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A PIEZOELECTRIC FRICTIONLESS CONTACT PROBLEM
WITH ADHESION

MOHAMED SELMANI

Abstract. We consider a quasistatic frictionless contact problem for a

piezoelectric body. The contact is modelled with normal compliance. The

adhesion of the contact surfaces is taken into account and modelled by a

surface variable, the bonding field. We provide variational formulation for

the mechanical problem and prove the existence of a unique weak solution

to the problem. The proofs are based on arguments of time-dependent

variational inequalities, differential equations and fixed point.

1. Introduction

A deformable material which undergoes piezoelectric effects is called a piezo-

electric material. However, there are very few mathematical results concerning con-

tact problems involving piezoelectric materials and therefore there is a need to extend

the results on models for contact with deformable bodies which include coupling be-

tween mechanical and electrical properties. General models for elastic materials with

piezoelectric effects can be found in [8, 9, 10, 18, 19] and more recently in [1, 17]. The

importance of this paper is to make the coupling of the piezoelectric problem and a

frictionless contact problem with adhesion. The adhesive contact between deformable

bodies, when a glue is added to prevent relative motion of the surfaces, has received

recently increased attention in the mathematical literature. Analysis of models for

adhesive contact can be found in [3, 4, 6, 7, 12, 13, 14] and recently in the monographs
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[15, 16] . The novelty in all these papers is the introduction of a surface internal vari-

able, the bonding field, denoted in this paper by α, it describes the pointwise fractional

density of adhesion of active bonds on the contact surface, and sometimes referred to

as the intensity of adhesion. Following [6, 7], the bonding field satisfies the restriction

0 ≤ α ≤ 1, when α = 1 at a point of the contact surface, the adhesion is complete and

all the bonds are active, when α = 0 all the bonds are inactive, severed, and there

is no adhesion, when 0 < α < 1 the adhesion is partial and only a fraction α of the

bonds is active.

In this paper we describe a model of frictionless, adhesive contact between

a piezoelectric body and a foundation. We provide a variational formulation of the

model and, using arguments of evolutionary equations in Banach spaces, we prove

that the model has a unique weak solution.

The paper is structured as follows. In section 2 we present notations and some

preliminaries. The model is described in section 3 where the variational formulation

is given. In section 4, we present our main result stated in Theorem 4.1 and its proof

which is based on the construction of mappings between appropriate Banach spaces

and a fixed point arguments.

2. Notation and preliminaries

In this short section, we present the notation we shall use and some prelimi-

nary material. For more details, we refer the reader to [2, 5, 11] . We denote by Sd the

space of second order symmetric tensors on Rd (d = 2, 3), while ”.” and | . | represent

the inner product and the Euclidean norm on Sd and Rd, respectively. Let Ω ⊂ Rd be

a bounded domain with a regular boundary Γ and let ν denote the unit outer normal

on Γ. We shall use the notation

H = L2(Ω)d =
{
u = (ui) / ui ∈ L2(Ω)

}
,

H1(Ω)d =
{
u = (ui) / ui ∈ H1(Ω)

}
,

H =
{
σ = (σij) / σij = σji ∈ L2(Ω)

}
,

H1 = {σ ∈ H / Div σ ∈ H} ,
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where ε : H1(Ω)d → H and Div : H1 → H are the deformation and divergence

operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), Div σ = (σi j, j).

Here and below, the indices i and j run between 1 to d, the summation convention

over repeated indices is used and the index that follows a comma indicates a partial

derivative with respect to the corresponding component of the independent variable.

The spaces H, H1(Ω)d, H and H1 are real Hilbert spaces endowed with the canonical

inner products given by

(u,v)H =
∫

Ω

u . v dx ∀u,v ∈ H,

(u,v)H1(Ω)d =
∫

Ω

u . v dx +
∫

Ω

∇u . ∇v dx ∀u,v ∈ H1(Ω)d,

where

∇v = (vi,j) ∀v ∈ H1(Ω)d,

(σ, τ)H =
∫

Ω

σ . τ dx ∀σ, τ ∈ H,

(σ, τ)H1 = (σ, τ)H + (Div σ,Div τ)H ∀ σ, τ ∈ H1.

