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APPROXIMATION OF CONTINUOUS FUNCTIONS
ON V.K. DZJADYK CURVES

SADULLA Z. JAFAROV

Abstract. In the given paper rational approximation is studied on closed

curves of a complex plane for continuous functions in terms of the k-th

modulus of continuity, k ≥ 1. Here a rational function interpolates a

continuous function at definite points.

1. Introduction and main result

Let Γ be an arbitrary restricted Jordan curve with two -component com-

plements Ω = CΓ = Ω1

⋃
Ω2, (0 ∈ Ω1,∞ ∈ Ω2). Let’s consider the functions

w = Φi(z), (i = 1, 2), that conformally and univalently maps respectively Ωi onto

Ω
′

i, (Ω
′

1 = {w : |w| < 1} , Ω
′

2 = {w : |w| > 1}), with norm Φ1(0) = 0, Φ
′

1(0) >

0, Φ2(∞) = ∞, lim
z→∞

1
z Φ2(z) > 0. Let’s extend each Φi(z), (i = 1, 2) continuously

up to the bound Γ = ∂Ω1 = ∂Ω2 (generally speaking Φ1(z) 6= Φ2(z) for z ∈ Γ). We

preserve the notation Φi, (i = 1.2) for the extension.Let z = Ψi(w) be the inverse

mapping of w = Φi(z), (i = 1, 2).

For A > 0 and B > 0, we use the expression A � B (order inequality) if

A ≤ CB. The expression A � B means that A � B and B � A hold simultaneously.

By C (Γ) we denote a class of functions continuous on Γ. For δ > 0 and fixed

uo ∈ (0, 1) we assume

U (z, δ)) = {ζ : |ζ − z| < δ} , d (ζ, Γ) = inf
z∈Γ

|ζ − z|,
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Γδ =
⋃
z∈Γ

U (z, δ) = {ζ : d (ζ, Γ) < δ} ,

Γ1+u0 = {ζ : ζ ∈ Ω2; |Φ2(ζ)| = 1 + u0} ,

Γ1−u0 = {ζ : ζ ∈ Ω1; |Φ1(ζ)| = 1− uo} ,

D1
uo

= intΓ1+u0 , D
2
uo

= extΓ1−uo
,

Duo
= D1

u0

⋂
D2

u0
,

δ∗n = sup
ζ∈intΓ1+ 1

n
∩ extΓ1− 1

n

d (ζ, Γ) , n = 1, 2, · · · ,

where under int Γ we understand a finite domain whose boundary coincides with

Γ, under ext Γ we understand a finite domain whose domain coincides with Γ. Let

Rn, n = 0, 1, 2, ... be a set of all complex rational functions of power no higher than

n. For f ∈ C(Γ) we define

En(f,Γ) := inf
rn∈Rn

sup
z∈Γ

|f(z)− rn(z)| = inf
rn∈Rn

‖f − rn‖Γ.

In connection with ”simultaneous approximation and interpolation” the fol-

lowing claims are suggested in the paper [14, p.310]. Let z1, z2, ..., zp ∈ Γ be definite

points and f ∈ C(Γ). In this case for ∀n ∈ N,n ≥ p − 1, there exists a rational

function rn ∈ Rn, for which

‖f − rn‖Γ ≤ cEn(f,Γ),

rn(zj) = f(zj), (j = 1, 2, ..., p),

where c > 0 is independent n and f . The appropriate rational function is written in

the following form

rn(z) = r∗n(z) +
p∑

j=1

q(z)
q′(zj)(z − zj)

(f(zj)− r∗n(zj)),

where

q(z) =
p∏

j=1

(z − zj)

and r∗n ∈ Rn satisfies the following condition

‖f − r∗n‖Γ = En(f,Γ).
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Definition 1.[11] Let Γ be a rectifiable Jordan curve. By θ(z, δ), z ∈ Γ, 0 <

δ < +∞ we denote the length of a part of Γ getting into the U(z, δ) = ζ : |ζ − z| < δ.

We attribute the curve Γ to the class S if it is fulfilled the condition

θΓ(δ)
df
= sup

z∈Γ
θ(z, δ) � δ.

