ABOUT THE UNIVALENCE OF THE BESSEL FUNCTIONS

róbert szász and pál aurel kupain

Abstract

The authors of [1] and [3] deduced univalence criteria concerning Bessel functions. In [3] the author used the theory developed in [2] to obtain the desired result. In this paper we will extend a few results obtained in [3] employing elementary methods.

1. Introduction

Let

$$
U\left(z_{0}, r\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}
$$

be the disc with center z_{0} and of the radius r, the particular case $U(0,1)$ will be denoted by U. The Bessel function of the first kind is defined by

$$
J_{\nu}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(n+\nu+1)}\left(\frac{z}{2}\right)^{2 n+\nu}
$$

The series, which defines J_{ν} is everywhere convergent and the function defined by the series is generally not univalent in any disc $U(0, r)$. We will study the univalence of the following normalized form:

$$
\begin{equation*}
f_{\nu}(z)=2^{\nu} \Gamma(1+\nu) z^{-\frac{\nu}{2}} J_{\nu}\left(z^{\frac{1}{2}}\right), \quad g_{\nu}(z)=z f_{\nu}(z) \tag{1}
\end{equation*}
$$

2. Preliminaries

In order to prove our main result we need the following lemmas.

```
Received by the editors: 07.02.2008.
2000 Mathematics Subject Classification. 30C45.
```

Key words and phrases. univalent, starlike, Bessel function.
This work was supported by the Institut for Research Programs (KPI) of the Sapientia Foundation.

Lemma 1 ([3], equality (6)). The function f_{ν} satisfies the equality:

$$
f_{\nu}^{\prime}(z)=-\frac{1}{2} f_{\nu+1}(z)
$$

Lemma 2. Let R be the function defined by the equality

$$
R(\theta)=\sum_{n=3}^{\infty} \frac{(-1)^{n}(\nu+1)^{n} \cos n \theta}{n!(\nu+1) \ldots(\nu+n)}, \theta \in \mathbb{R}, \nu \in(-1, \infty)
$$

The following inequality holds

$$
|R(\theta)| \leq \frac{(\nu+1)^{2}}{4(\nu+2)(\nu+3)}, \theta \in \mathbb{R} .
$$

Proof. Since

$$
R(\theta)=\frac{\nu+1}{\nu+2} \sum_{n=3}^{\infty} \frac{(-1)^{n}(\nu+1)^{n-2} \cos n \theta}{n!(\nu+3) \ldots(\nu+n)}
$$

it follows that

$$
\begin{array}{r}
|R(\theta)| \leq \frac{\nu+1}{\nu+2} \sum_{n=3}^{\infty}\left|\frac{(-1)^{n}(\nu+1)^{n-2} \cos n \theta}{n!(\nu+3) \ldots(\nu+n)}\right| \leq \\
\frac{\nu+1}{\nu+2} \sum_{n=3}^{\infty} \frac{(\nu+1)^{n-2}}{n!(\nu+3) \ldots(\nu+n)} \leq \frac{(\nu+1)^{2}}{(\nu+2)(\nu+3)} \sum_{n=3}^{\infty} \frac{1}{n!} \leq \frac{(\nu+1)^{2}}{4(\nu+2)(\nu+3)} .
\end{array}
$$

Lemma 3. If $z \in U$ then

$$
\begin{gather*}
\left|g_{\nu}^{\prime}(z)-\frac{g_{\nu}(z)}{z}\right| \leq \frac{2+\nu}{(1+\nu)(4 \nu+7)} \tag{2}\\
\left|f_{\nu}(z)\right|=\left|\frac{g_{\nu}(z)}{z}\right| \geq \frac{4 \nu^{2}+10 \nu+5}{(1+\nu)(4 \nu+7)} \tag{3}\\
\left|f_{\nu}^{\prime}(z)\right| \leq \frac{\nu+2}{(\nu+1)(4 \nu+7)} \tag{4}
\end{gather*}
$$

Proof. If $z \in U$ then the triangle inequality implies that:

$$
\begin{aligned}
\left|g_{\nu}^{\prime}(z)-\frac{g_{\nu}(z)}{z}\right|=\mid \sum_{n=1}^{\infty} & \left.\frac{(-1)^{n} n}{4^{n} n!(\nu+1) \ldots(\nu+n)} z^{n} \right\rvert\, \leq \\
& \sum_{n=1}^{\infty} \frac{n}{4^{n} n!(\nu+1) \ldots(\nu+n)} .
\end{aligned}
$$