The associated norms on the spaces H, H1(Ω)d, H and H1 are denoted by | . |H ,

| . |H1(Ω)d , | . |H and | . |H1respectively. Let HΓ = H
1
2 (Γ)d and let γ : H1(Ω)d →

HΓ be the trace map. For every element v ∈ H1(Ω)d, we also use the notation v

to denote the trace γv of v on Γ and we denote by vν and vτ the normal and the

tangential components of v on the boundary Γ given by

vν = v . ν, vτ = v − vνν. (2.1)

Similarly, for a regular (say C1) tensor field σ : Ω → Sd we define its normal and

tangential components by

σν = (σν) . ν, στ = σν − σνν, (2.2)

and we recall that the following Green’s formulas hold:

(σ, ε(v))H + (Div σ,v)H =
∫

Γ

σν . v da ∀v ∈ H1(Ω)d. (2.3)
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(D,∇ϕ)H + (div D, ϕ)L2(Ω) =
∫

Γ

D . ν ϕ da ∀ϕ ∈ H1(Ω). (2.4)

Finally, for any real Hilbert space X, we use the classical notation for the spaces

Lp(0, T ;X) and W k,p(0, T ;X), where 1 ≤ p ≤ +∞ and k ≥ 1. We denote by

C(0, T ;X) and C1(0, T ;X) the space of continuous and continuously differentiable

functions from [0, T ] to X, respectively, with the norms

| f |C(0,T ;X)= max
t∈[0,T ]

| f(t) |X ,

| f |C1(0,T ;X)= max
t∈[0,T ]

| f(t) |X + max
t∈[0,T ]

|
.

f(t) |X ,

respectively. Moreover, we use the dot above to indicate the derivative with respect

to the time variable and, for a real number r, we use r+ to represent its positive part,

that is r+ = max{0, r}. For the convenience of the reader, we recall the following

version of the classical theorem of Cauchy-Lipschitz (see, e.g., [20]).

Theorem 2.1. Assume that (X, | . |X) is a real Banach space and T > 0. Let F (t, .) :

X → X be an operator defined a.e. on (0, T ) satisfying the following conditions:

1- There exists a constant LF > 0 such that

| F (t, x)− F (t, y) |X≤ LF | x− y |X ∀x, y ∈ X, a.e. t ∈ (0, T ) .

2- There exists p ≥ 1 such that t 7−→ F (t, x) ∈ Lp(0, T ;X) ∀x ∈ X.

Then for any x0 ∈ X, there exists a unique function x ∈ W 1, p(0, T ;X) such

that

.
x(t) = F (t, x(t)) a.e. t ∈ (0, T ) ,

x(0) = x0.

Theorem 2.1 will be used in section 4 to prove the unique solvability of the

intermediate problem involving the bonding field.

Moreover, if X1 and X2 are real Hilbert spaces then X1 × X2 denotes the

product Hilbert space endowed with the canonical inner product (., .)X1×X2 .
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3. Mechanical and variational formulations

We describe the model for the process, we present its variational formulation.

The physical setting is the following. An electro-elastic body occupies a bounded

domain Ω ⊂ Rd (d = 2, 3) with outer Lipschitz surface Γ. The body is submitted to

the action of body forces of density f0 and volume electric charges of density q0. It is

also submitted to mechanical and electric constraint on the boundary. We consider a

partition of Γ into three disjoint measurable parts Γ1, Γ2 and Γ3, on one hand, and

on two measurable parts Γa and Γb, on the other hand, such that meas (Γ1) > 0 and

meas (Γa) > 0. Let T > 0 and let [0, T ] be the time interval of interest. The body is

clamped on Γ1 × (0, T ), so the displacement field vanishes there. A surface tractions

of density f2 act on Γ2 × (0, T ) and a body force of density f0 acts in Ω× (0, T ) . We

also assume that the electrical potential vanishes on Γa× (0, T ) and a surface electric

charge of density q2 is prescribed on Γb× (0, T ). The body is in adhesive contact with

an obstacle, or foundation, over the contact surface Γ3. We suppose that the body

forces and tractions vary slowly in time, and therefore, the accelerations in the system

may be neglected. Neglecting the inertial terms in the equation of motion leads to

a quasistatic approach of the process. We denote by u the displacement field, by σ

the stress tensor field and by ε(u) the linearized strain tensor. We use a piezoelectric

constitutive law given by

σ = A(ε(u))− E∗E(ϕ),

D =Eε(u) + BE(ϕ),

these relations represent the electro-viscoelastic constitutive law of the material which

A is a given nonlinear function, E(ϕ) = −∇ϕ is the electric field, E = (eijk) represents

the third order piezoelectric tensor, E∗ is its transposed and is given by E∗ = (e∗ijk),

where e∗ijk = ekij and B denotes the electric permitivitty tensor.