Let’s give the definition of a class of V.K. Dzjadyk curves B∗
k in a briefly and

slightly modified form. (see [7, p.439-440]).

Definition 2. We’ll say that a rectifiable Jordan curve Γ belongs to the class B∗
k for

some natural k if Γ ∈ S and satisfies the following conditions

(i) |z̃ − z| � ρ1+ 1
n
(z),

where ∀z ∈ Γ, z̃ = Ψ2((1 + 1
n )Φ2(z)), ρ1+ 1

n
(z) = inf

ζ∈Γ1+ 1
n

|ζ − z|,

(ii) |ζ̃ − ζ|k ≤ |ζ̃ − z|k−1|z̃ − z|,∀z, ζ ∈ Γ.

We’ll study the functions for which the k-th modulus of continuity (k ∈ N)

have been defined. There are some different definitions of such continuity modulus

(see [6], [8], [13], [15]). The most convenient for our aim is the definition given by

E.M. Dynkin [8].

Definition 3. The k-th local modulus of continuity we’ll call the quantity

ωf,k,z,Γ(δ) = Ek−1(f,Γ ∩ U(z, δ)),

where f ∈ C(Γ), k ∈ N, z ∈ Γ, δ > 0.

Definition 4.The k-th global modulus of continuity we’ll call the quantity

ωf,k,Γ(δ) = sup
z∈Γ

ωf,k,z,Γ(δ).

In particular,

ωf,k,Γ(tδ) ≤ c1t
kωf,k,Γ(δ) (t > 1, δ > 0). (1)

If 0 < δ < 1, there exists a constant c2, that

δ∫
0

ωf,k,Γ(t)
dt

t
≤ c2ωf,k,Γ(δ). (2)

The following theorems is the main result of the report.
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Theorem 1. Let Γ ∈ B∗
k , f ∈ C(Γ), k ∈ N and z1, z2, ..., zp ∈ Γ be distinct points.

Then for each n ∈ N,n ≥ p+k there exists a rational function rn ∈ Rn for which the

following conditions are fulfilled

|f(z)− rn(z)| ≤ c1ωf,k,Γ(δ∗n) (z ∈ Γ), (3)

rn(zj) = f(zj) (j = 1, 2, ..., p), (4)

where the constant c1 is independent of n.

The rational functions play an important role in many areas of applied math-

ematics and mechanics. It is actually the approximation of continuous functions by

rational functions or some other functions, which can be found easily. The Theorem

1 studies rational approximations (in terms of the k-th modulus of continuity, k ≥ 1)

for continuous functions defined on closed curves Γ in the complex plane, which si-

multaneously interpolate at given points of Γ. The similar results for the analytic

functions in different continua were obtained in the papers [5], [15], [1].

2. Subsidiary facts

By obtaining the main result we use an approximation of Cauchy kernel

(s− z)−1 by rational functions of the form

Kn(ζ, z) =
n∑

j=−n

aj(ζ)zj .

To construct rational functions a rational kernel suggested by V.K. Dzjadyk

(see [7, ch.9] or [3, ch.3]) is used.

Lemma 1. Let Γ be an arbitrary Jordan curve, 0 < u0 < 1 be an arbitrary fixed

number, c = 2(1 + u0)e2π. Then for all natural n = 1.2, ... and ζ ∈ Du0\Γδ∗( c
n )

there exists the function Πn(ζ, z) =
n∑

j=−n

aj(ζ)zj with continuous with respect to ζ

coefficients aj , j = −n, n, that for z ∈ Γ and p = 0, 1 satisfies the inequalities

| ∂p

∂zp
[

1
ζ − z

−Πn(ζ, z)]| � δ∗
2
(
1
n

)|ζ − z|−p−3 (5)

| ∂p

∂zp
Πn(ζ, z)| � |ζ − z|−p−1. (6)
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The lemma is proved similarly to Corollary 4 of the paper [2]. It should be

only noted that Πn(ζ, z) is a polynomial kernel for ζ ∈
{

D1
uo
\Γδ∗( c

n )
}
∩ Ω2. In the

case ζ ∈
{

D2
uo
\Γδ∗( c

n )
}
∩ Ω1 as it is shown in the paper [4] it gives us a rational

function.