Since

$$
\sum_{n=1}^{\infty} \frac{n}{4^{n} n!(\nu+1) \ldots(\nu+n)} \leq \frac{1}{4(\nu+1)} \sum_{n=0}^{\infty}\left(\frac{1}{4(\nu+2)}\right)^{n}=\frac{2+\nu}{(1+\nu)(4 \nu+7)}
$$

we obtain (2).
By using again the triangle inequality, we deduce that

$$
\left|\frac{g_{\nu}(z)}{z}\right| \geq 1-\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{4^{n} n!(\nu+1) \ldots(\nu+n)} z^{n}\right| \geq 1-\sum_{n=1}^{\infty} \frac{1}{4^{n} n!(\nu+1) \ldots(\nu+n)}
$$

and so the inequality

$$
\begin{array}{r}
1-\sum_{n=1}^{\infty} \frac{1}{4^{n} n!(\nu+1) \ldots(\nu+n)} \geq 1-\frac{1}{4(\nu+1)} \sum_{n=1}^{\infty} \frac{1}{[4(\nu+2)]^{n-1}}= \\
\frac{4 \nu^{2}+10 \nu+5}{(1+\nu)(4 \nu+7)}
\end{array}
$$

leads to (3). Using similar ideas we obtain the following inequality chain

$$
\begin{aligned}
&\left|f_{\nu}^{\prime}(z)\right| \leq \sum_{n=1}^{\infty}\left|\frac{(-1)^{n} z^{n}}{4^{n}(n-1)!(1+\nu) \ldots(n+\nu)}\right| \leq \sum_{n=1}^{\infty} \frac{1}{4^{n}(n-1)!(1+\nu) \ldots(n+\nu)} \leq \\
& \frac{1}{4(1+\nu)} \sum_{n=0}^{\infty}\left(\frac{1}{4(2+\nu)}\right)^{n}=\frac{\nu+2}{(\nu+1)(4 \nu+7)}
\end{aligned}
$$

This means that (4) also holds.

3. The main result

Theorem 4. If $\nu>-1$ then

$$
\operatorname{Ref}_{\nu}(z)>0, \text { for all } z \in U(0,4(1+\nu))
$$

Proof. The minimum principle for harmonic functions implies that

$$
\operatorname{Re} f_{\nu}(z) \geq \inf _{\theta \in \mathbb{R}} \operatorname{Re} f_{\nu}\left(r_{\nu} e^{i \theta}\right), \text { for all } z \in U(0,4(1+\nu))
$$

where $r_{\nu}=4(1+\nu)$. According to the definition of f_{ν}, we have

$$
f_{\nu}(z)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} z^{n}}{4^{n} n!(\nu+1) \ldots(\nu+n)}
$$

and

$$
\begin{aligned}
\operatorname{Re} f_{\nu}\left(r_{\nu} e^{i \theta}\right) & =1+\operatorname{Re} \sum_{n=1}^{\infty} \frac{(-1)^{n}(\nu+1)^{n} e^{i n \theta}}{n!(\nu+1) \ldots(\nu+n)} \\
& =1-\cos \theta+\frac{\nu+1}{2(\nu+2)} \cos 2 \theta+\sum_{n=3}^{\infty} \frac{(-1)^{n}(\nu+1)^{n} \cos n \theta}{n!(\nu+1) \ldots(\nu+n)} .
\end{aligned}
$$

If we let

$$
P(\theta)=1-\cos \theta+\frac{\nu+1}{2(\nu+2)} \cos 2 \theta \text { and } R(\theta)=\sum_{n=3}^{\infty} \frac{(-1)^{n}(\nu+1)^{n} \cos n \theta}{n!(\nu+1) \ldots(\nu+n)}
$$

then

$$
\begin{equation*}
\operatorname{Re} f_{\nu}\left(r_{\nu} e^{i \theta}\right)=P(\theta)+R(\theta) \tag{5}
\end{equation*}
$$

A study of the behaviour of the function

$$
P: \mathbb{R} \rightarrow \mathbb{R}, P(\theta)=1-\cos \theta+\frac{\nu+1}{2(\nu+2)} \cos 2 \theta
$$

leads to the inequalities

$$
\begin{gather*}
P(\theta) \geq \frac{\nu+1}{2(\nu+2)}, \quad \theta \in \mathbb{R}, \nu \in(-1,0) \text { and } \\
P(\theta) \geq \frac{\nu^{2}+4 \nu+2}{4(\nu+1)(\nu+3)}, \quad \theta \in \mathbb{R}, \nu \in(0, \infty) \tag{6}
\end{gather*}
$$

From (5), Lemma 1 and (6) it follows that

$$
\operatorname{Re} f_{\nu}\left(r_{\nu} e^{i \theta}\right) \geq \min _{\theta \in \mathbb{R}} P(\theta)-\max _{\theta \in \mathbb{R}} R(\theta) \geq 0
$$

Now Lemma 1 and Theorem 1 imply the following result:
Theorem 5. If $\nu>-2$ then $\operatorname{Re} f_{\nu}^{\prime}(z)<0$ for $z \in U(0,4(\nu+2))$ and hence f_{ν} is univalent in $U(0,4(\nu+2))$.