To simplify the notation, we do not indicate explicitely the dependence of

various functions on the variables x ∈ Ω ∪ Γ and t ∈ [0, T ] . Then, the classical

formulation of the mechanical problem of piezoelectric material, frictionless, adhesive

contact may be stated as follows.
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Problem P . Find a displacement field u : Ω × [0, T ] → Rd and a stress field

σ : Ω × [0, T ] → Sd , an electric potential field ϕ : Ω × [0, T ] → R, an electric

displacement field D : Ω × [0, T ] → Rd and a bonding field α : Γ3 × [0, T ] → R such

that

σ = A(ε(u)) + E∗ ∇ϕ in Ω× (0, T ) , (3.1)

D =Eε(u)−B ∇ϕ in Ω× (0, T ) , (3.2)

Div σ + f0 = 0 in Ω× (0, T ) , (3.3)

div D = q0 in Ω× (0, T ) , (3.4)

u = 0 on Γ1 × (0, T ) , (3.5)

σν = f2 on Γ2 × (0, T ) , (3.6)

−σ ν = p ν(uν)− γνα2R ν(uν) on Γ3 × (0, T ) , (3.7)

−στ = pτ (α)Rτ (uτ ) on Γ3 × (0, T ) , (3.8)

.
α = −(α(γν(R ν(uν))2 + γτ | R τ (uτ ) |2 )− εa)+ on Γ3 × (0, T ) , (3.9)

α(0) = α0 on Γ3, (3.10)

ϕ = 0 on Γa × (0, T ) , (3.11)

D . ν = q2 on Γb × (0, T ) . (3.12)

First, (3.1) and (3.2) represent the electro-elastic constitutive law described

above. Equations (3.3) and (3.4) represent the equilibrium equations for the stress

and electric-displacement fields while (3.5) and (3.6) are the displacement and traction

boundary condition, respectively. Condition (3.7) represents the normal compliance

conditions with adhesion where γν is a given adhesion coefficient and pν is a given

positive function which will be described below. In this condition the interpenetra-

bility between the body and the foundation is allowed, that is uν can be positive on

Γ3. The contribution of the adhesive to the normal traction is represented by the

term γνα2R ν(uν), the adhesive traction is tensile and is proportional, with propor-

tionality coefficient γν , to the square of the intensity of adhesion and to the normal
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displacement, but as long as it does not exceed the bond length L. The maximal

tensile traction is γνL. Rν is the truncation operator defined by

Rν(s) =


L if s < −L,

−s if − L ≤ s ≤ 0,

0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does

not offer any additional traction. The introduction of the operator Rν , together with

the operator Rτ defined below, is motivated by mathematical arguments but it is not

restrictive for physical point of view, since no restriction on the size of the parameter

L is made in what follows. Condition (3.8) represents the adhesive contact condition

on the tangential plane, in which pτ is a given function and Rτ is the truncation

operator given by

Rτ (v) =

 v if | v | ≤ L,

L v
|v| if | v | > L.

This condition shows that the shear on the contact surface depends on the

bonding field and on the tangential displacement, but as long as it does not exceed

the bond length L. The frictional tangential traction is assumed to be much smaller

than the adhesive one and, therefore, omitted.

Next, the equation (3.9) represents the ordinary differential equation which

describes the evolution of the bonding field and it was already used in [3], see also

[15, 16] for more details. Here, besides γν , two new adhesion coefficients are involved,

γτ and εa. Notice that in this model once debonding occurs bonding cannot be

reestablished since, as it follows from (3.9),
.
α ≤ 0. Finally, (3.10) represents the initial

condition in which α0 is the given initial bonding field, (3.11) and (3.12) represent the

electric boundary conditions. To obtain the variational formulation of the problem

(3.1)-(3.12), we introduce for the bonding field the set

Z = {θ ∈ L∞(Γ3) / 0 ≤ θ ≤ 1 a.e. on Γ3} ,
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and for the displacement field we need the closed subspace of H1(Ω)d defined by

V =
{
v ∈ H1(Ω)d / v = 0 on Γ1

}
.

Since meas (Γ1) > 0, Korn’s inequality holds and there exists a constant Ck > 0,

that depends only on Ω and Γ1, such that

| ε(v) |H≥ Ck | v |H1(Ω)d ∀v ∈ V.

A proof of Korn’s inequality may be found in [11, p.79]. On the space V we consider

the inner product and the associated norm given by

(u,v)V = (ε(u), ε(v))H, | v |V =| ε(v) |H ∀u,v ∈ V. (3.13)

It follows that | . |H1(Ω)d and | . |V are equivalent norms on V and therefore

(V, | . |V ) is a real Hilbert space. Moreover, by the Sobolev trace theorem and (3.13),

there exists a constant C0 > 0, depending only on Ω, Γ1 and Γ3 such that

| v |L2(Γ3)d≤ C0 | v |V ∀v ∈ V. (3.14)

We also introduce the spaces

W =
{
φ ∈ H1(Ω) / φ = 0 on Γa

}
,

W =
{
D = (Di) / Di ∈ L2(Ω), div D ∈ L2(Ω)

}
,

where div D = (Di,i). The spaces W and W are real Hilbert spaces with the inner

products

(ϕ, φ)W =
∫

Ω

∇ϕ.∇φ dx,

(D,E)W =
∫

Ω

D.E dx +
∫

Ω

div D.div E dx.