Lemma 2. Let Γ ∈ B∗
k , 0 < u0 < 1 be an arbitrary number. Then for any n = 1, 2...

and ζ ∈ Duo there exists a rational function Kn (ζ, z) with respect to the variable z

with summable with respect to s coefficients for which for z ∈ Γ and p = 0, 1 the

inequalities ∣∣∣∣ ∂p

∂zp

[
1

ζ − z
−Kn (ζ, z)

]∣∣∣∣ � 1
|ζ − z|p+1

[
δ∗n

|ζ − z|+ δ∗n

]2
, (7)∣∣∣∣ ∂p

∂zp
Kn (ζ, z)

∣∣∣∣ � [|ζ − z|+ δ∗n]−p−1
. (8)

are fulfilled.

Proof. Let n be sufficiently large. Assume c = 2 (1 + u0) e2π. By compactness of

Γδ∗( c
n ) we can distinguish a finite number of points ζ1, ζ2, ..., ζm ∈ Γδ∗( c

n ), for which

Γδ∗( c
n ) ⊂

m⋃
k=1

U (ζk, δ∗n) .

Since Γ ∈ B∗
k , at each point ζk, k = 1,m we can construct the point

ζ
′

k ∈ Du0\Γδ∗( c
n ) with the following condition∣∣∣ζk − ζ

′

k

∣∣∣ � δ∗n. (9)

We can easily see that∣∣∣ζ ′k − z
∣∣∣ � |ζ − z|+ δ∗n, z ∈ Γ, ζ ∈ U (ζk, δ∗n) . (10)

By the identity

1
ζ − z

=
1

ζ
′
k − z

+
ζ
′

k − ζ(
ζ
′
k − z

)2 +

(
ζ
′

k − ζ

ζ
′
k − z

)2
1

ζ − z

consider for ζ ∈ U (ζk, δ∗n) , k = 1,m the function

λ(k)
n (ζ, z) = Πn

(
ζ
′

k, z
)

+
(
ζ
′

k − ζ
)(

Π[n
2 ]
(
ζ
′

k, z
))2

,
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where Πn

(
ζ
′

k, z
)
) is the function from Lemma 1. We construct the required function

Kn (ζ, z) as follows:

1) If ζ ∈ U (ζ1, δ
∗
n) we assume

Kn (ζ, z) = λ(1)
n (ζ, z)

2) If ζ ∈ U (ζk, δ∗n) \
k−1⋃
j=1

U (ζj , δ
∗
n) , k = 2,m we assume

Kn (ζ, z) = λ(k)
n (ζ, z) .

3) If ζ ∈ Du0\

{
m⋃

j=1

U (ζj , δ
∗
n)

}
, we take the appropriate function from

Lemma 1. Now the affirmation of Lemma 2 follows from the above mentioned con-

structions, Lemma 1, estimates of the following easily verifiable relations

1
ζ − z

− λ(k)
n (ζ, z) =

(
ζ
′

k − ζ

ζ
′
k − z

)2
1

ζ − z
+
(

1
ζ
′
k − z

−Πn

(
ζ
′

k, z
))

+

+
(
ζ
′

k − ζ
)[ 1(

ζ
′
k − z

)2 − (Π[n
2 ]
(
ζ
′

k, z
))2

]
,

∣∣∣∣ ∂p

∂zp

[
1

ζ − z
− λ(k)

n (ζ, z)
]∣∣∣∣ � 1

|ζ − z|p+1

(
δ∗n

|ζ − z|+ δ∗n

)2

,∣∣∣∣ ∂p

∂zp
λ(k)

n (ζ, z)
∣∣∣∣ � (|ζ − z|+ δ∗n)−p−1

,

where ζ ∈ U (ζk, δ∗n) , z ∈ Γ, p = 0, 1.

Let’s give a result in slightly modified form cited in the papers [8], [9], [12],

[13, p.13-15].