Remark 6. Theorem 1 and Theorem 2 improves Lemma 1 and Theorem 1 from [3].
Theorem 7. If $\nu>\frac{-17+\sqrt{33}}{8}$ then the function f_{ν} is convex in U.
Proof. We introduce the notation $p_{1}(z)=1+\frac{z f_{\nu}^{\prime \prime}(z)}{f_{\nu}^{\prime}(z)}$. The function f_{ν} is convex if and only if

$$
\begin{equation*}
\operatorname{Re} p_{1}(z)>0, z \in U \tag{7}
\end{equation*}
$$

It is simple to prove that if

$$
\begin{equation*}
\left|p_{1}(z)-1\right|<1, z \in U \tag{8}
\end{equation*}
$$

then results (7).
Lemma 1 leads to the equality

$$
\left|p_{1}(z)-1\right|=\left|\frac{z f_{\nu+1}^{\prime}(z)}{f_{\nu+1}(z)}\right|
$$

In (3) and (4) replacing ν by $\nu+1$, we deduce that if $z \in U$ then

$$
\left|\frac{z f_{\nu+1}^{\prime}(z)}{f_{\nu+1}(z)}\right| \leq \frac{\nu+3}{4 \nu^{2}+18 \nu+19}
$$

Now to prove (7) it is enough to show that $\frac{\nu+3}{4 \nu^{2}+18 \nu+19}<1$, but this is immediately using the condition $\nu>\frac{-17+\sqrt{33}}{8}$.
Theorem 8. If $\nu>\frac{\sqrt{3}}{2}-1$ then the function g_{ν} defined by (1) is starlike of order $\frac{1}{2}$ in U.

Proof. Let p be the function defined by the equality $p_{2}(z)=\frac{2 z g_{\nu}^{\prime}(z)}{g_{\nu}(z)}-1$. Since $\frac{g_{\nu}(z)}{z} \neq 0, z \in U$ the function p_{2} is analytic in U and $p_{2}(0)=1$. The assertion of Theorem 2 is equivalent to

$$
\begin{equation*}
\operatorname{Re} p_{2}(z)>0, z \in U \tag{9}
\end{equation*}
$$

It is simple to prove that if

$$
\begin{equation*}
\left|p_{2}(z)-1\right|<1, z \in U \tag{10}
\end{equation*}
$$

then results (9).
On the other hand inequalities (2) and (3) lead to

This means that if $\frac{2(2+\nu)}{4 \nu^{2}+10 \nu+5}<1$ then (8) holds, but this inequality is a consequence of the condition $\nu>\frac{\sqrt{3}}{2}-1$.

Corollary 9. If $\nu>\frac{\sqrt{3}}{2}-1$ then the function h_{ν} defined by the equality $h_{\nu}(z)=$ $z^{1-\nu} J_{\nu}(z)$ is starlike in U.

The proof of this result is based on Theorem 3 and is similar to the proof of Corollary 2 in [3], hence we do not reproduce it here again.

Remark 10. Theorem 3, Theorem 4 and Corollary 1 improves the results of Theorem 2, Theorem 3 and Corollary 2 in [3].

References

[1] Brown, R.K., Univalence of Bessel Functions, Proceedings of the American Mathematical Society, Vol.11, No. 2(1960), 278-283.
[2] Miller, S.S. and Mocanu, P.T., Differential Subordinations Theory and Applications, Marcel Dekker 2000.
[3] Selinger, V., Geometric Properties of Normalized Bessel Functions, PU.M.A., Vol.6, No. 2(1995), 273-277.
[4] Watson, G.N., A Treatise of the Theory of Bessel Functions, Cambridge University Press, 1995.

Department of Mathematics, Sapientia University
Corunca, Str. Sighisoarei. 1c. Ro
E-mail address: szasz_robert2001@yahoo.com
Department of Mathematics, Sapientia University
Corunca, Str. Sighisoarei, 1c. Ro