The associated norms will be denoted by | . |W and | . |W , respectively. Notice also

that, since meas(Γa) > 0, the following Friedrichs-Poincaré inequality holds:

| ∇φ |L2(Ω)d≥ CF | φ |H1(Ω) ∀φ ∈ W, (3.15)

where CF > 0 is a constant which depends only on Ω and Γa.
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In the study of the mechanical problem (3.1)-(3.12), we assume that the

constitutive function A : Ω× Sd → Sd satisfies



(a) There exists a constant LA > 0 Such that

| A(x, ε1)−A(x, ε2) |≤ LA | ε1 − ε2 | ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists a constant mA > 0 Such that

(A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA | ε1 − ε2 |2 ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x → A(x, ε) is Lebesgue measurable on Ω for any ε ∈ Sd.

(d) The mapping x → A(x,0) belongs to H.

(3.16)

The operator B = (Bij): Ω× Rd → Rd satisfies



(a) B(x,E) = (bij(x)Ej) ∀E = (Ei) ∈ Rd, a.e.x ∈ Ω.

(b) bij = bji , bij ∈ L∞(Ω), 1 ≤ i, j ≤ d.

(c) There exists a constant mB > 0 such that BE.E ≥ mB | E |2

∀E = (Ei) ∈ Rd, a.e. in Ω.

(3.17)

The operator E : Ω× Sd → Rd satisfies

 (a) E =(ei j k ), ei j k ∈ L∞(Ω), 1 ≤ i, j, k ≤ d.

(b) E(x)σ.τ = σ. E∗(x)τ ∀σ, τ ∈Sd, a.e. in Ω.

(3.18)

The normal compliance function pν : Γ3 × R → R+ satisfies



(a) There exists a constant Lν > 0 such that

| pν(x, r1)− pν(x, r2) |≤ Lτ | r1 − r2 | ∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) (pν(x, r1)− pν(x, r2))(r1 − r2) ≥ 0 ∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) The mapping x → pν(x, r) is measurable on Γ3, for any r ∈ R.

(d) pν(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(3.19)
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The tangential contact function pτ : Γ3 × R → R+ satisfies

(a) There exists a constant Lτ > 0 such that

| pτ (x, d1)− pτ (x, d2) |≤ Lτ | d1 − d2 | ∀d1, d2 ∈ R, a.e. x ∈ Γ3.

(b) There exists Mτ > 0 such that | pτ (x, d) |≤ Mτ ∀d ∈ R, a.e. x ∈ Γ3.

(c) The mapping x → pτ (x, d) is measurable on Γ3, for any d ∈ R.

(d) The mapping x → pτ (x, 0) ∈ L2(Γ3).
(3.20)

We also suppose that the body forces and surface tractions have the regularity

f0 ∈ W 1,∞(0, T ;L2(Ω)d), f2 ∈ W 1,∞(0, T ;L2(Γ2)d), (3.21)

q0 ∈ W 1,∞(0, T ;L2(Ω)), q2 ∈ W 1,∞(0, T ;L2(Γb)). (3.22)

The adhesion coefficients satisfy

γν , γτ , εa ∈ L∞(Γ3), γν , γτ , εa ≥ 0 a.e. on Γ3. (3.23)

The initial bonding field satisfies

α0 ∈ Z. (3.24)

Next, we denote by f : [0, T ] → V the function defined by

(f(t),v)V =
∫

Ω

f0(t) . v dx +
∫

Γ2

f2(t) . v da ∀v ∈ V, t ∈ [0, T ] , (3.25)

and we denote by q: [0, T ] → W the function defined by

(q(t), φ)W =
∫

Ω

q0(t) . φ dx −
∫

Γb

q2(t) . φ da ∀φ ∈ W, t ∈ [0, T ] . (3.26)

Next, we denote by jad : L∞(Γ3)× V × V → R the adhesion functional defined by

jad(α,u,v) =
∫

Γ3

(−γνα2R ν(uν) vν + pτ (α)Rτ (u τ ) .vτ ) da. (3.27)

In addition to the functional (3.27), we need the normal compliance functional

jnc(u,v) =
∫

Γ3

pν(uν)vν da. (3.28)
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Keeping in mind (3.19)-(3.20), we observe that the integrals (3.27) and (3.28) are well

defined and we note that conditions (3.21)-(3.22) imply

f ∈ W 1,∞(0, T ;V ), q ∈ W 1,∞(0, T ;W ). (3.29)

Using standard arguments we obtain the variational formulation of the mechanical

problem (3.1)-(3.12).