Lemma 3. Let Γ ∈ B∗
k and F ∈ C (Γ) . Then we can continue the function F (z)

on the complex plane C so that the following relations be fulfilled (we keep denotation

F (z)): (i) for z ∈ C\Γ ∣∣∣∣∂F (z)
∂z̄

∣∣∣∣ ≤ c1
ωF,k,z,Γ (c2d (z,Γ))

d (z,Γ)
,

where c1 = c1 (k, diamΓ).

(ii) if ζ ∈ Γ, z ∈ C, |z − ζ| < δ, 0 < δ < 1
2diamΓ, then

|F (z)−RF,k,ζ,Γ,δ (z)| ≤ c3ωF,k,ζ,Γ (c4δ) ,
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where RF,k,ζ,Γ,δ (z) ∈ Rk−1 is such a rational function that

‖F −RF,k,ζ,Γ,δ‖Γ∩D(ζ,δ) = ωF,k,ζ,Γ (δ) ,

and c3 = c3 (k).

(iii) If F satisfies the Lipschitz condition on Γ, i.e.

|F (z)− F (ζ)| ≤ c |z − ζ| , z, ζ ∈ Γ,

then the continued function for z, ζ ∈ C satisfies the same condition. Here, instead

of c there will be the constant c4 = c4 (c, diamΓ, k) .

3. The proof of the main result (Theorem 1)

Let’s fix a point z0 ∈ Γ and assume for ζ ∈ Γ

F (ζ) =
∫

γ(z0,ζ)

f (ξ) dξ,

where γ (z0, ζ) ⊂ Γ is an arc connecting the points z0 and ζ.

We extend the function F (ζ) continuously on the complex plane C. Let z

and ζ ∈ Γ, |ζ − z| ≤ δ, the arc γ (z, ζ) ⊂ intΓ connects these points, mesγ (z, ζ) ≤

c |z − ζ| , c = c (Γ) ≥ 1. We’ll have

F (ζ) = F (z) +
∫

γ(z,ζ)

f (ξ) dξ = νδ (ζ, z) + +
∫

γ(z,ζ)

(f (ξ)−Rf,k,z,Γ,cδ (ξ)) dξ,

ωF,k+1,z,Γ (δ) ≤ ‖F − νδ (., z) ‖Γ∩D(z,δ) � δω (δ) ,

where ω (δ) := ωf,k,Γ (δ) .

Using Lemma 3 for ζ ∈ G := intΓ1+ 1
2
∩ extΓ 1

2
we have∣∣∣∣∂F (ζ)

∂ζ̄

∣∣∣∣ � ω (d (ζ, Γ)) . (11)

Besides, for z ∈ Γ, ζ ∈ C, |z − ζ) | ≤ δ < diamΓ we have

|F (ζ)− νδ (ζ, z)| � δω (δ) . (12)

Indeed, for ζ ∈ Γ ∩D (z, δ) the following inequality is valid

|νδ (ζ, z)−RF,k+1,z,Γ,δ (ζ)| ≤ |F (ζ)− νδ (ζ, z)|+ |F (ζ)−RF,k+1,z,Γ,δ (ζ)| � δω (δ) .
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By Bernstein-Walsh lemma (see [14, p.77]) we have

‖νδ (., z)−RF,k+1,z,Γ,δ‖D(z,δ) � δω (δ) (13)

We introduce a rational kernel Qn
2

(ζ, z) := K[n
2 ] (ζ, z) , where Kn (ζ, z) is a rational

kernel from Lemma 2. By virtue of (3) and (4) ζ ∈ intΓ1+ 1
2
∩ extΓ 1

2
, z ∈ Γ we have∣∣∣∣ 1

ζ − z
−Qn

2
(ζ, z)

∣∣∣∣ � 1
|ζ − z|

(
δ∗n

|ζ − z|+ δ∗n

)2

, (14)

∣∣Qn
2

(ζ, z)
∣∣ � 1

[|ζ − z|+ δ∗n]
(15)

For z ∈ Γ we give the approximate rational function by the formula

Rn (z) = − 1
π

∫
G

∂F (ζ)
∂ζ̄

Q2
n
2

(ζ, z) dm (ζ) ,

where dm (ζ) means integration with respect to the two-dimensional Lebesgue mea-

sure (area).

