N., Stability of iterative procedures for multivalued maps in metric spaces, Demonstratio Math., 37(2005), 905-916.

Department of Applied Mathematics,
Babeş-Bolyai University,
Cluj-Napoca, Romania
E-mail address: bmonica@math.ubbcluj.ro


[^0]:    Received by the editors: 01.10.2008
    2000 Mathematics Subject Classification. 47H10, 54H25.
    Key words and phrases. Multivalued generalized contraction, fixed point, strict fixed point, b-metric space, data dependence, well-posedness.
    This paper was presented at the 7-th Joint Conference on Mathematics and Computer Science,
    July 3-6, 2008, Cluj-Napoca, Romania.