Problem PV. Find a displacement field u : [0, T ] → V , an electric potential

field ϕ : [0, T ] → W and a bonding field α : [0, T ] → L∞ (Γ3) such that

(Aε(u(t)), ε(v))H + (E∗∇ϕ(t), ε(v))H + jad(α(t),u(t),v)

+jnc(u(t),v) = (f(t),v)V ∀v ∈ V, t ∈ (0, T ) , (3.30)

(B∇ϕ(t),∇φ)L2(Ω)d−(Eε(u(t)),∇φ)L2(Ω)d = (q(t), φ)W ∀φ ∈ W, t ∈ (0, T ) , (3.31)

.
α(t) = −(α(t)(γν(R ν(uν(t)))2 + γτ | R τ (uτ (t)) |2 )− εa)+ a.e. t ∈ (0, T ) , (3.32)

α(0) = α0. (3.33)

The existence of the unique solution of problem PV is stated and proved in the next

section.

Remark 3.1. We note that, in problem P and in problem PV, we do not need to

impose explicitly the restriction 0 ≤ α ≤ 1. Indeed, equation (3.32) guarantees that

α(x, t) ≤ α0(x) and, therefore, assumption (3.24) shows that α(x, t) ≤ 1 for t ≥ 0,

a.e. x ∈ Γ3. On the other hand, if α(x, t0) = 0 at time t0, then it follows from (3.32)

that
.
α(x, t) = 0 for all t ≥ t0 and therefore, α(x, t) = 0 for all t ≥ t0, a.e. x ∈ Γ3.

We conclude that 0 ≤ α(x, t) ≤ 1 for all t ∈ [0, T ], a.e. x ∈ Γ3.

Below in this section α, α1, α2 denote elements of L2(Γ3) such that 0 ≤

α, α1, α2 ≤ 1 a.e. x ∈ Γ3, u1,u2 and v represent elements of V and C > 0 rep-

resents generic constants which may depend on Ω,Γ3,Γ3, pν , pτ , γν , γτ and L.

First, we note that the functional jad and jnc are linear with respect to the

last argument and, therefore,

jad(α,u,−v) = −jad(α,u,v), jnc(u,−v) = −jnc(u,v). (3.34)
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Next, using (3.27), the properties of the truncation operators Rν and Rτ as well as

assumption (3.20) on the function pτ , after some calculus we find

jad(α1,u1,u2−u1)+jad(α2,u2,u1−u2)

≤ C

∫
Γ3

|α1 − α2 || u1 − u2 | da,

and, by (3.14), we obtain

jad(α1,u1,u2−u1)+jad(α2,u2,u1−u2)

≤ C|α1 − α2 |L2(Γ3)| u1 − u2 |V . (3.35)

Similar computations, based on the Lipschitz continuity of Rν , Rτ and pτ show that

the following inequality also holds

| jad(α,u1,v)−jad(α,u2,v) | ≤ C | u1 − u2 |V | v |V . (3.36)

We take now α1 = α2 = α in (3.35) to deduce

jad(α,u1,u2−u1)+jad(α,u2,u1−u2) ≤ 0. (3.37)

Also, we take u1 = v and u2 = 0 in (3.36) then we use the equalities Rν(0) = 0,

Rτ (0) = 0 and (3.34) to obtain

jad(α,v,v) ≥ 0. (3.38)

Now, we use (3.28) to see that

| jnc(u1,v)−jnc(u2,v) | ≤
∫

Γ3

| pν(u1ν)− pν(u2ν) || vν | da,

and therefore (3.19) (a) and (3.14) imply

| jnc(u1,v)−jnc(u2,v) | ≤ C | u1 − u2 |V | v |V . (3.39)

We use again (3.28) to see that

jnc(u1,u2−u1)+jnc(u2,u1−u2) ≤
∫

Γ3

(pν(u1ν)− pν(u2ν))(u2ν − u1ν)da,

and therefore (3.19) (b) implies

jnc(u1,u2−u1)+jnc(u2,u1−u2) ≤ 0. (3.40)
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We take u1 = v and u2 = 0 in the previous inequality and use (3.19) (d) and (3.40)

to obtain

jnc(v,v) ≥0. (3.41)

Inequalities (3.35)-(3.41) and equality (3.34) will be used in various places in the rest

of the paper.

4. An existence and uniqueness result

Now, we propose our existence and uniqueness result.

Theorem 4.1. Assume that (3.16)-(3.24) hold. Then there exists a unique solution

{u,ϕ, α} to problem PV. Moreover, the solution satisfies

u ∈ W 1,∞(0, T ;V ), (4.1)

ϕ ∈ W 1,∞(0, T ;W ), (4.2)

α ∈ W 1,∞(0, T ;L∞(Γ3)). (4.3)

The functions u,ϕ, σ,D and α which satisfy (3.1)-(3.2) and (3.30)-(3.33) are

called a weak solution of the contact problem P.