Let z ∈ Γ and assume Un := U (z, δ∗n) , γn := ∂Un. By lemma (iii) of the

Lemma 3 F ∈ ACL in C (absolutely continuous on all horizontal and verticals in C).

Then we apply the Green formula (see [10]) and have

f (z)−Rn (z) = 1
π

∫
G\Un

∂F (ζ)

∂ζ̄

(
Q2

n
2

(ζ, z)− 1
(ζ−z)2

)
dm (ζ)

+ 1
π

∫
Un

∂F (ζ)

∂ζ̄
Q2

n
2

(ζ, z) dm (ζ) +

+f (z)− 1
2πi

∫
γn

F (ζ)

(ζ−z)2
dζ = U1 (z) + U2 (z) + U3 (z) .

(16)

Now, we estimate each Ui (z) , i = 1, 2. In relation (16) passing to polar

coordinates and using (1), (2), (11), (14) and (15) the first two integrals are estimated

in the following way:

|U1 (z)| =

∣∣∣∣∣∣∣
1
π

∫
G\Un

∂F (ζ)
∂ζ̄

(
Q2

n
2

(ζ, z)− 1
(ζ − z)2

)
dm (ζ)

∣∣∣∣∣∣∣ ≤

≤ 1
π

∫
G\Un

∣∣∣∣∂F (ζ)
∂ζ̄

∣∣∣∣
∣∣∣∣∣Q2

n
2

(ζ, z)− 1
(ζ − z)2

∣∣∣∣∣ dm (ζ) � (17)
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�
c∫

δ∗n

ω (r)
(δ∗n)3

r4
dr � ω (δ∗n) δ∗n

c∫
δ∗n

dr

r2
� ω (δ∗n) ,

|U2 (z)| =

∣∣∣∣∣∣ 1π
∫

Un

∂F (ζ)
∂ζ̄

Q2
n
2

(ζ, z) dm (ζ)

∣∣∣∣∣∣ ≤
≤ 1

π

∫
Un

∣∣∣∣∂F (ζ)
∂ζ̄

∣∣∣∣ ∣∣∣Q2
n
2

(ζ, z)
∣∣∣ dm (ζ) �

δ∗n∫
o

ω (r)
r

dr � ω (δ∗n) . (18)

Now let’s estimate U3 (z). We have

|U3 (z)| =

∣∣∣∣∣∣f (z)− 1
2πi

∫
γn

F (ζ)
(ζ − z)2

dζ

∣∣∣∣∣∣ ≤
∣∣∣f (z)−

(
νδ∗n

)′
ζ
(z, z)

∣∣∣+
+

1
2π

∣∣∣∣∣∣
∫
γn

F (ζ)− νδ∗n (ζ, z)

(ζ − z)2
dζ

∣∣∣∣∣∣ . (19)

The estimate∣∣∣f (z)−
(
νδ∗n

)′
ζ
(z, z)

∣∣∣ = ∣∣f (z)−Rf,k,z,Γ,cδ∗n (z)
∣∣ ≤ ω (cδ∗n) � ω (δ∗n) (20)

is true. By inequalities (19), (20), and (12) we have

|U3 (z)| � ω (δ∗n) (21)

Comparing estimates (16), (17), (18) and (21) we have

|f (z)−Rn (z)| � ω (δ∗n) , z ∈ Γ. (22)

Now, let’s construct rational function for which conditions (3) and (4) are

fulfilled. Let n > 2p. Let’s construct the following functions

V n
2+1

(ζ, z) = 1− (ζ − z) Qn
2

(ζ, z) , ζ, z ∈ Γ,

un (z) =
p∑

j=1

q (z)
q′ (zj) (z − zj)

(f (zj)− tn (zj))V n
2+1

(zj , z) .

By (14) and (22) we have

|un (z)| �
′∑
j

ω (δ∗n)
(

δ∗n
|z − zj |+ δ∗n

)2

, z ∈ Γ,
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where
′∑
j

means the sum in all j with zj ∈ Γ.

Let’s construct the required rational function in the following form

rn (z) = tn (z) + un (z) . (23)

Obviously the rational function of the form (23) satisfies conditions (3) and (4).
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