We conclude that, under the assumptions (3.16)-(3.24), the mechanical prob-

lem (3.1)-(3.12) has a unique weak solution satisfying (4.1)-(4.3). The regularity of

the weak solution is given by (4.1)-(4.3) and, in term of stresses,

σ ∈ W 1,∞(0, T ;H1), (4.4)

D ∈ W 1,∞(0, T ;W). (4.5)

Indeed, it follows from (3.30) and (3.31) that Div σ(t) + f0(t) = 0, div D =

q0(t) for all t ∈ [0, T ] and therefore the regularity (4.1) and (4.2) of u and ϕ, combined

with (3.16)-(3.22) implies (4.4) and (4.5).

The proof of Theorem 4.1 is carried out in several steps that we prove in

what follows, everywhere in this section we suppose that assumptions of Theorem

4.1 hold, and we consider that C is a generic positive constant which depends on
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Ω,Γ1,Γ3, pν , pτ , γν , γτ and L and may change from place to place. Let Z denote the

closed subset of C(0, T ;L2(Γ3)) defined by

Z =
{
θ ∈ C(0, T ;L2(Γ3)) / θ(t) ∈ Z ∀t ∈ [0, T ] , θ(0) = α0

}
. (4.6)

Let α ∈ Z be given. In the first step we consider the following variational problem.

Problem PV α. Find a displacement field uα : [0, T ] → V , an electric potential

field ϕα : [0, T ] → W such that

(Aε(uα(t)), ε(v))H + (E∗∇ϕα(t), ε(v))H + jad(α(t),uα(t),v)

+jnc(uα(t),v) = (f(t),v)V ∀v ∈ V, t ∈ [0, T ] , (4.7)

(B∇ϕα(t),∇φ)L2(Ω)d − (Eε(uα(t)),∇φ)L2(Ω)d

= (q(t), φ)W ∀φ ∈ W, t ∈ (0, T ) . (4.8)

We have the following result for the problem.

Lemma 4.2. There exists a unique solution to problem PVα. The solution satisfies

(uα, ϕα) ∈ C(0, T ;V )× C(0, T ;W ).

Proof. Let t ∈ [0, T ] we consider the product space X = V × W with the inner

product:

(x, y)X = (u,v)V + (ϕ, φ)W ∀x = (u, ϕ), y = (v, φ) ∈ X, (4.9)

and the associated norm | . |X . Let At : X → X be the operator given by

(Atx, y)X = (Aε(u), ε(v))H + (B∇ϕ,∇φ)L2(Ω)d + (E∗∇ϕ, ε(v))H

−(Eε(u),∇φ)L2(Ω)d + jnc(u,v) + jad(α(t),u,v)

∀x = (u, ϕ), y = (v, φ) ∈ X. (4.10)

We consider the element F ∈ X given by

F = (f , q) ∈ X. (4.11)

We consider the following equivalence result the couple xα = (uα, ϕα) is a solution

to problem PV α if and only if

(Atxα(t), y)X = (F (t), y)X , ∀y ∈ X, t ∈ [0, T ] . (4.12)
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Indeed, let xα(t) = (uα(t), ϕα(t)) ∈ X be a solution to problem PV α and let y =

(v, φ) ∈ X. We add the equality (4.7) to (4.8) and we use (4.9)-(4.11) to obtain

(4.12). Conversely, let xα(t) = (uα(t), ϕα(t)) ∈ X be a solution to the quasivariational

inequality (4.12). We take y = (v, 0) ∈ X in (4.12) where v is an arbitrary element

of V and obtain (4.7), then we take y = (0, φ) in (4.12), where φ is an arbitrary

element of W , as a result we obtain (4.8). We use (3.13), (3.15), (3.16)-(3.18), (3.36)

and (3.39) to see that the operator At is strongly monotone and Lipschitz continuous,

it follows by standard results on elliptic variational inequalities that there exists a

unique element (uα(t), ϕα(t)) ∈ X which solves (4.7)-(4.8).

Now let us show that (uα, ϕα) ∈ C(0, T ;V )× C(0, T ;W ). We let t1, t2 ∈ [0, T ]

and use the notation uα(ti) = ui, α(ti) = αi, ϕα(ti) = ϕi, f(ti) = fi, q(ti) = qi and

xα(ti) = (uα(ti), ϕα(ti)) = xi for i = 1, 2. We use standard arguments in (4.7) and

(4.8) to find

(Aε(u1 − u2), ε(u1 − u2))H + (E∗∇(ϕ1 − ϕ2), ε(u1 − u2))H

= (f1 − f2,u1 − u2)V + jnc(u1,u2 − u1) + jnc(u2,u1 − u2)

+jad(α1,u1,u2 − u1) + jad(α2,u2,u1 − u2), (4.13)

(B∇(ϕ1 − ϕ2),∇(ϕ1 − ϕ2))L2(Ω)d − (Eε(u1 − u2),∇(ϕ1 − ϕ2))L2(Ω)d

= (q1 − q2, ϕ1 − ϕ2)W , (4.14)

and, by using the assumption (3.16)-(3.18) on A, B and E , the properties (3.35)

and (3.39) on the functional jad and jnc respectively and (3.14)-(3.15), we obtain

| u1 − u2 |V≤ C(| f1 − f2 |V + | q1 − q2 |W + | α1 − α2 |L2(Γ3)). (4.15)

| ϕ1 − ϕ2 |W≤ C(| u1 − u2 |V + | q1 − q2 |W ). (4.16)

The inequality (4.15) and the regularity of the functions f , q and α show that uα ∈

C(0, T ;V ). We use (4.16) and the regularity of the functions uα, q to show that

ϕα ∈ C(0, T ;W ). Thus we conclude the existence part in lemma 4.2 and we note that

the uniqueness of the solution follows from the unique solvability of (4.7) and (4.8)

at any t ∈ [0, T ] . �
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In the next step, we use the displacement field uα obtained in lemma 4.2 and

we consider the following initial-value problem.

Problem PV θ. Find the adhesion field θα : [0, T ] → L∞(Γ3) such that for

a.e. t ∈ (0, T )

.

θα(t) = −(θα(t)(γν(R ν(uαν(t)))2 + γτ | R τ (uατ (t)) |2 )− εa)+, (4.17)

θα(0) = α0. (4.18)

We have the following result.

Lemma 4.3. There exists a unique solution θα ∈ W 1,∞(0, T ;L∞(Γ3)) to problem

PVθ. Moreover, θα(t) ∈ Z for all t ∈ [0, T ] .

Proof. For the simplicity we suppress the dependence of various functions on Γ3,

and note that the equalities and inequalities below are valid a.e. on Γ3. Consider the

mapping Fα : [0, T ]× L∞(Γ3) → L∞(Γ3) defined by

Fα(t, θ) = −(θ(γν(R ν(uαν(t)))2 + γτ | R τ (uατ (t)) |2 )− εa)+, (4.19)

for all t ∈ [0, T ] and θ ∈ L∞(Γ3). It follows from the properties of the truncation op-

erator Rν and Rτ that Fα is Lipschitz continuous with respect to the second variable,

uniformly in time. Moreover, for all θ ∈ L∞(Γ3), the mapping t → Fα(t, θ) belongs

to L∞(0, T ;L∞(Γ3)). Thus using a version of Cauchy-Lipschitz theorem given in

Theorem 2.1 we deduce that there exists a unique function θα ∈ W 1,∞(0, T ;L∞(Γ3))

solution to the problem PV θ. Also, the arguments used in Remark 3.1 show that

0 ≤ θα(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3. Therefore, from the definition of the set

Z, we find that θα(t) ∈ Z, which concludes the proof of the lemma. �

It follows from lemma 4.3 that for all α ∈ Z the solution θα of problem PV θ

belongs to Z. Therefore, we may consider the operator Λ : Z → Z given by

Λα = θα. (4.20)

We have the following result.

Lemma 4.4. There exists a unique element α∗ ∈ Z such that Λα∗ = α∗.
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Proof. We show that, for a positive integer m, the mapping Λm is a contraction

on Z. To this end, we suppose that α1 and α2 are two functions in Z and denote

uαi
= ui, and θαi

= θi the functions obtained in lemmas 4.4 and 4.5, respectively,

for α = αi, i = 1, 2. Let t ∈ [0, T ] . We use (4.7) and (4.8) and arguments similar to

those used in the proof of (4.15) to deduce that

| u1(t)− u2(t) |V≤ C | α1(t)− α2(t) |L2(Γ3), (4.21)

which implies∫ t

0

| u1(s)− u2(s) |V ds ≤ C

∫ t

0

| α1(s)− α2(s) |L2(Γ3) ds. (4.22)

On the other hand, from the Cauchy problem (4.17)-(4.18) we can write

θi(t) = α0 −
∫ t

0

(θi(s)(γν(Rν(uiν(s)))2 + γτ | Rτ (uiτ (s)) |2)− εa)+ ds, (4.23)

and then

| θ1(t)− θ2(t) |L2(Γ3)

≤ C

∫ t

0

| θ1(s)(Rν(u1ν(s)))2 − θ2(s)(Rν(u2ν(s)))2 |L2(Γ3) ds

≤ C

∫ t

0

| θ1(s) | Rτ (u1τ (s)) |2 −θ2(s) | Rτ (u2τ (s)) |2|L2(Γ3) ds.

Using the definition of Rν and Rτ and writing θ1 = θ1 − θ2 + θ2, we get

| θ1(t)− θ2(t) |L2(Γ3)

≤ C(
∫ t

0

| θ1(s)− θ2(s) |L2(Γ3) ds +
∫ t

0

| u1(s)− u2(s) |L2(Γ3)d ds). (4.24)

Next, we apply Gronwall’s inequality to deduce

| θ1(t)− θ2(t) |L2(Γ3)≤ C

∫ t

0

| u1(s)− u2(s) |L2(Γ3)d ds. (4.25)

The relation (4.20), the estimate (4.25) and the relation (3.14) lead to

| Λα1(t)− Λα2(t) |L2(Γ3)≤ C

∫ t

0

| u1(s)− u2(s) |V ds. (4.26)

We now combine (4.22) and (4.26) and see that

| Λα1(t)− Λα2(t) |L2(Γ3)≤ C

∫ t

0

| α1(s)− α2(s) |L2(Γ3) ds, (4.27)
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and reiterating this inequality m times we obtain

| Λmα1 − Λmα2 |C(0,T ;L2(Γ3))≤
CmTm

m!
| α1 − α2 |C(0,T ;L2(Γ3)) . (4.28)

Recall that Z is a nonempty closed set in the Banach space C(0, T ;L2(Γ3)) and

note that (4.28) shows that for m sufficiently large the operator Λm : Z → Z is a

contraction. Then by the Banach fixed point theorem (see [16]) it follows that Λ has

a fixed point α∗ ∈ Z. �

Now, we have all the ingredients to prove Theorem 4.1.

Proof. Existence. Let α∗ ∈ Z be the fixed point of Λ and let (u∗, ϕ∗) be the solution

of problem PV α for α = α∗, i.e. u∗ = uα∗ , ϕ∗ = ϕα∗ . Arguments similar to those

used in the proof of (4.15) lead to

| u∗(t1)− u∗(t2) |V≤ C(| q(t1)− q(t2) |W

+ | f(t1)− f(t2) |V + | α∗(t1)− α∗(t2) |L2(Γ3)), (4.29)

| ϕ∗(t1)− ϕ∗(t2) |W≤ C(| u∗(t1)− u∗(t2) |V + | q(t1)− q(t2) |W ), (4.30)

for all t1, t2 ∈ [0, T ]. Since α∗ = θα∗ it follows from lemma 4.3 that α∗ ∈

W 1,∞(0, T ;L∞(Γ3)), the regularity of f and q given by (3.29) and the estimate (4.29)

imply that u∗ ∈ W 1,∞(0, T ;V ) and (4.30) implies that ϕ∗ ∈ W 1,∞(0, T ;W ). We con-

clude by (4.7), (4.8), (4.17) and (4.18) that (u∗, ϕ∗, α∗) is a solution of problem PV

and it satisfies (4.1)-(4.3).

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness

of the fixed point of the operator Λ defined by (4.20).

Let (u, ϕ, α) be a solution of problem PV which satisfies (4.1)-(4.3). Using

arguments in remark 3.1 we deduce that α ∈ Z, moreover, it follows from (3.30)-(3.31)

that (u, ϕ) is a solution to problem PV α and since by lemma 4.2 this problem has a

unique solution denoted (uα, ϕα), we obtain

u = uα and ϕ = ϕα. (4.31)

We replace u by uα in (3.32) and use the initial condition (3.33) to see that α is a

solution to problem PV θ. Since by Lemma 4.3 this last problem has a unique solution
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denoted θα, we find

α = θα. (4.32)

We use now (4.20) and (4.32) to see that Λα = α, i.e. α is a fixed point of

the operator Λ. It follows now from lemma 4.4 that

α = α∗. (4.33)

The uniqueness part of the theorem is now a consequence of equalities (4.31),

(4.32) and (4.33). �
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[2] Brézis, H., Equations et inequations non linéaires dans les espaces vectoriels en dualité,

Ann. Inst. Fourier, 18(1968), 115-175.

[3] Chau, O., Fernandez, J.R., Shillor, M., Sofonea, M., Variational and numerical analysis

of a quasistatic viscoelastic contact problem with adhesion, Journal of Computational

and Applied Mathematics, 159(2003), 431-465.

[4] Chau, O., Shillor, M., Sofonea, M., Dynamic frictionless contact with adhesion, Journal

of Applied Mathematics and Physics (ZAMP), 55(2004), 32-47.

[5] Duvaut, G., Lions, J.L., Les Inéquations en Mécanique et en Physique, Springer-Verlag,
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et Marie Curie, Paris 6 1982.

Department of Mathematics

University of Setif

19000 Setif Algeria

E-mail address: s elmanih@yahoo.fr

116


